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Abstract. A variation of a fixed point theorem of G. D. Birkhoff is used to study the
bifurcations of periodic solutions of a periodic Hamiltonian system of two degrees of freedom
depending on two parameters.

I. Introduction. The use of normal forms has become standard in the study of the
bifurcation of periodic solutions in Hamiltonian systems of equations (or equivalently of
the bifurcation of periodic points of a symplectic mapping.) If a system of equations is in
normal form it is quite easy in general to establish the existence and uniqueness of bifurcating
periodic solutions by using the implicit function theorem. In practice putting a system into
normal form is not always easy even with the powerful algebraic processors available today.
No matter how powerful the computer is it is easy to construct simple examples which defy
that power.

The reason is simple. In order to establish the existence and uniqueness of a bifurcation

from a periodic solution which has a characteristic multiplier which is an nth root of unity
typically the equations must be put into normal form through terms of order n. Consider
for example the conservative Duffing’s equation

ẍ + ω2x = ε(γx3 + A cos t)

which can be written as a Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x

with Hamiltonian

H =
1

2
(y2 + ω2x2) − ε(γx4 + Ax cos t).

For ε = 0 the origin is a 2π periodic solution with characteristic multipliers exp(±i2πω) so
when ω is not an integer there is a small (order ε ) 2π periodic solution with characteristic
multipliers close to exp(±i2πω). This solution is called the harmonic. When ω is a rational
number m/n, n and m relatively prime, one expects that an n2π periodic solution would
bifurcate (a subharmonic bifurcation). The usual normal form procedure for handling this
problem would be to put the equation in action-angle coordinates (or complex conjugate
coordinates) and normalize the Hamiltonian through terms of order n. If at order n an angle
term appears in the normal form then it is easy to apply to the implicit function theorem
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to establish the existence and uniqueness of a pair of subharmonic solutions which bifurcate
from the harmonic – one elliptic and one hyperbolic subharmonic.

The amount of work it takes to normalize an equation to order n seems to grows exponen-
tially with n and so this approach must fail for large n. However, a variation on an argument
of Poincaré(1912) which is partly analytic and partly topological establishes the existence of
the subharmonic solutions for all m/n 6∈ Z. This argument requires that the Hamiltonian
be normalized only through the fourth order – in this case an easy task by hand. Like most
fixed point arguments there are no uniqueness, continuity or stability conclusions. See Meyer
and Hall (1992) pp. 214 ff. for the details of this argument.

In a short note Birkhoff(1931) gave an n-dimensional generalization of Poincaré’s argument
which lead to the classic Birkhoff-Lewis theorem. In this note I will show how Birkhoff’s
idea can be used to establish bifurcation results in higher dimensions with a fixed amount of
computation – i.e. the amount of computation does not depend in an essential way on the
particular characteristic multiplier. The method will be applied to a model two parameter
bifurcation problem.

In general terms the main bifurcation result is as follows. Start with a 2 degree of freedom
2π-periodic Hamiltonian system with two parameters, say µ and ν. Generically with two
parameters one encounters a 2π-periodic solution with two pairs of multipliers where one pair

are pth roots of unity and the other pair are qth roots of unity where p and q are relatively
prime integers. For simplicity assume p and q are large, say p, q > 4. (The case when p and
q are small can be attacked by traditional normal form methods.) Assume there is such a
periodic solution when µ = ν = 0. By the implicit function theorem there exists a nearby
2π-periodic solution for all small µ and ν.

The basic assumptions are two. First, assume that the multipliers vary in a nondegenerate
manner as the two parameters are varied (i.e. assume that the map from the parameter
space to the space of multipliers is injective when µ = ν = 0.) Second, assume that when the
Hamiltonian is normalized through terms of order four when µ = ν = 0 that a type of twist
condition is satisfied (i.e. a certain determinant defined by the coefficients in the normal
form is non-zero.)

Under these assumptions there is a region S in the µ, ν-parameter plane bounded by two
smooth c1, c2 curves as shown in Figure 1. For values of the parameters on one boundary
curve the system has at least two 2pπ-periodic solution and on the other boundary curve the
system has at least two 2qπ-periodic solution. In the sector S between the two boundary
curves the system has at least three 2pqπ-periodic solutions.

This result is purely an existence result. There is no information about how these solutions
vary with the parameters nor what the stability properties of these periodic solutions are.
That would require assumptions on the higher order terms in the normal form and theorems
of this type are abundant now.

II Main Result. Specifically assume that the Hamiltonian H is defined in a neighborhood
of the origin in R4 for small values of the parameters µ and ν and is normalized through
terms of order 4. Use action-angle variable (I1, I2, φ1, φ2) in R4. The Hamiltonian is of the
form

H = ω1I1 + ω2I2 +
1

2
(AI2

1 + 2BI1I2 + CI2
2) + K (1)
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Figure 1. The sector S in parameter space.

where H = H(I1, I2, φ1, φ2, µ, ν, t),K = K(I1, I2, φ1, φ2, µ, ν, t) are smooth functions for
I1, I2, µ, ν small, are 2π-periodic in φ1, φ2, t and that K is of higher order (say at least
cubic in I1, I2). Assume that ω1 = 1/p + µ and ω2 = 1/q + ν where p and q are relatively
prime integers. Assume that A,B and C are constants with

