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Abstract. We give a simple mathematical model for braided rings of a planet based on Maxwell’s
model for the rings of Saturn.
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1. Introduction

Highly symmetric central configurations are useful models for planetary rings.
Indeed, the first stable model of a single planetary ring is the central configuration
of the (N + 1)-body problem where one massive body is at the origin and /N small
bodies of equal mass are at the vertices of a regular N-agon. The proof of the
stability of this central configuration appears in the prize winning essay On the
Stability of the Motion of Saturn’s Rings by Maxwell (1859) — also see Moeckel
(1992). The N small bodies might be following a circular orbit, in which case the
ring would look like a stationary circle, or they might follow an elliptic orbit, in
which case the ring would look a pulsating circle. In either case the configuration
is planar.

The pictures of the rings of Saturn returned by the fly-by of Voyager 1 suggested
that the F'-ring consisted of three components. The two outer components appeared
to be intertwined or braided. See Smith et al. (1981). To better understand this
phenomena, several regions of the F-ring were selected for repeated and high
resolution observation during the fly-by of Voyager 2. “Voyager 2 found the same
clumpy and occasionally kinked appearance of the F' ring, but surprisingly found
only one small region where the rings appear twisted or braided” — Smith ef al.
(1982). The words ‘clumpy’, ‘kinked’, ‘twisted’, and ‘braided’ suggest nonplanar
orbits. This suggestion was the motivation for our research into nonplanar periodic
solutions on the N-body problem which might be considered as twisted rings even
though Smith ez al. (1982) and subsequent researchers believe that the actual rings
of Saturn are essentially planar.
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For dense planetary rings the collision of individual particles have to be taken
into account. The F'-ring appears to be rather diffuse so that in the simplified models
we consider we will assume that no collision between the particles will occur.

Lissauer and Peale (1986) made the further simplifying assumption that there
will be no gravitational interaction between the particles in the ring. On the other
hand they include the effect of a small shepherding moon, that is, they start with
a planar circular restricted three-body problem (Saturn, the shepherding moon and
one particle in the ring). They then consider N equally spaced ring particles and
they follow their motion via numerical integration. When suitable initial conditions
are chosen the particles follow a path which is knows as Brown'’s horseshoe, when
itis viewed in a coordinate system which rotates with the moon. The doubling back
of the particles on the horseshoe is their explanation for the braided appearance of
the F'-ring. Their model is planar.

Our model does not take the effect of a shepherding moon into account but we
do include the gravitational interaction of the individual particles. We assume that
the particles maintain a high degree of symmetry all times and that they are close
to a central configuration.

Central configurations by necessity must be planar — Wintner (1941). However,
a central configuration can be considered as an equilibrium point of the equations
of motion in a rotating three dimensional coordinate system. We use standard
linearization and normalization methods to establish the existence of three dimen-
sional periodic solutions near this equilibrium solution.

Davies, Truman and Williams (1983, in prep) numerically investigated several
highly symmetric three dimensional subsystems of the N-body problem. They
consider systems with both gravitational and Coulomb forces and they found a
wealth of three dimensional periodic solutions. We consider systems very similar
to theirs with the goal of finding periodic solutions. However, our models are for
three dimensional planetary rings.

It is popular today to use group theoretic ideas to discuss mechanical systems
with symmetries even though the use of these methods in mechanics goes back
to the last century. For continuous groups of symmetries there is the classical
Noether theorem on the existence of integrals and the reduction theorem of Meyer
(1973), Marsden and Weinstein (1974). For reflective symmetries such as the
symmetry in the line of syzygy in the restricted three body problem see Meyer
(1981). The problems discussed by Davis et al. (1983, in prep) and in this paper
admit a finite group of symplectic symmetries. A theorem found in Guillemin and
Sternberg (1984) states that space fixed by all the elements of such a finite group of
symmetries is an invariant symplectic subspace. In general, if the group is large the
fixed space is small. We use this theorem to give a simple and rigorous derivation
of our three dimensional ring models. ‘

Our rings models are Hamiltonian systems of two degrees of freedom which
have an equilibrium point which corresponds to a classical central configuration.
By linearizing about this equilibrium and applying Liapunov’s center theorem we
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obtain periodic solutions which might be called ‘kinked’ rings. By normalizing the
Hamiltonian through the fourth order and applying Birkhoff’s theorem or KAM
theory we obtain periodic solutions which might be called ‘twisted’ or ‘braided’.

