
NOTES ON DELAUNAY AND POINCARÉ ELEMENTS

CLARISSA HOWISON AND KENNETH R. MEYER

Abstract. This set of notes defines the Delaunay elements of celestial mechanics in two
and three dimensions. It establishes the conditions for a doubly periodic orbit in these
elements.

1. Introduction

The are many questions about polar type coordinates in celestial mechanics that have
bothered me over the years. The treatment in many of the standard texts is rather poor.
These notes contain a set of miscellaneous remarks and results about action-angle variables,
Poincaré’s Center Theorem, Delaunay and Poincaré variables in two and three dimensions.
All the results contained here are well known to those who know them and nothing is new
except may be the treatment.

2. The Action Variable for a Nonlinear Oscillator

In this section I discuss action-angle variables for a one degree of freedom Hamiltonian
system near a center. Also I discuss the classical generating function, normalization at a
center and give a symplectic form of Poincaré’s Center Theorem.

2.1. The action-angle variables. Consider a Hamiltonian H(x, y) defined in a neighbor-
hood of the origin in R2, such that the origin is a center for the Hamiltonian flow. Thus
the origin is encircled by periodic orbits. Assume that the origin is a local minimum of H,
and H(0, 0) = 0. We seek symplectic action-angle variables (L, ℓ) where ℓ is an angle defined
mod 2π and the Hamiltonian is to be of the form H(L, ℓ) = Ω(L).

Let R(h) = the component of {(x, y) ∈ R2 : H(x, y) ≤ h} which contains the origin. Since
dx ∧ dy = dL ∧ dℓ we must have∫ ∫

R(h)

dx ∧ dy =

∫ ∫
R(h)

dL ∧ dℓ = 2πL

or

L =
1

2π

∫ ∫
R(h)

dx ∧ dy =
1

2π

∮
∂R(h)

xdy.

Thus the variable L is just the area of the region R(h). The last integral in the formula for
L is classically called the ‘action’. Since the equations of motion in the new coordinates are

(1) L̇ = 0, ℓ̇ = −Ω′(L)

L is a constant and ℓ = ℓ0 −Ω′(L)t. Thus ℓ is a scaled time, scaled so that it is 2π-periodic.
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Key words and phrases. Delaunay elements, Poincaré elements, action-angle variables, Kepler Problem.
This research partially supported by grants from the National Science Foundation and the Taft

Foundation.
1



2.2. The equation for the Hamiltonian. Let the period of the orbit be p(h). We wish to
find symplectic variables (L, ℓ) defined in a neighborhood of the origin with ℓ an angle defined
mod 2π and L is its conjugate momentum so that the Hamiltonian becomes a function of
L alone. With H = Ω(L) the equations become (1). Thus the period of the orbit is
2π/ | Ω′(L) |. Therefore, we must have

2π

Ω′(L)
= ±p(Ω(L))

or

(2) Ω′ = ± 2π

p(Ω)
.

The differential equation above defines the function Ω(L) in terms of p(h). The sign is chosen
so that ±2π/Ω′(L) is positive (the period).

2.3. Example–the Kepler Problem. In the Kepler problem H = −1/2s, P = 2πs3/2

where s is the semi-major axis. So p(h) = π2−1/2(−h)−3/2. Thus the equation to solve is

Ω′ = 23/2(−Ω)3/2.

Separating variables gives

(−Ω)−3/2dΩ = 23/2dL

(−Ω)−1/2 = 21/2L.

Thus the Hamiltonian must be

(3) Ω = −1/2L2.

2.4. The generating function. Now consider the Hamiltonian system

(4) H =
1

2
y2 + F (x), F (x) =

∫ x

0

f(τ)dτ

where xf(x) > 0 for 0 < x < x0, so the origin is a center. So for small positive h the set

H = h is a closed orbit. Since ℓ̇ is constant, ℓ is a constant multiple of time, t, in particular
ℓ = ℓ0 −Ω′(L0)t. In order to fix initial conditions, let t and ℓ be measured from the positive
x-axis. A one degree of freedom Hamiltonian system is integrable up to ‘quadrature’. To
this end, let a denote the point on the positive x-intercept of H = h, so F (a) = Ω(L). From
the equation

1

2
y2 + F (x) = h

solve for y

y =
dx

dt
= ±{2h− 2F (x)}1/2

separate variables

dt = ±{2h− 2F (x)}−1/2dx
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and so

(5) t = ±
∫ x

a

dξ

{2h− 2F (ξ)}1/2
.

The angle ℓ is −Ω′(L0)t. The orbit is swept out in a clockwise direction, so if the angle ℓ
is to be measured in the usual counterclockwise direction for small ℓ and t, the minus sign
should be used in (5).

