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Abstract. We consider the evolution of the stable and unstable manifolds of an equilibrium point of

a Hamiltonian system of two degrees of freedom which depends on a paraméter eigenvalues

of the linearized system are complex o< 0 and purely imaginary for > 0. Thus forv < 0

the equilibrium has a two-dimensional stable manifold and a two-dimensional unstable manifold,
but forv > 0 these stable and unstable manifolds are gone. We study the system defined by the
truncated generic normal form in this situation.

One of two things happens depending on the sign of a certain quantity in the normal form
expansion. In one case the two families detach as a single invariant manifold and recedes from the
equilibrium asy tends away from 0 through positive values. In the other case the stable and unstable
manifold are globally connected for < 0 and the whole structure of these manifolds shrinks to
the equilibrium as» — 0 and disappears.

These considerations have interesting implications abootfgfren’s conjecture in celestial
mechanics and the blue sky catastrophe of Devaney.
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1. Introduction

We consider a Hamiltonian system of two degrees of freedom which depends on a
single parameter and which has an equilibrium point at the origin for all values of
the parameter. The linearization of this system at the origin has a coefficient matrix
A(v) which is a 4x 4 Hamiltonian matrix, so its eigenvalues are symmetric with
respect to both the real and imaginary axis [11]. We are interested in the case when
the eigenvalues change from complex numbers of the ftiemdt Bi, o, B # 0
whenv < 0 to two pairs of pure imaginary eigenvalues of the fati,i, twsi,
w1, wy # 0 whenv > 0. Clearly A(0) must have a single pair of pure imaginary
eigenvalues of multiplicity two, that is, its eigenvalues are of the fewa, +wi.

Much is known about the local geometry of the flow in the two cases wher®
andv > 0. For example whem < 0 the origin is unstable and when> 0 the
origin is linear stable and sometimes Arnold’s theorem [1] implies stability. Also
whenv < 0 the equilibrium point is a saddle point with two-dimensional stable and
unstable manifolds [5], but when > 0 the Liapunov Center Theorem [9] assures
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that two families of periodic solutions emanate from the equilibrium point. How do
these structures change?

In 1971, Meyer and Schmidt [12] stated and proved the theorem that has become
known as the Hamiltonian—Hopf Theorem which tells what happens to the Liapunov
families of periodic solutions provided a certain quantitig nonzero. The quantity
n depends on the normal form dfatv = 0 and on a particular term in the normal
form expansion off and it will be defined below. In the Case A when< 0 the two
Liapunov families are globally connected for> 0 and shrink to the equilibrium
asv — 07. In the Case B when > 0 the two Liapunov families detach from the
equilibrium as a single family as decreases from zero. Meyer and Schmidt [12]
using a computation of Henrard and Deprit [3] show thatithe O in the restricted
three-body problem at thé, with v = 1 — u whereu is the mass ratio parameter
andus is Routh’s critical mass ratio parameter. Thus they prove that in the restricted
problem the two Liapunov families detach as a unit and recedefipasu increases
throughyp;.

In this paper we shall do a similar formal study of the evolution of the stable
and unstable manifolds. Superficially, the story sounds the same with the sjgn of
reversed. In the Case A when< 0 the stable and unstable manifolds detach from
the equilibrium as a single invariant manifoldhasicreases from zero. In the Case B
whenn > 0 the stable and unstable manifolds are globally connected f00 and
shrink to the equilibrium as — 0. A rigorous local analysis of the evolution of
these manifolds for a complete system which includes un-normalized higher order
terms will appear in McSwiggen and Meyer [10].

2. The System of Equations

Consider a Hamiltonian system of two degrees of freedom which depends on a
parameter which has an equilibrium point at the origin for all That is, a system
of the form

z=JV,H(z,v) = A(w)z + F(z, ) D)

wherez € R*, 1, v € R, H: R* x R — Ris smooth,/ is the 4x 4 skew symmetric
matrix

OoOpFr OO
R O OO
[=NeNel
Oor o

A(v) = J3%H/97%(0, v), F(z,v) = JV.H(z,v) — A(v)z and = d/dt. Since
the equilibrium point is at the origiv, H(0, v) = F(0,v) = 0 and sinced(v) is
the linear part of the equatiagh¥ (0, v)/dz (0, v) = 0. The basic assumption is that
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whenv = 0 the matrixA has eigenvalueswi of multiplicity two and asy decreases
from zero these eigenvalues move off the imaginary axis.

Because of the complexity of this problem we shall not consider the general case
at this time, but consider the truncated normal form in the generic case (see [10] for
the analytic details). That is, we assume tHais composed of the first few terms in
Sokol'skii’'s normal form [14, 11].

Sokol'skii’'s normal form depends on the quantities

T1=xy1— x1y2, 2= 3(x2+x3), o
3= %(yf + ), 4 = x1y1 + x2y2,

wherez = (x1, x2, y1, y2). The Hamiltonian (1) is in Sokol'skii’'s normal form if
H = Iy + 8T+ v8Ts + H (', Ta, v), 3)

whereH T is at least quadratic ifiy, '3 orinv andé = +1.

To see which terms are the most important near the origin and wiesmall
we will use the scaling in [12] which was used to identify the important terms for
the Hamiltonian—Hopf bifurcation. Scale the variables by

X1 —> ele, X2 — ezxz,
y1— €)1, Y2 — €)2,
v — ezv,

which is symplectic with multiplieg®. The Hamiltonian becomes
H = wl'y + €{8T2 + v8T'3 4+ néT3} + O(e?).