2. The Nonalternating (N + 1)-Body Problem

Consider the (IV + 1)-body problem with the center of mass fixed at the origin in a
rotating coordinate system in R? (rotating about the z-axis). Let qo, q1, ..., g be
the position vectors, po, p1, ..., P~ be the momentum vectors of NV + 1 particles
of massesmo = M, m; =...=my =¢=1/N.

We think of M as large (all though this is completely unnecessary from a
mathematical point of view) and so we will refer to the zeroth particle as the
massive body or the planet. Since q;, p; € R3 for i = 0,..., N the phase space,
V , is the symplectic subspace of RY 6 where M qo+eq1 + - +eqny =0
(the center of mass is at the origin), and po + p1 +- - - + py = 0 (linear momentum
is zero). The Hamiltonian of this problem is

_lel® 7 S
HN—W—QOLPO‘F;(Z—g*QiLPz)-F

z 2 i eM

1<icyen e —aill = llas — ol

The (N + 1)-body problem admits many symmetries: translational, rotational and
sometimes finite Ssymmetries. Since we have fixed the center of mass at the origin
we have made the reduction due to the translational symmetry in the classical
manner. Some of the rotational symmetry is fogged due to the fact that the problem
is written in rotating coordinates, but it is clear that the problem is still invariant
under rotations about the z-axis. Thus the problem admits the component of angular
momentum in the z-direction as an integral and the problem can be further reduced
by considering two configurations equivalent if they differ by a rotation. This
reduction is done in the classical manner by introducing polar coordinates in the
x, y plane, holding angular momentum fixed, and ignoring the polar angle. This
reduction will be done subsequently. For now consider an additional symmetry in
the problem that arises due to the fact that IV of the bodies are of equal mass.
Consider the group Gy of symmetries generated by the transformations
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Ro (do,Po) — (A qo, A po)
(qi, pi) — (qi, ps) fori=1,..,N

(90, Po) — (g0, Po)
Ry = ¢ (qi,pi) = (Aqi—1,Api—1) fori=2,...,N

(q1,p1) — (Aqn, A pn)
where

cos ¢ sin ¢ 0O
A= —sin ¢ cos ¢ 0 and ¢ =27/N .
0 0 1

These two transformations generate a finite group of symmetries since AN = L.
Each of these transformations is linear and symplectic. They leave the center of
mass fixed at the origin and total linear momentum fixed at zero. Thus these
transformations generate a finite group of linear, symplectic transformations of the
linear symplectic space V . The Hamiltonian, Hy, is also invariant under these
transformations. The following theorem is a corollary of a more general theorem
found in Guillemin and Stemberg (1984), p. 203.

THEOREM. Let G be a finite group of linear symplectic transformations of a
symplectic linear space V. Then the fixed set, F = {v € V : gv = v for all
g € G}, is a symplectic subspace of V. Moreover, if H is a Hamiltonian invariant
under each of the transformations of G, then ¥ is an invariant subspace for the
Hamiltonian flow defined by H.

Let q; = (z;,9:,2)" and p; = (X;,Y;, Z;)T. A point is fixed under the
transformation Ry if qo = (0,0, z)T and po = (0,0, Zo)T and it is fixed under
Ryifq; = Aqi_1,pi = Ap;_1fori =2,...,N and q = Aqn, p1 = Apn.
In particular, z2; = 2 = --- = 2y and Z; = Z; = --- = Zy. Since the center of
mass is at the origin and total linear momentum is zero M zp+¢ez1+---+ezy =0
and Zp + Z1 + - - - + Zxn = 0. Thus the fixed set, Fy, for this group is the set of
configurations where the planet remains on the z-axis and the N particles lie at the
vertices of a regular V-agon which lies in a plane parallel to the x, y plane. See
Figure 1.