To construct the symplectic change of variables consider the generating function

(6) W (x, L) =

∫ x

a

{2Ω(L)− 2F (ξ)}1/2dξ

with

y =
∂W

∂x
= {2Ω(L)− 2F (x)}1/2

so
1

2
y2 + F (x) = Ω(L)

and

ℓ =
−∂W

∂L = −{2Ω(L)− 2F (a}1/2 da
dL

−
∫ x

a

Ω′(L)dξ

{2Ω(L0)− 2F (ξ)}1/2

= −tΩ′(L).

(The first term in the formula for ℓ is zero by the definition of a.) Thus the change of variables
is symplectic. We shall call these variables action-angle variables (for the Hamiltonian H).
If H = (x2 + y2)/2, the usual harmonic oscillator, then ℓ = tan−1(y/x) and L = (x2 + y2)/2.

2.5. Normalized rectangular variables. Go back to ‘rectangular’ coordinates u, v by

u = (2L)1/2 cos ℓ, v = (2L)1/2 sin ℓ.

One computes that du ∧ dv = dL ∧ dℓ so this change of variables is symplectic also. The
Hamiltonian becomes

(7) H(u, v) = Ω((u2 + v2)/2).

Question: Is the symplectic change of variable (x, y) → (L, ℓ) → (u, v) smooth/analytic at
the origin?

To answer this question let us investigate the smoothness of the period function. If F is
an even function (the force function f is odd) then the quarter period is

T =

∫ a

0

dξ

{2F (a)− 2F (ξ)}1/2
.

(If F is not even then the half period is made of two such integrals and so the present
discussion can easily be carried over to that case.) Assume that F has a power series
expansion of the form

2F (x) = αx2 + · · · , α > 0

x small. Note that the lowest order term is αx2 which insures that the origin is a center.
Write

2F (a)− 2F (x) = (a− x)G(a, x)
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where G(a, a) = 2αa+· · · . We have factored out the zero of 2F (a)−2F (x) and so G(a, x) > 0
for 0 ≤ x ≤ a , a small. In the integral for T make the change of variables u2 = (a− ξ)/a so

T = 2a

∫ 1

0

du

{aG(a, a(1− u2)}1/2
= 2

∫ 1

0

du

H(a, u)1/2

where
aG(a, a(1− u2) = a2H(a, u),

and H(a, u) is analytic in both variables, H(0, u) = 2α+ · · · and H(0, u) > 0 for 0 ≤ u ≤ 1,
so

T = β + · · · , β = 2

∫ 1

0

du

H(0, u)1/2
> 0.

Thus I have shown:

Lemma 2.1. If the system (4) is analytics and F (x) = αx2 + · · · , α > 0 then the period is
analytic in and T (0) = β > 0 .

However, I would like to prove:

Theorem 2.1. Let the system (4) be analytic and F (x) = αx2 + · · · , α > 0. Then the
system can be transformed to the analytic normal form (7).

2.6. A Symplectic Poincaré’s Center Theorem. Consider an real analytic system with
an equilibrium at the origin of the form

(8) ẋ = y + · · · , ẏ = −x+ · · · .
Poincaré’s Center Theorem [3, 6] states that if (8) can be formally transformed to a system
of the form

(9) u̇ = u{1 + f(u2 + v2)}, v̇ = −v{1 + f(u2 + v2)},
by a formal change of variables of the form u = x+ · · · , v = y+ · · · then there is an analytic
change of variable of the same form which takes (8) to (9). That is, if the system is formally
a center then it is analytically a center. Equation (9) is the standard normal form for a
center.

There are two caveats. First, since the formal transformation carrying (8) to (9) is not
unique the formal transformation may not be the same one that Poincaré proved to be ana-
lytic. Second, even though the original system (8) is Hamiltonian the analytic transformation
may not be symplectic. In this section, we shall over come the second problem.

Theorem 2.2. If equation (8) is analytic and Hamiltonian then it can be normalized by an
analytic, symplectic, near identity transformation. That is, if (8) is an analytic system with
Hamiltonian of the form

(10) H(x, y) =
1

2
(x2 + y2) + · · · ,

there is an analytic, near identity, symplectic change of coordinates (x, y) −→ (ξ, η) such
that the Hamiltonian becomes

(11) H(ξ, η) = K((ξ2 + η2)/2), K(s) = 1 + · · · .
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Proof. Let g be the analytic transformation of the form u = x+ · · · , v = y+ · · · which takes
(8) to (9), see [3, 6]. Then g takes the symplectic form Ω = dx ∧ dy to Ω = h(u, v)du ∧ dv
where h is analytic and h(0, 0) = 1. The u, v flow preserves Ω = h(u, v)du ∧ dv and the
circles u2 + v2 = constant, so Ω = s((u2 + v2)/2)du ∧ dv, s(0) = 1.

