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Bifurcations of Central Configurations
in the N-Body Problem

Kenneth R. Meyer and Dieter S. Schmidt'

ABSTRACT. — This paper discusses a series of studies dome by the
authors on the bifurcations of central configurations in the N-body
problem. Modern bifurcation analysis and algebraic processors like
the general purpose processor MACSYMA and the special purpose
processor POLYPAK were used to find a multitude of different
bifurcations. ' '

I Introduction. The study of central configurations (c.c.) of the N-body
problem has had a long - history starting with the famous - collinear
configuration of the 3-body problem - found by Euler - (1767). Over the
intervening years many different technologies have been applied to the study
of c.c. In the older papers of Euler (1767), Lagrange (1772), Hoppe (1879),
Lehmann-Filhes (1891), Moulton (1910) et al. special coordinates, symmetries
and analytic techniques were used. Dziobek (1900). used the theory of
determinants; Smale -(1970) used Morse theory; Palmore (1975) used ‘homology
theory; Simo (1977) used a computer; and Moeckel (1986) used real algebraic
geometry in. their investigations. Thus, the study of c.c. has been a testing
ground for many different methodologies of mathematics.

In a series of papers, Meyer(1987), Meyer and Schmidt (1988a,1988b),
Schmidt(1988), we have used the methods of modern bifurcation analysis and
automated algebraic processor to study this - subject. Specifically, in the
first paper, Meyer(1987), a fold catastrophe or saddle-node type bifurcation
was established in the four body problem by continuing a bifurcation in the
restricted four body problem into the full four body problem with one small
mass. The point of bifurcation was found using numerical methods and then
established by rigorous analysis. In the second and third papers, Meyer and
Schmidt (1988a,1988b), the bifurcations of a central configuration which
consists of N-1 particles of mass 1 at the vertices of a regular polygon
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and one particle of mass m at the centroid was studied. We call this the
regular polygon central configuration (r.p.c.c.). In the second paper, We
considered the 4 and 5 body problems and use the mutual distances as special
coordinates following the lead of Dziobek(1900).  These coordinates make the
4-body problem relatively easy to handle and the 5-body problem accessible,
but beyond 5, Dziobek’s coordinates become very cumbersome. The 4 and 5-body
problem in these special coordinates are sufficiently simple that the general
purpose algebraic processor MACSYMA could handle the tedious calculations. In
the third paper the investigation of the bifurcations of these c.c. for larger
N required the special purpose algebraic processor POLYPAK written by the
second author because the computations increased rapidly with N. In the
analysis of the 4 and 5 body problems the classical power series methods of
bifurcation analysis handles the problem micely, but for larger N a systematic
use of Lie transforms Dy Deprit (1969) was mandated in order to bring the
equations into a normal form. The first three papers dealt with the planar
N-body problem, but in Schmidt(1988) the Dziobek coordinates were used with
the aid of MACSYMA to find a bifurcation from a tetrahedron configuration of
the spatial 5-body problem.

The problem of finding a c.c. can be reduced to finding a critical point
of the potential energy function on the manifold of constant moment of
inertia. Thus the problem falls within the domain of catastrophe theory and so
the general theory is well understood. However, this specific problem has a
high degree of symmetry, many variables and a constraint, so the computations
must be performed with care. We consider these papers as c€ase studies in
bifurcation analysis in’ face of these complexities.

Even though as solutions of the N-body problem c.c. are quite rare and
rather special, they are of central importance in the analysis of the
asymptotic behavior of the universe. In general, solutions which expand
beyond bounds or collapse in a collision do so asymptotically to a central

configuration. A survey and entrance to this literature can be found in Saari
(1980).