Therefore (x,y, z) = (x1,v1,21) and (X,Y, Z) = (X1, Y1, Z}) are coordinates
on Fx and the Hamiltonian restricted to this invariant set is
_ N*z? N

N o2 2 2y _
SN = i +2€(X +Y*“+Z°) - N(zY —yX) +

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993CeMDA..55..289M&amp;db_key=AST

BUENDA_ 55 ZZ80Mn

rt

LIBRATIONS OF CENTRAL CONFIGURATIONS AND BRAIDED SATURN RINGS 293

Oy M
(@2 + 212 (a2 + 92+ (14+1/M)222)1/2°

where C'y is the constant

Cro — ($2+y2)1/2 1 B
Moo N2 lai —qll
1<icj<n 19— 4qj
1 N-1 1 N-1
T 2N ; 11— wi| "4 le sm(7r_7/N

and w is the Nth root of unity. Since sin(7j/N) > 2j/N for j = 1,...,N/2, it
follows that C,, — +ocoas N — +o0.

oM

Fig. 1. The nonalternating (N + 1)-configuration.

The Hamiltonian Sy is invariant under a rotation about the z-axis and so can
be reduced by one more degree of freedom, Meyer (1973). To make this reduction
change to symplectic polar coordinates (7,9, R, ©) by

z=rcos?¥, X=Rcosd—(O/r)sind,
y=rsind, Y =Rsind+(0/r)cos?,

to get
72 N2 ©?
2 2
Sy =(1+1/M)N* = + = (R )—N@+
Cn M

ro {2+ (L+1/MR22Y2
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Scaleby Z — Z/N,R — R/N,© — ©/N (this is asymplectic transformation
with multiplier V), and scale time by ¢ — N, so that altogether Ky = Sy. Since
the Hamiltonian is independent of 4 (4 is ignorable) the angular momentum © is
an integral, so let © = o where « is constant. The Hamiltonian is then

7z 1 2, e?
=(1+1M) 5 +5 (R +—) -0+

Cn M
o {r2+ (1+1/M)?223/2°

The equations of motion are

o> Cn Mr

2 P2 (14 1/M)22P20

~M(1+1/M)*2
{r2+ (1+1/M)222}3/2°

i =R, R=

=1+1/M)z, Z=

3. The Alternating (2N + 1)-Body Problem

Consider the (2N + 1)-body problem with center of mass fixed at the origin in
a rotating coordinate system in R> rotating about the z-axis. Let qo, qq, ..., 2N
be the position vectors, pog, P1, ---, P2y be the momentum vectors of the 2NV + 1
particles of masses my = M, m; = --- =myny = 1/(2N) = <.

Again we will refer to the zeroth particle as the massive body or the planet. Since
qi,p; € R3fori = 0,...,2N the phase space is the symplectic subspace V; of
RI2N+6 where M qo+eqi+---+eqan =0and po+ p1 + - - - + pay = 0. The
Hamiltonian of this problem is

2 2
Hyn = -HEEJ\% a¢ Lpo + Z (||p|| —q; Lpz‘) +

g2

2 5>

1<i<j<2N llai —ayll = ||Qz—QO||

where L is as above.
Consider the group Goy of symmetries generated by the transformations

B { (qu pO) - (Aq07Ap0)

(qi, Pi) — (Q, Ps) fori=1,....2N
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(qu pO) - (qu pO)
Ry =1 (a;,pi) = (Aqi—1,Api-1) fori=2,..,2N

(a1,pP1) — (A@nN, A p2n)
where
cosp singp O
A= (—singa CoS O) andnow ¢ =7x/N.
0 0 -1
Note the negative sign in the 3,3 position of A in this example! These two trans-
formations generate a finite group of symmetries since AZN = 1. Each of these
transformations is linear and symplectic. They leave the center of mass fixed at the
origin and total linear momentum fixed at zero. Thus, these transformations gen-
erate a finite group of linear, symplectic transformations of the linear symplectic
space V,n. The Hamiltonian, H; y, is also invariant under these transformations.
Let q; = (v5,¥:,2)7 and p; = (X;,Y;, Z;)T. A point is fixed under the
transformations Ry if qo = (0,0, 20)T and po = (0,0, Zo)T and is fixed under R;
ifq; =Aq;-1,pi = Ap;_1fori =2,..,2N and q; = Aqn, p1 = Ap2n.
Note that now z;4; = —2; and Z;+1 = —Z; for ¢ = 1,...,2N — 1. The small
particles alternate up and down around the ring. Since the center of mass is at
the origin and linear momentum is zero it follows that zp = Zp = 0. Thus a
configuration is in the fixed set, F,, if the planet is fixed at the origin and the

other 2N particles are alternatively above and below the vertices of a regular
2N-agon in the z, y plane (see Figure 2).