Change to action-angle coordinated (I, θ), I = (x2 + y2)/2, θ = tan−1(y/x) so the form
becomes Ω = s(I)dI ∧ dθ. Define

S(I) =

∫
s(I)dI

and change coordinates by J = S(I). This last change of coordinates is analytic in the
rectangular coordinates, preserves the form of the equations and take the form Ω to dJ ∧dθ.
Thus, Hamiltonian has been normalized by a symplectic change of variables. �

3. The Planar Kepler Problem

In this section the ideas of the previous section are used to create action-angle variables
for the Kepler problem (the central force problem with inverse square law attraction.) These
variables are called Delaunay elements, named after the French astronomer of the last century
who used these coordinates to develop his theory of the moon. Delaunay elements are valid
only in the domain in phase space where there are elliptic orbit for the Kepler problem. I
follow Poincaré to give a set of variables which are valid in a neighborhood of the circular
orbits. These are the Poincaré elements.

3.1. Delaunay elements for the planar problem. The Hamiltonian of the Kepler prob-
lem in symplectic polar coordinate (r, θ, R,Θ) is

H =
1

2

{
R2 +

Θ2

r2

}
− 1

r
,

see [4]. Angular momentum, Θ, is an integral so for fixed Θ ̸= 0 this is a one-degree of
freedom system of the form discussed above, except the origin of the center is at r = Θ (the
circular orbit). Set H = −/2L2 and solve for the r value of perigee (when R = 0) to get
that a = L[L − (L2 − Θ2)1/2]. Note that L2 ≥ Θ2 and L = ±Θ corresponds to the circular
orbits of the Kepler problem. By the discussion given above we should use as our generating
function

W1(r, L) =

∫ r

a

{
−Θ2

ξ2
+

2

ξ
− 1

L2

}1/2

dξ

so H = −1/L2, L̇ = 0, ℓ̇ = 1/L3. ℓ is known as the mean anomaly and is measured from
perigee.

To change to Delaunay variables (ℓ, g, L,G) we use the generating function

W (r, θ, L,G) = θG+

∫ r

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}1/2

dξ
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Figure 1. Delaunay angles in the planar problem.

where a = a(L,G) = L[L− (L2 −G2)1/2]. Thus

(12)

R =
∂W

∂r
=

{
−G

2

r2
+

2

r
− 1

L2

}1/2

,

Θ =
∂W

∂θ
= G,

ℓ =
∂W

∂L
= −

{
−G

2

a2
+

2

a
− 1

L2

}1/2
∂a

∂L
+

∫ r

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}−1/2

dξL−3 =

t/L3,

g =
∂W

∂G
= θ +

∫ r

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}−1/2(
−G

ξ2

)
dξ = θ − f

G = Θ, so G is angular momentum. The expression for R implies that H = −1/2L2 as
is expected. The first quantity in the definition of ℓ is zero by the definition of a and the
integral in the second quantity is just time, t. So ℓ = −t/L3 where t is measured from
perigee, so ℓ is measured from perigee also. Recall that to change independent variable from
t (time) to f (true anomaly) in the solution of the Kepler problem we set df = (Θ/r2)dt =
(G/r2)dt. Thus since dt = (−G2/ξ2 + 2/ξ − 1/L2)−1/2dξ the integrand in the definition of g
is just df , and the integral gives the true anomaly, f, measured from perigee. Thus g = θ− f
is the argument of the perigee. See Figure 1

3.2. Poincaré elements for the planar problem. The argument of the perigee is clearly
undefined for the circular orbits; so, Delaunay elements are not valid coordinates in a neigh-
borhood of the circular orbits. To overcome this problem Poincaré introduced what he call
Kepler variables, but which have become known as Poincaré elements.
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Recall that L2 > G2 is the elliptic domain and L = ±G corresponds to the circular orbits.
Using the ideas in Subsection 2.5 to go from action-angle variables to rectangular variables
one should make the symplectic change of variables

(13)
Q1 = ℓ+ g, Q2 = {2(L−G)}1/2 cos ℓ,

P1 = L, P2 = {2(L−G)}1/2 sin ℓ.
Q1 is an angular variable defined mod 2π and P1 is the conjugate radial coordinate; Q2, P2

are rectangular coordinates with Q2 = 0, P2 = 0 corresponding to the circular orbits of the
Kepler problem.

The Hamiltonian of the Kepler problem in Poincaré elements becomes

H = − 1

P 2
1

.

4. The Spatial Kepler Problem

Usually the three dimensional Kepler problem is reduced to the planar problem because
conservation of angular momentum implies the motion takes place in a plane perpendicular
to the angular momentum vector. However, now I want to give action-angle type variables
for the three dimensional problem. So it is necessary to look at the Kepler problem in three
dimensions. Once the three dimensional Kepler problem is understood, the three dimensional
Delaunay variables can be given.

4.1. The Kepler problem in spherical coordinates. Before we discuss Delaunay coor-
dinates in three dimensions we need to solve the Kepler problem in spherical coordinates
(ρ, θ, ϕ), the radius, longitude, and azimuth. The standard definition of spherical coordinates
is

(14) x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ.

