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PERIODIC ORBITS NEAR INFINITY IN THE
RESTRICTED N-BODY PROBLEM

KENNETH R. MEYER*
Department of Mathematics, University of Cincinnati, Ohio, U.S.A.

(Received June, 1979; Accepted October, 1979)

Abstract. This paper shows that there exist two families of periodic solutions of the restricted N-body
problem which are close to large circular orbits of the Kepler problem. These solutions are shown to be of
general elliptic type and hence are stable. If the restricted problem admits a symmetry, then there are
symmetric periodic solutions which are close to large elliptic orbits of the Kepler problem.

1. Introduction

This paper investigates the existence and stability of periodic solutions of the
restricted N-body problem where the infinitesimal body is at a great distance from
the center of mass of the primaries. Moulton (1912) established the existence of
periodic solutions of the restricted three-body problem which are symmetric with
respect to the line of masses of the primaries and are nearly circles of large radii.
Moulton’s proof is simple and elegant, but he only proves the existence of these
periodit solutions. Below we present an elementary proof of the existences which
gives as a by-product an estimate on the characteristic multipliers. A second proof of
the existence shows that these solutions are of general elliptic type. Since these
solutions are of general elliptic type, a theorem of Birkhoff (1927) can be applied to
show that close to these nearly circular orbits are periodic solutions of very long
period and the theorems of Arnold (1961) and Moser (1962) can be applied to show
that these nearly circular orbits are stable. Since neither of the proofs presented here
depend on any special symmetry property of the Hamiltonian of the system, they
apply to the restricted N-body problem which is not symmetric in general. However,
if the Hamiltonian of the restricted N-body problem does admit a discrete symmetry,
we show that the equations of motion have symmetric periodic orbits which are close
to large elliptic periodic orbits of a related Kepler problem. These nearly elliptic
orbits are established by using the methods and implicit function theorem of
Arenstorf (1966, 1968, 1978) and Arenstorf and Bozeman (1977).

In Section 2 it is shown that the Hamiltonian of the restricted N-body problem is a
limiting case of the full N-body problem as one of the masses tends to zero. This
derivation clarifies the previously tenuous connection between the restricted and the
full N-body problem and obviates which periodic orbits can be continued into the full
problem. All subsequent sections discuss the restricted problem only.
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70 KENNETH R. MEYER

In Section 3 we show that the Kepler problem in rotating coordinates is a limiting
case of the restricted N-body problem as the distance from the center of mass of the
primaries to the infinitesimal body tends to infinity.

In Section 4 we use a simple lemma from non-linear oscillation theory to establish
the existence of two families of periodic orbits which are close to circles of very large
radii. In an inertial coordinate system one family is direct and one is retrograde. This
lemma and a simple calculation shows that both families consist of elliptic periodic
solutions. That is, we show that the non-trivial characteristic multipliers of these
periodic solutions are of unit modulus and not equal to +1.

In Section S we consider those restricted N-body problems which have a line of
symmetry (for example, the restricted three-body problem). Delaunay elements are
used with the implicit function theorem of Arensdorf to establish the existence of
symmetric periodic solutions of the restricted N-body problem which are close to
very large elliptic orbits of the Kepler problem.

In Section 6, Poincaré variables are used to give an alternate proof of the existence
of the nearly circular orbits near infinity. In these coordinates it is easy to prove that
these nearly circular orbits are of general elliptic type in that they satisfy the ‘twist
condition’ of Birkhoff (1927), Arnold (1961) and Moser (1962). Thus, close to these
nearly circular orbits are other periodic orbits of very long period and quasi-periodic
orbits filling invariant tori. This also implies that these nearly circular orbits are
stable.

2. The Restricted Problem — A Limiting Case

In the classical, and now universal derivation, of the restricted N-body problem one
is asked to consider the motion of a body of infinitesimal mass which is subject to the
gravitational attraction of N — 1 other bodies which move on a central configuration
solution. One is to assume that the infinitesimal body does not exert any influence on
the motion of the N — 1 massive bodies and so the massive bodies always move on a
central configuration solution. From this description it is clear how to write the
Hamiltonian of the problem and it is also clear that the Hamiltonian is somehow
related to the Hamiltonian of the full N-body problem. However, the precise
connection between the restricted and the full N-body problem is never quite clear in
the classical derivation.