om,-
oM E:
om 4
2
om
6

Fig. 2. The alternating (2N + 1)-configuration.
Proceed as in the example above. On F,y, the fixed set, qo = po = 0,
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= A/l q;,pj = A7l pyforj = 1,...,2N. The center of mass is at the origin,
M qo+eqi+---+eqn = 0, and linearmomentum is zero, po+p1+- - - +p2n =
0. Therefore u = q; = (z,y, 2) and U = p; = (X, Y, Z) are coordinates on Fy
and the Hamiltonian restricted to this invariant set is

(X2 +Y2+ 2%

Son =2N P

—2N(zY —yX) +

-y e 2NeM
|AiTu — Ai—1u| (22 + 9% + 22)1/2°

The third term can be written differently. Let 2 = 2? + y? and w be the (2N)th
root of unity.

2

£
Z |A=1u — Ai-Tu|
1<]

1
Z (1 = WFPr2 + (1 = (—1)F)22}12

2N-1 1

8N Z {aZr? + bi22}1/2

where ay, = sin(7wk/2N) and by = kmod2, i.e. b is O for even k and 1 when k is
odd. Change to polar coordinates (r,d, R, ©) as before to get

(2N)?

> (32 @22+Z2>—2N@+

SoN =

Z 1 M
{a2r2 4 b2}/ (12 4 22)1/2°

Since the Hamiltonian is independent of 1 the momenum, ©, is an integral, so
let © = . Scaleby Z — Z/2N, R — R/2N, ©® — ©/2N (symplectic with
multiplier 2V), and scale time by t — 2N, so that in the end Koy = Son.

R
Koy =5 (R + 5 +2°) -0+
2N -1 ! M
8N Z (2r2 + b2} 12 (P2 + 2127

The equations of motion are
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o? 2N -1 2 u
r=R R — _3 Z arT ’2
r 8N {akr2 + bk22}3/2 (r2 + 22)3/2
i=2 = 2% Mz
- ~ 8N {a,kr2 + bkz2}3/2 (r2 4+ 232

4. Linearized Nonalternating (N + 1)-Body Problem

By setting o® = Cy + M there is an equilibrium pointat R=Z = z = 0,7 = 1.
The linearized equations near this point with » = 1 + p are

p=R, R=—-c?p, s=01+1/M)Z, Z=—-M1+1/M)*2

These equations come from the quadratic terms of the Hamiltonian, namely
1
Py =3 (2p* + M(1+1/M)?2* + R* + (1 +1/M)Z?).

For all positive values of the parameter M these are the equations of two
harmonic oscillators with frequencies o and w where w? = (1 4+ M) /M?. Except
when the ratio of the frequencies a/w is an integer or the reciprocal of an integer
Liapunov’s center theorem gives that there are two one-parameter families of
periodic solutions emanating from the equilibrium (see Meyer and Hall, 1991). At
the equilibrium one family is tangent to the plane z = Z = 0 (we will call this
the z-mode) and the other family is tangent to r = 1, R = 0 (we will vall this
the r-mode). The Hamiltonian Py is positive definite so a theorem of Weinstein
(1973) assures us that there are two periodic solutions near the equilibrium in each
level set of the Hamiltonian K even when the ratio of the frequencies «/w is an
integer or the reciprocal of an integer.

The z = Z = 0 plane is the original z, y plane and it is clearly invariant and
the r-mode solutions lie in this invariant plane. The periodic solutions in this plane
have frequency approximately equal to o — 1. Recall that the ignored polar angle 9
has the equation ¥4 = a — 1. So in the z, y plane when the polar angle increases by
27 the radial variable r undergoes one cycle. This is an elliptic orbit in the plane!
Recall that the equilibrium point corresponds to a central configuration and there
are solutions of the (N + 1)-body problem where the bodies move on a Kepler
orbit (for example an elliptic orbit) while remaining in a central configuration (see
Meyer and Hall, 1991). Thus, this family gives no new information.