To extend this point transformation use Mathieu generating function

S = Xρ sinϕ cos θ + Y ρ sinϕ sin θ + Zρ cosϕ,

so

(15)

P = ∂S
∂ρ

= X sinϕ cos θ + Y sinϕ sin θ + Z cosϕ = (xX + yY + zZ)/ρ = ρ̇,

Θ = ∂S
∂θ

= −Xρ sinϕ sin θ + Y ρ sinϕ cos θ = −Xy + Y x = ρ2θ̇

Φ = ∂S
∂ϕ

= Xρ cosϕ cos θ + Y ρ cosϕ sin θ − Zρ sinϕ = ρ2 cos2 ϕϕ̇.

Thus R is radial momentum, and Θ is the z-component of angular momentum. From these
expressions compute

Z = P cosϕ− (Φ/ρ) sinϕ,

P sinϕ+ (Φ/ρ) cosϕ = X cos θ + Y sin θ,

Θ/(ρ sinϕ) = −X sin θ + Y cos θ.
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From the last two formulas compute X2 + Y 2 without computing X&Y . You will find that
the Hamiltonian of the Kepler problem in spherical coordinates is

(16) H =
1

2

{
P 2 +

Φ2

ρ2
+

Θ2

ρ2 sin2 ϕ

}
− 1

ρ

and the equations of motion are

(17)

ρ̇ = HP = P, Ṗ = −Hρ =
Φ2

ρ3
+

Θ2

ρ3 sin2 ϕ
− 1

ρ2
,

θ̇ = HΘ =
Θ

ρ2 sin2 ϕ
, Θ̇ = −Hθ = 0

ϕ̇ = HΦ =
Φ

ρ2
, Φ̇ = −Hϕ =

(
Θ2

ρ2

)
cosϕ

sin3 ϕ
.

Clearly, Θ, the z-component of angular momentum, is an integral, but so is G defined by

(18) G2 =

(
Θ2

sin2 ϕ
+ Φ2

)
.

We shall show that G is the magnitude of total angular momentum.

4.2. A plane in spherical coordinates. The equation of a plane through the origin is of
the form αx+ βy + γz = 0 or in spherical coordinates

α sinϕ cos θ + β sinϕ sin θ + γ cosϕ = 0

or

(19) a sin(θ − θ0) = b cotϕ.

Let the plane meet the x, y-plane in a line through the origin with polar angle θ = Ω (the
longitude of the node) and be inclined to the x, y-plane by an angle i (the inclination).

When θ = Ω, ϕ = π/2 so we may take θ0 = Ω. Let ϕm be the minimum ϕ takes on the
plane, so ϕm + i = π/2. ϕm gives the maximum value of cotϕ and sin has its maximum
value of +1. Thus from (19) a = b cotϕm or a sinϕm = b cosϕm. Take a = cosϕm = sin i
and b = sinϕm = cos i. Therefore, the equation of a plane in spherical coordinates with the
longitude of the node Ω and inclination i is

(20) sin i sin(θ − Ω) = cos i cotϕ.

4.3. The equation of the invariant plane. Use (18) to solve for Φ and substitute it into

the equation for ϕ̇, then eliminate ρ2 from the equations for ϕ̇ and θ̇, to obtain

ϕ̇ =
Φ

ρ2
=

{
G2 − Θ2

sin2 ϕ

}1/2
1

ρ2
=

{
G2 − Θ2

sin2 ϕ

}1/2
{
sin2 ϕθ̇

Θ

}
.

Separate variables and let θ = Ω when ϕ = π/2, so that Ω is the longitude of the node. Thus
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(21)

∫ ϕ

0

{
G2 − Θ2

sin2 ϕ

}−1/2

sin−2 ϕdϕ =

∫ θ

Ω

Θ−1dθ = (θ − Ω)/Θ

−
∫ u

0

{G2 −Θ2(1 + u2)}−1/2du =

−Θ−1

∫ u

0

{β2 − u2}−1/2du =

Θ−1 sin−1(u/β) =

The first substitution is u = cotϕ and β is defined by β2 = (G2 −Θ2)/Θ2. Therefore,

− cotϕ = ±β sin(θ − Ω).

Finally

(22) cos i cotϕ = sin i sin(θ − Ω)

where

(23) β2 =
G2 −Θ2

Θ2
= tan2 i =

sin2 i

cos2 i
.

Equation (22) is the equation of the invariant plane. The above gives Θ = ±G cos i. Since i
is the inclination and Θ is the z-component of angular momentum this means that G is the
magnitude of total angular momentum. In the above take θ0 to be Ω the longitude of the
node.