Here we shall obviate the connection by scaling the Hamiltonian of the N-body
problem by a symplectic change of variables which depends on a small parameter ¢
which is one of the masses. In the new scaled variables the Hamiltonian decouples to
lowest order in the small parameter ¢ into two terms. The first term is the
Hamiltonian of the restricted N-body problem and the second term is a quadratic
form in the remaining variables. The equations of motion obtained from these
quadratic terms are the linearized equations of motion of the (N —1)-body problem
about the relative equilibrium.
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PERIODIC ORBITS NEAR INFINITY IN THE RESTRICTED N-BODY PROBLEM 71

In this paper only the planar, circular restricted N-body will be considered. Let

qi," " " ,qN € R®> be the position vectors of N-bodies in the plane with masses
Mmy, ..., my and momenta p, . . ., py respectively. The Hamiltonian of the N-body
problem is
N pal? m;m;
Hy = z M_ At (2_1)

i=12m;  1<i<i=n|qi — 4l
and the equations of motion are

, i=1,...,N. (2.2)
=t lla—ailP

Here and below the prime on the summation sign indicates that the term where i =
is excluded. These equations have periodic solutions where the bodies move on
concentric circles with uniform velocity. If the origin is taken as the center of mass,
then these periodic solutions must be of the form

qf =e “"a;, p¥=-mwl e *"a;, i=1,...,N, (2.3)
where a;, . .., ay are constant vectors, o is a positive number (the frequency) and
0 1
7=(_1 o)
-1 0

SO

wlt ( cos wt  sin wt)
e i .
—sin w? cos wt

In order for g and pf to be solutions of (2.2) the a; and w must satisfy the non-linear
algebraic equations

N mi(a; —a .
w’a;+ Y m—f(—’——3—)=o, i=1,...,N. (2.4)
=1 lla;—ai
The geometric configuration of the N-bodies given by aj, . . ., an is called a central

configuration and the solution (2.3) is called a central configuration solution. For the
three-body problem the only central configurations are the equilateral triangle
configurations of Lagrange and the collinear configurations of Euler (see Siegel,
1956, for a thorough discussion). Moulton (1912) and Smale (1970) have shown that
up to similarity transformations there are N!/2 collinear configurations of the
N-body problem. Many other central configurations are known, but no complete
classification is known for N > 3. We shall show that for each central configuration
there is a corresponding restricted problem.

If the equations are changed to a rotating coordinate system which rotates with
constant angular frequency w, then these central configuration solutions will become
equilibrium solutions and therefore the solutions (2.3) are also called solutions of a
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72 KENNETH R. MEYER

w,

relative equilibrium. Introducing rotating coordinates by q; = e "”’x;, p; = e “"'y; the

Hamiltonian becomes

N 1% e
Hy=73Y {M—wxffy,-}— y (2.5)
i=1 2m,~ 1si<j<N||Xi _xju

and the equations of motion are

N

Xi = yi/ mi + wJx;, Vi=wly;+ Y 3
21 —xi

m,-mj(xj —x,~)

(2.6)

Henceforth we shall always assume w = 1, since this can always be accomplished by a
change in the time scale. Let

0 I
J, = ( k k)
I O
where O is the k X k zero matrix and I, is the k X k identity matrix (so J; =J of
our previous notation). Let Z=(xi,...,XmVi,...,yn). and Z*=
(ai,...,am—miail,...,— maarJ)T so that equations (2.6) become

and Z* is the relative equilibrium solution; thus VHy(Z*) = 0. Since Z* is a critical
point for H, one has by Taylor’s theorem

Hn(Z)=Hn\Z*)+3(Z-Z*)"S(Z-Z*)+0(|Z - Zz*]), (2.8)
where S = (6°H/3Z*)(Z*) is the Hessian of H at Z*. The linearized equations of
motion about the relative equilibrium solution Z* are

Z =InSZ. (2.9)

Equations (2.9) are the equations of the first approximation of the full equations (2.7)
for solutions near the relative equilibrium.