D = B2 − AC 6= 0. (2)

Thus I have assumed that the system has undergone a considerable amount of preliminary
changes of variables, but this is consistent with the general statement of the main result
given above. First of all the 2π-periodic solution which exists for small µ, ν has been shifted
to the origin. Second the general assumption about the frequencies is ω1 = 1/p, ω2 = 1/q
and ∂(ω1, ω2)/∂(µ, ν) 6= 0 when µ = ν = 0, but clearly a change of parameters makes the
frequencies of the above form. Thus the origin is a 2π-periodic solution with multipliers
exp(±2πω1i), exp(±2πiω2). Of course it is assumed that the system has been normalized
through terms of order four. In general the coefficients A,B,C depend on the parameters
and so assumption (2) need only be checked when µ = ν = 0. I have dropped the dependence
of the coefficients on the parameters to simplify the discussion.

Introduce a small parameter ε and scale by Ii → εIi, H → ε−1H, µ → εµ, ν → εν. The
Hamiltonian becomes

H = p−1I1 + q−1I2 +
ε

2
(µI1 + νI2 + AI2

1 + 2BI1I2 + CI2
2) + O(ε2) (3)
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The equations of motion are

İ1 = ∂H/∂φ1 = · · · ,

İ2 = ∂H/∂φ2 = · · · ,

φ̇1 = −∂H/∂I1 = −p−1 + ε(µ + AI1 + BI2) + · · · ,

φ̇2 = −∂H/∂I2 = −q−1 + ε(ν + BI1 + CI2) + · · · ,

(3)

where here and below the dots stand for higher order terms (e.g. O(ε2)). Denote the period

map by P and the pqth iterate by P ′ : (I1, I2, φ1, φ2) → (I ′
1, I

′
2, φ

′
1, φ

′
2) where

I ′
1 = I1 + · · · ,

I ′
2 = I2 + · · · ,

φ′
1 = φ1 + 2πq + 2πpqε(−µ + AI1 + BI2) + · · ·

φ′
2 = φ2 + 2πp + 2πpqε(−ν + BI1 + CI2) + · · · .

(4)

Seek to solve for the set where the angle variables do not change, namely solve

(φ′
1 − φ1 − 2πq)/2πpqε = (−µ + AI1 + BI2) + · · · = 0

(φ′
2 − φ2 + 2πp)/2πpqε = (−ν + BI1 + CI2) + · · · = 0.

(5)

When ε = 0 the right hand sides reduce to the linear equations

AI1 + BI2 = µ,

BI1 + CI2 = ν,
(6)

so the assumption that D = B2−AC 6= 0 assures that these equations have a unique solution
for I1 and I2, namely I1 = (Bν −Cµ)/D, I2 = (Bµ−Aν)/D. The two line in the µ, ν-plane
where I1 = 0 and I2 = 0(Bν = Cµ,Bµ = Aν) are lines through the origin which divides
the parameter plane into four rectilinear sectors. In one of these sectors both I1 and I2 are
positive. Let this sector be denoted by S’. For each point (µ, ν) in the interior of S ′ the
solution set of (6) in R4 is a two torus and for each point on the boundary of S ′ the solution
set of (6) in R4 is a circle. This is the analysis when ε = 0, but the implicit function theorem
guarantees that the essentially the same conclusions hold when ε is non-zero but small.

In particular by applying the implicit function theorem there are two smooth curves c1

and c2 in the µ, ν-parameter space which are tangent to the lines Bν = Cµ(I1 = 0) and
Bµ = Aν(I2 = 0) at the origin. They divide a small disk about the origin into four sectors
in the interior of one (denoted by S) the solutions to (5) have both I1 and I2 positive. On
one boundary curve, c1, I1 = 0 and I2 > 0 and on the other boundary curve, c2, I1 > 0
and I2 = 0. Fix values of the parameters µ, ν in the interior or S so the solution of (5) is a
two-torus in R4(denote by T 2). The mapping P ′ is symplectic and so the form

ω =

2∑

i=1

(I ′
idφ′

i − Iidφi) (7)

is closed and in a disk about the origin in R4 it is exact. Thus there is a smooth real-valued
function f defined on a disk about the origin in R4 such that df = ω. On T , dφ′ = dφ, and
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so on T 2 one has

d(f ′) =

2∑

i=1

(I ′
i − Ii)dφi, (8)

where f ′ is the restriction of f to T 2).
At a critical of f ′ where d(f ′) = 0 it follows from (8) that I ′

i = Ii. But by the definition
of T 2 : φ′

i = φi. Therefore a critical point of f ′ is a fixed point of P ′ which of course is the
initial condition for a2pqπ-periodic solution of (3). Since T 2 is a torus f ′ must have at least
three critical points (see Milnor(1963)) and so for µ, ν in the interior of S equations (3) have
at least three 2pqπ-periodic solutions.

For µ, ν on the boundary of c1 of S the solution set of (5) is a circle (denoted by T 1) and
let f ′ = f restricted to T 1. The function f ′ must have at least two critical points which
correspond to periodic solutions of (3) of period 2pqπ. But since I1 = 0 along these solutions
their period must be 2qπ-periodic.
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