4.4. Delaunay elements in three dimensions. We shall change from spherical coordi-
nates (ρ, θ, ϕ, P,Θ,Φ) to Delaunay elements (ℓ, g, k, L,G,K) where the first three variables
are angles defined mod 2π. Consider the generating function

(24)

W (ρ, θ, ϕ, L,G,K) = θK +

∫ ϕ

π/2

{
G2 − K2

sin2 ζ

}1/2

dζ+

∫ ρ

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}1/2

dξ,

where a = a(L,G) = L[l − (L2 −G2)]. The change of coordinates is
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(25)

P =
∂W

∂ρ
=

{
−G

2

ρ2
+

2

ρ
− 1

L2

}1/2

Θ =
∂W

∂θ
= K

Φ =
∂W

∂ϕ
=

{
G2 − K2

sin2 ϕ

}1/2

ℓ =
∂W

∂L
=

∫ r

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}−1/2

dξL−3 = −t/L3

g =
∂W

∂G
= −

∫ ϕ

π/2

{
G2 − K2

sin2 ζ

}−1/2

Gdζ −
∫ r

a

{
−G

2

ξ2
+

2

ξ
− 1

L2

}−1/2(
G

ξ2

)
dξ

= σ − f

k =
∂W

∂K
= θ −

∫ ϕ

π/2

{
G2 − K2

sin2 ζ

}−1/2 (
K

sin2 ζ

)
dζ = Ω.

Since Θ = K, K is the z-component of angular momentum, the expression for Φ gives
that G is the magnitude of total angular momentum, and the expression for P insures that
H = −1/2L2. ℓ = −t/L3 where t is measured from perigee, and so ℓ is the mean anomaly.
The integral in the definition of k is the first integral in (21), so k = θ − (θ − Ω) = Ω the
longitude of the node.

The first integral in the formula for g is integrated as follows.∫ ϕ

π/2

{
G2 − K2

sin2 ζ

}−1/2

Gdζ =

∫ ϕ

π/2

{
1− cos2 i

sin2 ζ

}−1/2

dζ

=

∫ ϕ

π/2

sin ζdζ√
sin2 ζ − cos2 i

= −
∫ cosϕ

0

du√
1− u2 − cos2 i

, (u = cos ζ)

= −
∫ cosϕ

0

du√
sin2 i− u2

= − sin−1

(
cosϕ

sin i

)
= −σ.
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Figure 2. The definition of σ.

Therefore,

sinσ =
sin(π/2− ϕ)

sin i
=

sinψ

sin i
.

The angle σ is defined by the spherical triangle with sides (arcs measured in radians)
θ, ψ = π/2− ϕ, σ and spherical angle i. Recall the law of sines for spherical triangles and
see Figure 2.

Thus σ measures the position of the particle in the invariant plane. Since f is the true
anomaly measured from perigee in the invariant plane g = σ − f is the argument of the
perigee measured in the invariant plane.

5. Delaunay elements using Arnold’s Theorem

The material in this section is adapted from the Moser-Zhender notes [5]. First a few
general results which are easy to verify.

Lemma 5.1. Let F,G,H : R2n −→ R1 be smooth, then

{FG,H} = F{G,H}+G{F,H}.

Lemma 5.2. Let s : R1 −→ R1 and H : R2n −→ R1 be smooth. Then the flow dK# where
K = s(H) is a reparameterization of the flow dH# where

dK# : du/dt = JgradK, dH# : du/dτ = JgradH

and dτ = s′(H)dt. In particular, if an periodic orbit has a t-period of p then it has a τ -period
of s′(H)p(H).

Return to three-space and let angular momentum by denoted by

A = r ×R = Axi+ Ayj + Azk.

An easy calculation shows:
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Lemma 5.3. {Ax, Ay} = Az, {Az, Ax} = Ay, {Ay, Az} = Ax.

Define three functions L,G,K by

(26) L = 1/(−2H)1/2, G =∥ A ∥, K = Az

where in (26) H is the Hamiltonian of the Kepler problem. G and K are defined on all of
R6 but L is defined on the open subset of R6 where H is defined and negative.

Proposition 5.1. L, G, K are in involution.

Proof. {H,G} = {H,K} = 0 since G and K are integrals of the flow dH#. Reversing the
roles this means that H and hence L is constant on the trajectories of dG# and dK#, thus
{L,G} = {L,K} = 0. Now {G2, K} = {A2

x +A2
y +A2

z, Az} = 2Ax{Ax, Az}+2Ay{Ay, Az}+
2Az{Az, Az} = 2Ax(−Ay) + 2Ay(Ax) = 0. �

Let D denote the open domain in R6 where , G2 > K2 > 0 and all orbits of dH# are
ellipses. We will call this the Delaunay domain.

Proposition 5.2. On D all orbits of dL#, dG#, and dK# are periodic with period 2π. The
orbits of dL# are elliptic orbits of the Kepler problem and the orbits of dG#, dK# are circles
described below.