Now let us assume that one mass is small by setting my = £ and considering ¢ as a
small parameter. Then the Hamiltonian becomes

||)’N||2 T Nt 82’"1’
Hy="——xnJyn— X 7———+Hn-1. (2.10)
2¢ i=1 |lx; — x|
Let x;=aq,...,xn-1=an-1, Y1=mJay,...,yn-1=mny-1Jan-1 be a relative

equilibrium for the (N —1)-body problem whose Hamiltonian is Hy_; in (2.10).
Introduce coordinates for this (N —1)-body problem as above so now let
Z=(x1,...,XN-1,V1,...,¥n-1)" and let Z*=(al, ..., an-1, —miaiJ, ...,
—mn_1a 5-1J)T. Thus Hx_1 is of the same form as Hy in (2.8). Make the change of
variables

N=U, yw=ev, Z=Z*—¢U. (2.11)
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in (2.10). This change of variables is symplectic with multiplier ¢ > and so the
Hamiltonian becomes
ol Nt oomy

H =(———uTJu— 5
N 2 i=1 la;—ull

)+5U7SU+0e) (2.12)

plus a constant term & _ZHN_l(Z *) which we will ignore. Thus, to zeroth order in the
small parameter £ the Hamiltonian is the sum of

2 N-1 .
PO 1 N P i (2.13)
2 =1 llai—ull
and
K=3U"sU. (2.14)

The Hamiltonian H of (2.13) is the Hamiltonian of an infinitesimal body whose
position is # and momentum is v in a rotating coordinate system and moves under the
attraction of N — 1 bodies of mass m; at position a; (the primaries). The Hamiltonian
K of (2.14) is the Hamiltonian of the linearized problem of N —1 bodies about the
relative equilibrium solution Z*.

This decomposition shows that it is necessary to make certain assumptions about S
if one hopes to continue a periodic solution from the restricted problem into the full
N-body problem. The author in Meyer (1980) has investigated this question and has
given sufficient conditions for the continuation of a periodic solution.

A corollary of one of these results is the theorem of Hadjidemetriou (1975) which
is applicable to the work given below. Namely:

THEOREM. Letu = ¢(t), v = ¢(t) be a T-periodic solution of the restricted three-body
problem with characteristic multipliers 1,1, 8,8™". If B# 1 and T= 0 mod 2 then
this periodic solution can be continued into the three-body problem. That is, there is a
f’(e)-periodic solutionu=a(t, &), v=ul(te), U=U(t ¢) of the three-body problem
(with Hamiltonian (2.12)) for small e suchthat T(e)~> T, (¢, €) > ¢ (2), ¥ (¢, €) > ¥(0),
Ut e)>0ase~0.

3. Equations for Orbits at Infinity

Henceforth we shall consider only the restricted N-body problem as given in the
previous section and we shall assume that the sum of the masses of the primariesis 1.
Thus, the Hamiltonian under consideration is

2 a N-1 )
gl e, N _m (3.1)
2 i=1 lla;—ul
where m;+- - -+ my_; =1 and the equations of motion are
u=v+Ju,
(3.2)
P S

i=1 ”af - u||3 .
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74 KENNETH R. MEYER

In order to study this problem for large values of u we introduce a small positive scale
parameter u and make the change of scale u = u ¢, v = un. This is a symplectic
change of variables with multiplier « and so the Hamiltonian becomes

2 2 2
_ (&l _oaa,r, NG wTm,
H=w("5r-uem- 1 ||u2af—§||)
=—£Tm+u(mlP/2-1/llEh + O ). (3.3)

The equations of motion are
E=JE+u’n+0(’)

(3.4)
n=Jn—-u’¢/lEP+ 0w’ .

To lowest order in u these equations are linear and have the general solution
& =exp (Jt)éo, n =exp (Jt)no which are 2m-periodic in ¢. Thus for small u the
solutions of-(3.4) are approximately circular. Therefore for large initial values u and
small initial values v the solutions of (3.2) are approximately circular. Since rotating
coordinates are being used this means that near infinity the infinitesimal body mainly
feels the effect of the Coriolis and centrifugal forces and in a fixed coordinate system
would be approximately at rest. The coefficient of the x> term is the Hamiltonian of
the Kepler problem where the central body has mass 1 and is located at the origin.
This can be interpreted as meaning that the next most important force felt by the
infinitesimal body when it is near infinity is the attraction of a fixed body at the center
of mass of the primaries whose mass is equal to the sum of the masses of the
primaries.