This indicates that the most important terms are those displayed and so we shall
consider the system with only those terms where all the coefficients are nonzero.
Thus, we shall investigate the system

H =Ty + 68T+ v8lg + ndla. (4)

We have set»r = 1 which can be accomplished by a change of time. By the theory
of normal forms for Hamiltonian matrices we may assumedhat+1 ([7, 15], also
see [11]). The unfolding parametenigndy is the coefficient of the only nonlinear
term in the equations of motion. These are the important terms in the unfolding of
a Hamiltonian matrix with a multiple pure imaginary eigenvalue. A more complete
discussion of the truncated system with a different objective can be found in [13].
The linearized equations are obtained by setting- 0 and so the linearized
equationg = A(v)z has a coefficient matrix

0 1w O
1 0 0w
Aam=["s g o1 )

0-5-1 0
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The eigenvalues are

r=Z4iJ1+2/v+v =41+ /). (6)

Thus for smallv, the eigenvalues are complex when< 0 and pure imaginary
whenv > 0.
TheTI's are the natural invariants of this system and they satisfy a simple system
of differential equations, namely
Iy =0, [y = v8T4 + ndTaly,

I's = —1I'y, f4 = —2I', + 2véI'3 + 2)’]5F§.

We could study this system, but the geometry is unfamiliar, and so we shall follow
Sokol'skii and use polar coordinates. We know the singularities and pitfalls of polar
coordinates well.

3. Polar Coordinate Form of Equations

Specifically, make the symplectic change of coordinates

O
x1 = Rcosh — — sind, y1 = r COSH,
r
. C .
X2 = RSN + — coso, yo = r Sing
r
with inverse
X1y1 + x2y2
r=,/yf—|—y22, R=—r ,
6 =tan?! ﬂ, O = x2y1 — x1y2.
y2
The Hamiltonian (3) becomes
8 @2 vé né
H=0+_-{R*+ =} + —r2+ 14, 7
+2{ +r2}+2r+4r (7)
and the equations of motion become
. 50 )
0=1+—, =0,
d . 5@2 (8)
F =R, R:—S—vé—n(Sr?’.
r

From the above we see thatis an ignorable coordinate and its conjugate mo-
mentume® is an integral. Thus, we can set= ¢ wherec is an arbitrary constant
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and ignored at least temporarily. The usual convention of polar coordinates hold;
in particular,d is arbitrary, so for fixed, R, we have a circle if # 0 or a point if

r = 0. We must first study the one degree of freedom problem defined by

c2} v§ , 18

e + —r2+ —rh 9)

= C

This is the Hamiltonian of the second order system

2
i‘——3—|—vr+nr3=0.
r

Thus, the analysis is reduced to the elementary plotting of the level curves of (9), but
unfortunately there are three parameters to contend with.

Since the stable and unstable manifolds lie in #he= O level set, we shall only
consider the flow on this level set. The phase portraits for other valuésoé easily
obtained. In (9), seH = 0 and solve forR? to obtain

2
R? = —2¢8 — c_2 —vr?— E17}"4. (20)
r 2

Fixing v, § andn fixes the parameters in the equation, theR, 6, andc sweep out

the level set wheré? = 0. One need only plot the graph &F for various values

of the parameter and then take the square root of the graphs. But since we are only
interested in the stable and unstable manifolds we need only consider the level set
wherec = 0.

There are two cases depending on the sign 6fase A whem < 0 is illustrated
in Figure 1 and Case B when> 0 is illustrated in Figure 2.

Recall that these are illustrations of projections of #ie= 0 level set onto
ther, R-plane, and tha# is arbitrary. Over each poirit, R) with r # 0 there is a
circlein H = 0, butthese circles tend to zeraras> 01, and above each point where
r = 0 there is just a single point. Thus, in Figure 1 for example, there is a curve
emanating from the origin. Above the origin is a point and above all the other points
on the curve is a circle. Thus this curve represents a plaig # 0 — the unstable
manifold. These figures verify the statements about the evolution of the stable and
unstable manifolds.

v<0 v=20 v>0
Figure 1.Case A < 0.
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’\Jr I\/ r ‘ r
v KO0 v<DO0 v=20
Figure 2.Case By > 0.

In the Case A when < 0 the stable and unstable manifolds detach from the
equilibrium as a single invariant manifold asincreases from zero.

In the Case B whem > O the stable and unstable manifolds are globally
connected for < 0 and shrink to the equilibrium as — 0.

These statements hold for the truncated system with Hamiltonian (4) only, but
they are a good first approximation of the local evolution of the stable and unstable
manifolds. A complete analytic and tedious analysis of the full system with higher
order terms will be forthcoming in [10].

4. Stromgren’s Conjecture and the Blue Sky Catastrophe of Devaney

Stridmgren conjectured based on numerical evidence that there were orbits doubly
asymptotic tal, in the restricted three-body problem and that these doubly asymp-
totic orbits are the limit of periodic orbits with long periods (the blue sky catastrophe).
Henrard [6] and Devaney [4] established general theorems which would verify
Strdomgren’s conjecture provided the stable and unstable manifoldg mtersect
transversally in théd = constant level set.

The Hamiltonian of the restricted problem &4 can be considered as a per-
turbation of the Hamiltonian (3) in the Case B whgn> 0. Thus, to the first
approximation whemt > wy; andu ~ wj the stable and unstable manifolds are
globally connected. Using symplectic manifold intersection theory one can show
that the stable and unstable manifoldatintersect forn > w1 [10]. Of course, a
normal form argument will never show a transversal intersection!

5. A Correction

The quantityv for the restricted problem has been computed by various people in
various forms. To my knowledge the first calculation was done in 1968 by Deprit
and Henrard [3] to complete the 1941 theorem of Buchanan [2]. To show thas
positive in the restricted problem Meyer and Schmidt used this calculation in their
1971 paper on the Hamiltonian—Hopf bifurcation [12]. The formulaf@essentially
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1) on page 107 of [12] should not contain €. This calculation shows that> 0
also.
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