728, _Z01M

TB20ENET .

rt

THE DETERMINATION OF THE DERIVATIVES IN
BROWN’S LUNAR THEORY* **

KENNETH R. MEYER and DIETER S. SCHMIDT
Dept. of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, U.S.A.

Abstract. The fundamental matrix solution T for the variational equations of a Hamiltonian system is
symplectic. We use this fact to complete T when it is only partially known. We discuss three cases. The last
one gives an easy proof for the method invented by Brown in his lunar theory.

Consider a Hamiltonian function H(x, y) of n degrees of freedom. Let x(z, o, ) and
y(t, o, B) be the solution of the corresponding system of differential equations. The n
dimensional vectors « and f contain parameters which are used to fix the initial
conditions for x and y at some specific time, say t = 0. The parameters are called
canonical if the Jacobian d(x, y)/0(a, f) is symplectic at ¢t = 0. The solution matrix
T = 0(x, y)/0(e, ) to the variational system of differential equations is then symplectic
for all times. This fact can be used to complete the solution matrix T with the help
of one quadrature when T is only partially known.

Applications for this method can occur for example when « are action parameters
and f are the conjugate angular parameters. In developing the formal solution to
the original system of Hamiltonian differential equations it may have been convenient
to replace some or all components of the parameter vector a by their numerical
values but to keep the components of f as formal parameters.

A typical example is Brown’s lunar theory. There the first component of a has
been replaced by its numerical value from the beginning of the computation. The
component under discussion is in Brown’s notation n, the observed mean motion
of the Moon, or m a value which is directly related to n. The decision to construct a
semianalytical solution rather then an analytical one was made by Brown because the
resulting series in m converge very poorly. Otherwise the number of terms in his
already lengthy solution would probably have increased by a factor of 30.

Brown (1903) devised a method for finding the derivatives with respect to m. When
Brown (1908) uses the method he writes on page 11: “The process given in the preced-
ing paragraph is neither easy in theory nor easy for computation. But in the absence
of any other method it had to be adopted”.

We will show that Brown’s method follows easily from the fact that T and T*
are symplectic matrices, in particular if modern notation is used. Furthermore Brown’s
formula is just one of several which we will derive. Although the theory on which
the methods depend is easy we have to admit that the computations are still involved.
Despite the fact that the final formulas look simple they hide many of the technical
details which have to be overcome when they are used.

* Paper presented at the 1981 Oberwolfach Conference on Mathematical Methods in Celestial Mechanics.
** Dedicated to Victor Szebehely.
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202 K. R. MEYER AND D. S. SCHMIDT

In the following let Z = J Sz be the system of variational differential equations for
a given Hamiltonian function and a certain solution, J is the standard symplectic

X
matrix, S = D?H is evaluated at the given solution x(t, o, ), y(t, o, B) and z =< >
y

We will discuss three cases:

(1) All of the derivatives with respect to  are known but none with respect to a.

(2) Same as (1) with the addition that H =1|y|* — F(x).

(3) Only the derivatives with respect to «,, the first component of a, is unknown
and H =1|y|* — F(x).

The above cases serve only as an illustration. Related formulas can be found when
the assumptions are modified.

THEOREM 1. Let the Hamiltonian function H = H(x, y) of n degrees of freedom
x(t, o, B)
e, o, B)

meters. Assume that the 2n by n matrix C = <x‘8 ) is known but that the formal deriva-
Y

admit the solution vector ( > The vectors a and B consist of canonical para-

tives with respect to a can not be formed. Let S = D*H be evaluated at the solution.
From now on let D denote the 2n by n matrix D = JC(C'C)™'. Compute the n by n
matrix

t

V= JD'(SD +JD)dt.
0

Then a symplectic fundamental matrix solution for the corresponding system of vari-
ational equations is given by

T=({D-CV,QC)

Proof. By assumption C has rank n, satisfies C'JC =0 and C'C is nonsingular.
Since D'JD =0 and C'JD= — I it follows that P =(D, C) is a symplectic matrix.