Proof. In coordinates (r, R) = (x, y, z,X, Y, Z) the function K = Az = xY − yX, and the
equations of dK# are

ẋ = KX = −y Ẋ = −Kx = −Y

ẏ = KY = −x Ẏ = −Ky = X

ż = KZ = 0 Ż = −Kz = 0

This is just two harmonic oscillators of period 2π. Note there are circles about the z-axis
and Z-axis.

Let E be the two dimensional plane spanned by r, R in R6. Recall A = r ×R ̸= 0 so r, R
are linearly independent. Let Q be the rotation matrix which rotates E to the x, y-plane. In
that plane G = ±K and so by the above in that plane all orbits are of period 2π and circles.
These orbits would be circles in the plane spanned by r,R.

In the Kepler problem the period of the orbits are p(h) = (π/
√
2)(1/(−h)3/2. So L =

(−2H)−1/2 gives s(h) = (−2h)−3/2 which makes the orbits all 2π periodic. �
Lemma 5.4. On D, L2 > G2 > K2 > 0 and dK, dG, and dL are independent.

Proof. Clearly, G2 ≥ K2 ≥ 0 and by definition of D we require strict inequality. If at some
point K2 > 0 then the solution of dK# through that point lies on a circle and so dK ̸= 0. If
at some point G2 > K2 > 0 then the solution of G# is a circle different from the solution of
dK#. Thus dK and dG are independent.

For the Kepler problem H = −1/2s where s is the semi-major axis so L2 = s. But
G2 = (1− ϵ2)s, so L2 ≥ G2 and L2 = G2 only on circular orbits, so on D we have L2 > G2 >
K2 > 0.

If dL depends on dG and dK then dL# = d(αG + βK)# where α and β are constants.
But, the solutions of d(αG + βK)# are circles again (αG + βK is just a new momentum
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vector), but the solution of dL# is an ellipse. Thus, dL# ̸= d(αG + βK)# and the vectors
are independent. �

Theorem 5.1. { Arnold’s Theorem} If an n-degree of freedom system has n-independent
integrals F1, . . . , Fn in involution and the level set T0: F1 = const, . . . , Fn = const is compact
then T0 is an n-torus and one can introduce action-angle variables around T0.

Proof. {Outline:} Holding n independent functions fixed in a 2n-dimensional system defined

an n-manifold – so T0 is an nmanifold. The integrals in involution implies that dF#
1 , . . . , dF

#
n

are commuting vector fields on T0. It is an old theorem in topology that a compact manifold
with n-commuting vector fields is an n-torus.

To construct the action-angle coordinates one must find n integrals I1 = I1(F1, . . . , Fn),
. . . , In = In(F1, . . . , Fn) such that the integrals are defined in a neighborhood of T0 and are

still in involution, but such that all solutions of dI#1 , . . . , dI
#
n are periodic with the same

period. (Arnold’s proof has a gap at this point, but the gap was filled in [2].) For the Kepler
problem in space we have constructed the three such independent integrals in involution,
namely L,G,K.)

Since the integrals are defined in a neighborhood of T0 it lies in an n-parameter family of
n-tori which will be denoted by T(I1, . . . , In). Pick a local Lagrangian manifold S transversal
to T(I1, . . . , In) so S ∩ T(I1, . . . , In) is a single point, p(I1, . . . , In), and let Φi(t, ζ) be the

solution of dI#i with Φi(0, ζ) = ζ.
Action-angle coordinates are defined by the map

A : (I1, . . . , In, ϕ1, . . . , ϕn) −→ Φn(ϕn,Φn−1(ϕn−1, . . . ,Φ1(ϕ1, p(I1, . . . , In)) · · · )).

That is, to find the point with coordinates (I1, . . . , In, ϕ1, . . . , ϕn) first find the point p on

the intersection of the Lagrangian manifolds S and T(I1, . . . , In), then follow the flow dI#1
by time ϕ1, then the flow dI#2 by a time ϕ2 etc. �

Return to the Kepler problem in space. We will describe the angles in reverse order.
Given a point in D flow back by a time −ℓ by the flow dL# until you reach the perigee of the
Kepler orbit, so ℓ is the mean anomaly measured from the perigee. Then flow by a time −g
until the point is in the x, y-plane, so g is the argument of the perigee. You are still in the
invariant plane, so now you are at the intersection of the invariant plane and the x, y-plane
or at the line of the node. Now flow by −k until you reach the x-axis, so k is the longitude
of the node.
This gives the Lagrangian manifold S = {x, y, z,X, Y, Z) : y = z = 0, X = 0}, i.e. the

initial conditions for the Kepler problem that have the perigee on the x-axis.

6. Notes on Poincaré Elements and Initial Conditions

The three dimensional Kepler problem in spherical coordinates is

H =
1

2
{R2 +

Φ2

ρ2
+

Θ2

ρ2 sin2 ϕ
} − 1

ρ

Letting G2 = Φ2 + Θ2

sin 2ϕ
and R = 0, we can set H = −1/2L2 to solve for the ρ value of the

perigee. This value is L[L− (L2 −G2)1/2].
13



On circular solutions, where there is no perigee,

0 = ρ̇ = Ṙ =
1

ρ3
(Φ2 +

Θ2

sin 2ϕ
)− 1

ρ2
= 0.