II Central Configurations for the N-body. The N-body problem is the
system of differential equations which describe the motion of N particles
moving under the influence of their mutual gravitational attraction. Let
q. € R® be the position vector, p. € &} the momentum vector and m. > 0 the
mass of the jth particle, 1 = j = N, then the equations of motion are :



BIFURCATIONS OF CENTRAL CONFIGURATIONS 95

L= oH _ 1
4 = 3p, m_ P,
¢))
I.J _ _OH - 00U
i aq, 9q,
where H is the Hamiltonian
- e, I |
@ H=) —o .U
e 2m,
j=1 i}
and U is the (self) potential
- mimj
@ U= ) Tt

1Si<j<N

These equations reduce to the Newtonian formulation

- _ JdU e
“ mg, = 3q, i=1,.,N
We seek a homothetic solution by setting q = ¢(t)u where ¢ is a scalar

function and the u, are constants. Such a solutlon ex1sts provided there is a
constant A so that the following equations are satisfied.

. _;L
®) ¢ = ;;

6 -Amu, = g% ,j =1,..,N.

1]
J

Equation (5) is just the differential equation of the collinear Kepler problem
and so has many solutions. Equation (6) is an algebraic equation for the N
vectors LI and the scalar A. If Ul satisfy (6) for some A then
Uy is called a central configuration.

It is classical and easy to verify that if U (u ,u ) and 1 is a
solution of (6) then the center of mass of U is at the origin (Zmu 0)
and 1 = U()/2I(u) > O where I is the moment of inertia

N
D W=z ) m

We will set
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_ N, _
M—{uGlR .ijuj 0}
8) A={uEtR3N:ui=u_forsomei¢j}

S={ueM:Iu =1} :

The variable A  can be considered as Lagrange multiplier and so an
equivalent definition of a central configuration is ‘a critical point of U
restricted to S\ 4. If u is a c.c. then so is Au = (Au1 S AuN) where
A € OBR) is an orthogonal matrix. We can define an equivalence ‘relation by
u ~ Au when A € O(3,R) and since U, I, are constant on equivalence classes we
can define the quotient spaces #=(S\4)/ ~ and the function % : ¥~ R by
@A[u]) = U(u) where [ ] denotes an equivalence class. & and % are smooth.
Thus a similarity class of c.c. is a critical point of %.

A central configuration is called non-degemerate if its equxvalence class

is a non-degenerate critical point of % in the semse of Morse theory, i.e. the
Hessian is non-singular at the critical point. It follows from the implicit
function theorem that bifurcations can occur only at degencfate critical
points, so the first quest is to find degenerate c.c.

III. The Restricted Problem. Consider the planar (N+1)-body problem

with one particle small, so let m . =& and X =u . The equations for a
c.c. become & B
6UN -
- = i = 1,...
0 }»mjuj ﬁj + O() , j S |
_ oW
AX = a2

where W = z (m/[|x-u, ||) and U is the self potential of the N-body problem.

When ¢ =0 thc equations in (l) decouple and a solution is an (N-+1)-tuple

(ﬁlsi"’
critical point of

| Nom
® V@ =) —— 7l

= = -ul

Note that A is determined by the fact that ﬁl,...,ﬁN ié a c.c. The function V
is called the potential of the rcstricted N-body problem.

It is not too hard to verlfy that if u ﬁN is a nondegenerate c.c.

and X is a nondegenerate critical point of (2) then for small & the full
(N+1)-body problem has a mnondegenerate c.c close to (u U, ,uN‘) In
Meyer(1987) it was proven that there is a degenerate c.c. in the full 4-body
problem by showing that the restricted 4-body problem has a fold catastrophe

,uN,—) where ul,..., " is a c.c. for the N-body problem and X is a
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and this fold catastrophe can be continued into the full 4-body problem.
Consider the one parameter family of the restricted 4-body problems where
the c.c. of the 3-body problem is the equilateral triangle c.c. with

I]J1 =1 -u, ﬁl = (1"‘/3-”):

€)) m =1-u u =(-1,-Y3u),

m3 = 2/1, 3 (051/3-(1'”))'

|
]

For u = 0.4234 this potential has a fold catastrophe, i.e. a critical
point with V,=V,=V, =V, =0adV =0, V,,, # 0andV  # 0 where the
subscripts  1,2,3 denote differentiation with respect to X, X and u
respectively.  Figure 1 shows the potential for 4 = 0.2; note the two minima
and the saddle point in front of the middle pole. Figure 2 show the potential
for 4 = 0.5; note that there is only one minimum in front ‘of the middle pole
and that one minimum and the saddle point are gone. - ‘The viewer for the three
dimensional plots in Figures 1 and 2 is situated above the negative X, -axis at
a point that is on a line that makes a 60° with the V-axis. At the fold the
saddle point and one minimum come together and eliminate each other. A
careful application of the implicit function theorem shows that this fold
catastrophe persists in the full 4-body problem for ¢ small. -

Figure 1. The potential.V .for 4 =-0.2. :
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Figure 2. The potential V for p4 = 0.5.