- C'J
We therefore have P~ ! = )
D'J

Change to new coordinates by z = P{. The transformed variational equations
are

C'SD + C'JD 0)

"= P Y(JSP - P){ = .
¢ ( ) (—D‘SD—D'JD 0

All submatrices in the last expression have size n by n. The one in the upper left

corner is also zero as can be verified by differentiating C'JD =1. With { = <u>
v
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THE DETERMINATION OF THE DERIVATIVES IN BROWN’S LUNAR THEORY 203

the above system reads
u=0
o= —D'(SD + JD)u.
It has the general solution
u=u,, v=—Vu,+v, (1)

where V is defined in the theorem and the symplectic matrix T of the theorem
follows from it.

If the derivatives with respect to « are needed we have to select the initial conditions
for (1) so that at one time the matrix T agrees with the derivatives. From the specifi-
cation of the initial conditions for x and y in terms of « and f at time ¢t = 0 we find
directly x,(0) and y,(0). Let P, be the matrix P at time t = 0. The desired 2n by n
submatrix of the Jacobian T is then

t
<xa( )) _D_cCV. C)Pg‘(x“(())).
Y, (2) ,(0)
THEOREM 2. Let H =1|x|*> — F(x) have the general solution x(t, o, f). It depends

on 2 canonical parameter vectors a and f of dimension n each. If X, is known we can
compute

t

x, = xﬁ<K — j(x;,xﬁ)_1 dt>

0

where K is a constant symmetric matrix.
" Proof. The Jacobian T = 0(x, x)/d(c, B) is a symplectic matrix.

This fact in terms of submatrices reads

x. X, —X,x, =0 (2a)

Xk, — Xxg =1 (2b)

xpX, — Xpx, =0. (2¢)
With the help of (2b) and (2¢) we find

d _, e -1 ~1y

a(xﬁ X)= —Xg XgXg X, + X5 X,

= —(xhxy) M xpxpx, x, — XpX,)

= — (xpxy)~ (X x, — XjX,)

— (! -1
= —(xpxp) "
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204 K. R. MEYER AND D. S. SCHMIDT

When we integrate we obtain the formula of the theorem with K as a constant matrix.
Since x,_ has to satisfy (2a) K has to be symmetric. K is obtained from the given initial
conditions and is K = x; '(0)x_(0). It can be determined differently when the solution

B
to the Hamiltonian system x(t) satisfies a symmetry condition like x(t) = Rx(—t)
where R is a diagonal matrix with R*> = I. If x_(t) = Rx_(— t) and x 8 (t)= — Rx,(—1)

holds then this symmetry condition implies that K = 0.

Extensions of the above theorem are possible to the Hamiltonian H = 1y* Ay — F(x)
and to a noncanonical set of parameters, provided that 4 is symmetric and invertible.
For now let x and ff be an arbitrary set of radial and angular parameters. If ¢ represents
the conjugate set of parameters to f then we assume that ¢ = ¢(«) does not depend
on f. Denote by C = dc/da the n by n transformation matrix and by 4" the transpose
of the inverse of the matrix 4. These two extensions modify the conditions (2) so that
for T = 0(x, x)/0(x, f) we have

(0 AN\ [ 0 C
T(—A"O )T_<—c 0)' ®

The formula of theorem 2 has then to be changed to

t
_ -1 -
X, = X,(K — Jxﬁ AX,;'d)
0
with

Xﬁ=xﬂC_‘.

THEOREM 3. Let H =1|%|* — F(x) have the solution x(t,a, B) which depends on
canonical parameters. Assume that only the derivative with respect to «, is not available.
Then 0x/0o., can be found by a quadrature.

Proof. Again let T = d(x, x)/0(x, f) but now use the fact that T* is also symplectic,
that is TJT* = J. In terms of components the last relation expresses the invariance
of the Poisson brackets. Of these brackets the following are of interest:

2 Ou, 0B, 0B, 0, i

k=1

iLj=1,....n

For i=j the Poisson bracket contains only 0x,/dx, and 0x;/0a, as unknown
quantities. After dividing by (0x;/0 B, )* we can integrate and obtain
t
0x; axi{K_l_ j[ 2": <6xi ox;, 0x, 6>6i> 1}(6&.)‘2 dt}
o, Op, oo \ 0o, OB, OB, 0o, 0B, '
0

The constant K can be determined from symmetry considerations or by using a
Poisson bracket with i # j.
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This proof replaces in essence the first part of Brown’s (1903) paper. The rest of
his paper discusses the application to the lunar problem. We will outline this now
briefly. The first step requires the same generalization for theorem 3 as was given
for theorem 2. As the notation for the general case becomes cumbersome we will
restrict outselves to n = 3 in the way it is needed for the lunar problem.