The plane » = 1, R = 0 corresponds to a cylinder in z, y, z space and is
definitely not planar and the family of z-mode solutions are tangent to this cylinder.
Going back to the original coordinates this family of periodic solution gives rise
to a solution of the (N + 1)-body problem which looks like the massive planet
surrounded by a ring of small particles and the ring remains planar but oscillates

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993CeMDA..55..289M&amp;db_key=AST

ENDA- . T55. ~Z89MD

306

rt

298 KENNETH R. MEYER AND DIETER S. SCHMIDT

Fig.3. An oscillating ring.

up and down. See Figure 3. In this and subsequent figures the two dimensional
drawing is in a rotating plane which rotates about the z-axis. Thus the particles as
of mass m; oscillate up and down in the plane as the plane rotates. Therefore the
particles sweep out a circle in three space which oscillates up and down.

5. Linearized Alternating (2N + 1)-Body Problem

By setting o> = Cn + M there is one equilibrium point at R = Z = z = 0,
r = 1. The linearized equations about this equilibrium point are

p=R, E=—o?p, 3=2, Z=—(Dyn+ M)z,
where p =1 — r and

1 2N -1 b_k

Dan = o
8N k=1 A

1 & w21 1
=gy Lo T = - O
j=l

These equations follow from the quadratic Hamiltonian
2Py = ?p? + (Dyy + M) 2> + R2 + 72 .

For all values of the parameter M these are the equations of two harmonic
oscillators with frequencies o and w where w?> = D,y + M. Except when the
ratio of the frequencies «/w is an integer or the reciprocal of an integer Liapunov’s
center theorem gives that there are two one-parameter families of periodic solutions
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Fig. 4. A kinked 1ing.

emanating from the equilibrium (see Meyer and Hall, 1991). These families are
tangent at the equilibrium to the two planes » = 1, R = 0 (the r-mode) and
z = Z = 0 (the z-mode). The Hamiltonian P,y is positive definite so a theorem of
Weinstein (1973) assures us that there are two periodic solutions in each level set
of the Hamiltonian K even when the ratio of the frequencies a/w is an integer
or the reciprocal of an integer.

The 2z = Z = 0 plane is the original z, y plane and it is clearly invariant. As
in the example above this family comes from the elliptic solutions and this family
gives no new information.

The plane » = 1, R = 0 corresponds to a cylinder in z, y, z space and is
definitely not planar and the family of z-mode solutions is tangent to this cylinder.
Going back to the original coordinates this family of periodic solution gives rise to
a solution of the (2N + 1)-body problem which looks like a fixed massive planet
surrounded by a ring of small particles and the ring is not planar. The particles in
the ring oscillate up and down with each one out of phase with its two neighbors.
This solution might be called ‘kinked’. See Figure 4.

6. Normalized Nonalternating (N + 1) and Alternating (2N + 1) Problems

In order to study the given problems near the equilibrium points we expand the
Hamiltonian into a sum of homogeneous polynomials. Due to the special nature
of the problems, these polynomials will contain only the variables p and z, and in
addition to this the exponents of z are always even. The Hamiltonian for both cases
through fourth order terms has the form
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K = Kz + aop® + a1p2* + bop* + b1p?22 + bpzt + - --
with
i 1
K, = 5 (2p? + 422 + R* + BZ%)

representing the quadratic terms in either case.

The first step in normalizing a Hamiltonian function near an equilibrium point
is always to bring these quadratic terms into a canonical form. In the two problems
under discussion the linearized systems are already close to the real canonical form
as they are

This allows at once the introduction of canonical action angle variables (I3, I, ¢,
) via the transformation

p=1/2I/a cos ¢ , R =+v2Iasin ¢,

z:\/212\/6/‘ycos 2 , Z:\/2I2m8in 2,

where w; = « and wy = /0 are the frequencies of the linearized system. With
the help of these frequencies the above transformation can be written in a more
symmetric form, that is as

TZ\/ZIl/wl CoS ¢1 , R:\/Zhwl sin ©1 ,
z2=1/20LB /wy cos g2, Z =1/25Lw,/B sin ¢, .