Iv. Dziobek Coordinate. Dziobek(1900) used the mutual distances
1, = I u - | as coordinates in his study of c.c. in the planar 4-body
problem. The potential, U, and the moment of inertia, I, can easily be
expressed in terms of the mutual distances, in fact

- mm 1 LS N
— i — 2 —
) U= }J R m}:}‘mimjrij, M —Zmi.
i=1

1Sicy <N i=1j=1

For the planar 4-body’ problem there are 6 mutual distances and clearly they
over determine the problem because in general 5 mutual distances suffice. A
necessary and sufficient condition  that the six positive numbers T
1 <i<]j= Nbethe mutual distances between 4 collinear points is

0 1 1 1 1
2 2 2
1 0 L T
= 2 2 2 _
2) F = 1 8 0 T, T = 0.
2 2 2
1 s T b T2
1 1’ 2 12 0
12 24 34

This 19" century determinant is 288Vv? where V is the volume of the
tetrahedron whose 6 edges are given. F = 0 is simply another constraint.
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Thus we follow Dziobek to find c.c. by studying the critical points of

B W =0U+ Al + vF,
where A and v are Lagrange multipliers.

Consider the one parameter family of c.c. in the 4-body problem where 3
of the particles have mass 1 and are located at the vertices of an equilateral
triangle and the fourth particles has mass m and is located at the centroid of
the triangle. Palmore(1973) showed that for m = m* = (64v3+81)/249 this c.c.
We verify Palmore’s result in Meyer and Schmidt(1988a) and
also show that m* is a point of bifurcation. For m < m* there is an ac&te

isosceles triangle c.c. which approaches the equilateral family as m — m -
*
see Figure 3a. For m > m

is degenerate.

H

there is an obtuse isosceles triangle c.c. which
approaches the equilateral family as m — m*+, see Figure 3b.

The computations are fairly lengthy and so MACSYMA was used to carry out
the details. This method was also used in Meyer and Schmidt(1988a) to find a
bifurcation in the planar 5-body problem which is similar to the bifurcation
discussed above.

The Dziobek coordinates where used in Schmidt(1988) to find a bifurcation
of the spatial 5-body problem. Consider a c.c. where 4 particles of mass 1
are placed at the vertices of a regular tetrahedron and one particle of mass m
is placed at the centroid. For m = m’ = (10368 +1701v6)/54952 this c.c. is
degenerate and is also a point of bifurcation. A family of tetrahedron
bifurcates from the regular tetrahedron in a manner similar to the bifurcation
of the triangles in the planar problem.

*
32, m < m

3b. m > m*

Figure 3.
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V. Large N. In Meyer and Schmidt(1988b) the bifurcations of the regular
polygon central configuration for large N was investigated using different
methods and a different algebraic processor. The number of unknowns and
equations increase with N. Also due to the high degree of symmetry in the
problem for large N, knowledge of very high order terms in the series is
required in order to determine the nature of the bifurcation. Therefore, a
systematic - use of normal form theory, the method of Lie transforms of
Deprit(1968), and the special purpose algebraic processor POLYPAK written by
the second author was necessary.

 For N large there are more and more critical values of m which make the
r.p.c.c. degenerate and all the cases that we investigated gave rise to a
bifurcation and hence to mnew C.C. Figure 4 shows four of the eleven
bifurcations which occur for the 13-body problem ( 12 around a regular 12-agon
and 1 at the centroid ).

Figure 4. Some bifurcations in the 13-body problem.
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