Let the position vector be x = (u, v, z)' with u and v as complex coordinates for
the x,,x, plane and with z perpendicular to them. The corresponding momenta
vector is y = (U, V, Z)* so that

H=2UV+1Z?>-Fu,v,z). (4)

If H were transformed locally to canonical action angle variables (c,,c,,c;)
and (w, , w,, w,) respectively it would be a function of the ¢,’s only. The corresponding
differential equations would be

. 0H
wkz—a::bk(cl,cz,cs) k=1,23.

The general solution to (4) can thus be given by a complex Fourier series of the form

u=) A expi(j,w, +j,w, +jws). (5)

The summation is over all integer triples j = (j,,j,,/,). We have A;=A(c;.cy,¢5)
and w, =b,(c,,c,,c;)t + B,. Furthermore v is the complex conjugate to u. A similar
expression holds for z.

In the lunar problem b, is the mean motion of the Moon and it is replaced by its
numerical value n from the outset. Therefore o, = n is not a canonical variable. The
relationship to the canonical set is

n=b,(c,,c,,c;)

For the inverse transformation we compute

dc, Jdc, Oc,
oc on Oa, Oa
T oa | 0 1 0

3

0 0 1
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206 K. R. MEYER AND D. S. SCHMIDT

Instead of TJT® = J we have to use a more general condition which follows directly
from (3):

< 0 c*) <0 A’)
T _ T = ) (6)
—Ct 0 —4 0

Among the different relations given by (6) we select the one which involves only
u, and 4, asunknown quantities. In vector notation this is given by

u,C™ Vil — i, C™ul = 0. (7)

All frequencies in (5) depend on «. For the perturbation theory later on the change of
the coefficients A; with respect to a is of interest. Therefore Brown has introduced
the following convention: u, will denote the partial derivative with respect to «
whereas Ju/0x indicates that only the coefficients 4; in (5) are to be differentiated.
With this notation we find

ou ob
ua=5&+ tuﬂa (83)
and
_ 0 (du>+t_ ob (8b)
"« = oa\ dr s

The vector b is made up of the different frequencies b,. Note that 6/0x and d/dt do
not commute, as we have for example

0 du_ d ou 4 ob
Oa, dt B dt oo, “ﬂaa

1

©)

When (8a, b) is used in (7) the terms in ¢ vanish since

éb . 0b
C —

_— 1 [ p—
O oc
is a symmetric matrix. For the same reason C* db/0u is symmetric. This gives the

following two identities 0b,/0n = — dc, /0, and 0b,/0n = — Oc, /0, . They are used
to rewrite the last term in (9) which we then rename to be

b dc, oc,

U= uﬂaf“1 = uﬂl — Euﬁz — @uﬂa. (10)

Finally if the terms in (7) without t are written down with the help of (8), (9), and (10)
we find

ou . d du Oc
—U—|——+U|JU+—0=0
anU (dt6n+ ) * 6nQ
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where

Q_au ou ou 6u+6u ou Ou Ou
,08, 0Oa,0f, Oa,df, Oa, 6/33'

After dividing by U? we can integrate and we obtain the formula given by Brown

t

ou oc, Q
a_u(mj(aﬁf- )m) (11)

Since no secular terms can appear dc,/0n must be the reciprocal of the constant
term in the expression of QU 2.

Symmetry conditions only tell that K has to be a purely imaginary constant. Its
value has to be determined by another relation of (6), for example by

-1t -1t
u,C %—%C %—Q

If we call ® the integral in (11) then the above condition reads

Ooc,{ 0u 0v  Ou Ov
im0 )
Im{' P+ O+ 5 5. 75, * 2, 38,

Although this is a relation among series it suffices to determine K from the constant
terms. The rest of the series and additional relations in (6) can be used to check the
accuracy of the computations.

The derivative dz/dn is computed in an analogous way, but we will not reproduce
the method of Brown for it here.

The above method for finding the derivative with respect to n is implemented by
the second author for the solution to the main problem which was given in Schmidt
(1980).
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