For the nonalternating NV + 1 bodies the two frequencies are
w=M+Cy, wi=(M+1)>/M?

and for the alternating 2N + 1 bodies they are
w=M+Cyn, wi=M+Dy.

The next step is the transformation of the full Hamiltonian function to the action
angle variables. This leads to the Hamiltonian

H=wl+wh+Y H T, Vhe,e)
k>2
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with H}, Poisson series of degree k/2 in the action variables. Due to the special
form of the given problems there are restrictions on the linear combinations of
angles which can appear within each Hj. Because of this only a few resonance
conditions between w; and w; have to be excluded when we put the Hamiltonian
into normal form.

We used the method of Lie transformation of Deprit (1969) and checked our cal-
culations with the help of MACSYMA. The normal form of the above Hamiltonian
through fourth order terms is

H=w I +wl+ H(I1,I;)+ Os

provided that the following two resonance conditions are excluded: w; = w; and
w1 = 2wy. The quadratic terms are written as

Hy = 5 {AR} [} + 2BL B/ (wiwn) + CI6 3}
with the coefficients
A = 3by — 15a3/(2w?)
B = b — 3apaiw}/w? — 2a}B/(4wf — w})
C = 3b + a?(3w? — 8w?)/(Qwi(4wl — w?)) .
In order to apply the KAM theory we need to calculate that quantity the
D = Hy(wy, —wy)
is nonzero. The quantity D for the K given above is

D ~15a3w2  3Baom 35%a2w? 3bowi
4wt w? 8wi(4w? — wh) 2w

352wt

—— -
2wy

Bb1 +

The nonalternating (/V + 1)-bodies problem depends on the two parameters, the
mass M of the central body and the number N of infinitesimal bodies. Since the
frequencies of the linearized system are w? = M + Cy and w3 = (M + 1)3/M?
the last expression can be written in a variety of different ways. One of them is

_9 29 3 1
Dy = 15tk (g =02 ~ 1)

In a similar fashion the frequencies for the altemating 2N + 1 bodies are
w% =M + Cyn and w% = M + D;,y. But now the expansion of the Hamiltonian
function into a Taylor series has to be carried out inside the summation over the
2N bodies. This introduces additional expressions which depend on N. With the
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Fig.5. A braided ring.

notation

1 Rty 1 X (25 — 1)
Bon = — A in™> =~ 7/
N T8N ,; S TEy 2T oy

the Hamiltonian near the equilibrium point is

1
H= 3 (Wip? + W32 + RP + 22} — 2)p° +

3 3
) wip2® 4 3wip* + 6w p? 2% — 1 (M + EyN)Z4+--- .
From this we obtain
9wt 3w
Dy =—-L (M- E 2
2N 1602 ( 2N+4w%—w%)

It is easy to see that Dy is always nonzero and that D,y is zero for at most
one value of M for fixed N. When Dy or D,y is nonzero Amold’s stability
theorem applies to prove the existence of invariant two-dimensional tori near the
equilibrium point. The solutions on these invariant tori are quasi-periodic. Also,
one can show that the Liapunov periodic solutions are of general elliptic type
and so Moser’s invariant curve theorem shows that they are stable and Birkhoff’s
theorem shows that they are encircled by very long period periodic-orbits. These
solutions differ from the solutions given by Liapunov’s theorem in that both the 7
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and the z modes are excited together. That is, instead of being tangent to the r or 2
axis as are the Liapunov families, these periodic solutions are closed curves which
encircle the origin in the r, z-plane. Retuming to the full three dimensional z, y,
z-space these solutions will be twisted closed curves which encircle the simple
closed curve where 22 + y?> = 1, z = 0. In the nonaltemating (N + 1)-body
problem all the small bodies lie in a plane and so the ring looks like a circle which
pulsates up and down while pulsating in and out. In the alternating (2n + 1)-body
problem the small bodies follow two different curves in space which twist around
the circle 22 + y* = 1, z = 0. This solution might be called ‘twisted’ or ‘braided’
(see Figure 5).
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