That is, G2/ρ3 − 1/ρ2 = 0 so G2 = ρ = const. Since 0 = ρ̇ = R, the Hamiltonian evaluated
on a circular solution becomes

−1

2L2
=

1

2
{G

2

ρ2
} − 1

ρ

which implies L2 = ρ = G2. Thus, as in the two dimensional Kepler problem, L = ±G
corresponds to the circular orbits.

To investigate three dimensional circular solutions then, we need to introduce Poincaré
elements of some kind. Begin by considering Delaunay coordinates which are defined by the
generating function

W (ρ, θ, ϕ, L,G,K) = θK +

∫ ϕ

π/2

{
G2 − K2

sin 2z

}1/2

dz+

∫ ρ

a

{
−G

2

z2
+

2

z
− 1

L2

}1/2

dz

where a = L[L = (L2 −G2)1/2].
The meaning of L is shown above, and if i is the inclination of the invariant plane in the

Kepler problem, then G2 cos i = Θ2, so G is the magnitude of total angular momentum (see
above). Near circular orbits, the variables L,G, and K present no problems, so we consider
the angular variables l = ∂W/∂L, g = ∂W/∂G, k = ∂W/∂K. Let

I0 =
1

L3

∫ ρ

a

{
−G

2

z2
+

2

z
− 1

L2

}−1/2

dz

I1 = −G
∫ ρ

a

1

z2

{
−G

2

z2
+

2

z
− 1

L2

}−1/2

dz

From Schimdt [7] (via a clever substitution to evaluate the integrals), we find that

I0 = arccos
1− ρ/L2√
1− (G/L)2

− ρR

L

I1 = − arccos
G2/ρ− 1√
1− (G/L)2

Since l = I0, it is clear that this variable is undefined when L = ±G. Now, let

I2 =
∫ ϕ

π/2

{
G2 − K2

sin 2z

}−1/2

Gdz

I3 =
∫ ϕ

π/2

{
G2 − K2

sin 2z

}−1/2
K

sin 2z
dz

14



These last two integrals can be integrated to obtain (since K = Θ)

I2 = − arcsin
cosϕ√

1− (Θ/G)2

− arctan
(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

if sin2 ϕ ̸= (
Θ

G
)2

or

I3 = −π/2 if sin 2ϕ = (
Θ

G
)2

And I2 is defined since Θ2 = G2 cos i therefore 0 < 1 − (Θ2/G2) < 1 as we assume that
0 < i < π/2. Now, the Delaunay coordinates are as follows:

l = I0 = arccosA−Rρ/L

g = I1 − I2 = − arccosB + arcsinS

k = θ − I3 = θ + arctanT

Where

A =
1− ρ/L2√
1− (G/L)2

B =
G2/ρ− 1√
1− (G/L)2

S =
cosϕ√

1− (Θ/G)2
T =

(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

The Poincaré elements, which we will show are defined on circular solutions, are given by
Q1 = l+g+k, Q2 = −

√
2(L−G) sin(k+g), Q3 = l+g.With the Delaunay coordinates,

we can write (Q3 is the simplest case, so we begin here): Q3 = arccosA+arccosB+arcsinS−
Rρ/L. Combining the first two terms gives Q3 = arccos(1+ R2ρ

1+G/L
)+arcsinS−Rρ/L which

now has no singularity at L = ±G and is defined as long as long as 0 < i < π/2. Next,
observe that

Q1 = l + g + k = Q3 + k

= arccos

(
1 +

R2ρ

1 +G/L

)
+ arcsinS −Rρ/L+ θ + arctanT

which has the same property.
Q2 is more complicated. Start by looking at

k + g = θ + arctanT + arccosB + arcsinS.
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So

sin(g + k) = sin [arccosB] cos [θ + arctanT + arcsinS] +

cos [arccosB] sin [θ + arctanT + arcsinS]

= sin

[
arccos

G2/ρ− 1√
1− (G/L)2

]
cos [θ + arctanT + arcsinS] +

cos

[
arccos

G2/ρ− 1√
1− (G/L)2

]
sin [θ + arctanT + arcsinS]

=
GR√

1− (G/L)2
cos [θ + arctanT + arcsinS] +

G2/ρ− 1√
1− (G/L)2

sin [θ + arctanT + arcsinS] .

Thus

√
2(L−G) sin(g + k) =

√
2LGR√
L+G

cos [θ + arctanT + arcsinS] +

√
2L(G2/ρ− 1)√

L+G
sin [θ + arctanT + arcsinS] .

Where, again, the singularity at L = ±G is eliminated. On the circular solutions, since
R = 0 and G2 = ρ we have Q2 ≡ 0.

7. Initial Conditions for Doubly Symmetric Periodic Orbits in Poincaré
Elements

Let position = (x, y, z) and let momentum = (X, Y, Z). To guarantee that the third mass
moving according to the motions given in the restricted problem have a doubly symmetric,
three dimensional periodic orbit it is sufficient that at t = 0 we have X = y = z = 0,
and at time t = 1

4
T we have X = y = Z = 0. We want to determine what these sufficient

conditions must be in the Poincaré elements discussed above, so that such an orbit could be
nearly circular for 0 < t < 1

4
T. To do this, we simply determine what the conditions must

be in (symplectic) spherical coordinates and then use the representations developed above
to translate these conditions into Poincaré elements.
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In spherical coordinates we have at t = 0 when X = y = z = 0:

0 = z = ρ cosϕ⇒ ϕ = π/2,

0 = y = ρ sinϕ sin θ and ϕ = π/2 ⇒ θ = nπ,

R = xX + yY + zZ ⇒ R = 0,

Θ = −Xρ sinϕ sin θ + Y ρ sinϕ cos θ and θ = nπ ⇒ Θ = Y ρ

Φ = Xρ cosϕ cos θ + Y ρ cosϕ sin θ − Zρ sinϕ⇒ Φ = −Zρ

Thus it is sufficient that at t = 0; ϕ = π/2, θ = nπ, R = 0.
Now at t = 1

4
T when X = y = Z = 0:

ϕ ̸= 0 so 0 = y = ρ sinϕ sin θ ⇒ θ = mπ

R = xX + yY + zZ ⇒ R = 0 as before

Θ = Y ρ as before, but

Φ = Xρ cosϕ cos θ + Y ρ cosϕ sin θ − Zρ sinϕ
and X = Z = 0, θ = mπ ⇒ Φ = 0

Thus it is sufficient that at t = 1
4
T ; θ = mπ, R = 0, Φ = 0.

Now since the expressions for Poincaré elements obtained above are nearly all in spherical
coordinates, we need only evaluate according to the above conditions. The expressions from
above are:

Q1 = arccos(1 +
R2ρ

1 +G/L
) + arcsinS −Rρ/L+ θ + arctanT

Q2 =

√
2LGR√
L+G

cos [θ + arctanT + arcsinS] +

√
2L(G2/ρ− 1)√

L+G
sin [θ + arctanT + arcsinS]

Q3 = arccos(1 +
R2ρ

1 +G/L
) + arcsinS −Rρ/L

Since R = 0 at both t = 0 and at t = 1
4
T we can reduce the expressions to:

Q1 = 0 + arcsinS − 0 + θ + arctanT

Q2 = 0 +

√
2L(G2/ρ− 1)√

L+G
sin [θ + arctanT + arcsinS]

Q3 = 0 + arcsinS + 0
17



Which is equal to

Q1 = arcsin
cosϕ√

1− (Θ/G)2
+ θ + arctan

(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

Q2 =

√
2L(G2/ρ− 1)√

L+G
sin

[
θ + arctan

(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

+ arcsin
cosϕ√

1− (Θ/G)2

]

Q3 = arcsin
cosϕ√

1− (Θ/G)2

Now at t = 0, ϕ = π/2 and θ = nπ so this becomes

Q1 = arcsin 0 + nπ + arctan 0 = nπ

Q2 =

√
2L(G2/ρ− 1)√

L+G
sin [nπ] = 0

Q3 = arcsin 0 = jπ

To see the initial conditions at t = 1
4
T, since here ϕ is not determined, we need to expand

the expressions (Θ/G) cosϕ√
sin 2ϕ−(Θ/G)2

and cosϕ√
1−(Θ/G)2

in terms of spherical coordinates. To do this,

recall that G2 = Φ2 +Θ2/ sin 2ϕ. But at t = 1
4
T, this becomes G2 = Θ2/ sin 2ϕ since Φ = 0.

So sin 2ϕ = (Φ/G)2 and the integral I3 becomes -π/2. In addition, 1− (Φ/G)2 becomes cosϕ.
Thus at t = 1

4
T when θ = mπ, R = 0, Φ = 0 the coordinates are

Q1 = arcsin
cosϕ√

1− (Θ/G)2
+mπ + arctan

(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

Q2 =

√
2L(G2/ρ− 1)√

L+G
sin

[
mπ + arctan

(Θ/G) cosϕ√
sin 2ϕ− (Θ/G)2

+ arcsin
cosϕ√

1− (Θ/G)2

]

Q3 = arcsin
cosϕ√

1− (Θ/G)2

or
Q1 = arcsin 1 +mπ − π/2 = mπ

Q2 =

√
2L(G2/ρ− 1)√

L+G
sin [mπ − π/2 + arcsin 1] = 0

Q3 = arcsin 1 = kπ/2
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