The equations of the restricted N-body problem have singularities at the primaries
and sometimes this is hidden in the O(u°) term. However, from (3.3) we see that
these singularities are at /,Lza,-, j=1,...,N—1 and so tend to the origin as u > 0.
Thus, there is no problem in avoiding the singularities in the analysis that follows.

4. Circular Orbits at Infinity

The Equations (3.4) are of the form studied in non-linear oscillation theory (see for
example Chapter 14 of Coddington and Levinson (1955) or Chapter 5 of Hale
(1969)). They are non-linear, contain a small parameter u, and reduce to a linear
system when u =0. However, this system is somewhat degenerate since it is
autonomous, it admits an integral and all its solutions are 27 periodic when u = 0.
These degeneracies can be easily overcome by a careful application of the implicit
function theorem. Indeed, the technical lemma of Meyer and Schmidt (1971) is
adequate for the present problem and we shall summarize a simplified version of this
lemma here.
Consider the system

[=AL+u’f( ), (4.1)
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PERIODIC ORBITS NEAR INFINITY IN THE RESTRICTED N-BODY PROBLEM 75

where { €R", u €R, A is an n X n constant matrix such that exp A2z =1 and F is
analytic in an open set of the form Q XR where Q is open in R". Assume that (4.1)
admits an integral of the form I({, u)=¢ D¢+ O(u>) where I is analytic on Q XR

and D is an n X n symmetric matrix. Let B8 be a real parameter and define
2@

B(B,¢)=BA¢ + J e f(e™¢, 0)ds. (4.2)
0

Remark. The equations B(B, {) = 0 are often called the bifurcation or determining
equations in non-linear oscillation theory.

LEMMA. If there exists a £, Q and a Bo€ R such that

B(BO9 §O)=01
D¢ #0,

B
rank (g—ﬁ’% (ﬂ01 {0) =n—1 ’

then there exists an analytic one-parameter family of periodic solutions of (4.1),
denoted by ¢(t, u), such that
& (t, w) is defined for all w, |u|< wo and periodic in t of period 21 + u>Bo+ O(n*),

é(t,0)=(exp At){o,

the characteristic multipliers of ¢(t, ) are 1+u’8;+0u") where 8; are the
eigenvalues. of (0B/3{)(Bo, (o).

A similar lemma is found in Hale (1969).

To apply this lemma to Equations (3.4) we set ¢ =(&",n")", Zo=(&3, n0)%,
A=diag (-J,=J), (&, w)=(n", = €"/Iel)" + O(u?). Since [exp —Jtéol|=[|&d| the
integral in (4.2) reduces to integrating a constant and so trivially the bifurcation
equations are

BJéo+2mmo=0,

3 (4.3)
BImo— 27"50/”50” =0.
Solving the first equation for no and substituting into the second yields
2 2
(32_( 7T)3)§0=O. (4.4)
€l

For any &, this equation can be solved by taking 8 = +27/||&|. Take & = (1, 0)" and
so B = £27 and no= (0, F1)”. The Jacobian 9B/d¢ at this solution is

0 F1 2 0

+1 0 0 1
27y 0 0 =1
0 1 =1 0
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76 KENNETH R. MEYER

which is clearly of rank 3 and has characteristic equation A >(A*+ 1). The integral for
Equations (3.4) is the Hamiltonian (3.3) and

1/0
b=3 (J é)
so clearly D¢, # 0. Thus the conditions of the lemma apply to both solutions 8o = 2,
¢=(1,0)", no=(0,-1)" and Bo=—-2m, ¢&=(1,0)7, no=(0, 1)*. Thus Equations
(3.4) have two families of periodic solutions for u small, one of period 27 + u 27 +
O(u*) and the other of period 27 — w27 + O(u*). Both families have characteristic
multipliers 1,1, 1+ u i+ O(*), 1 -’ + O(u*) and hence are elliptic. As u tends
to zero these solutions tend to circular orbits. In the non-rotating coordinate system
one family is direct and one family is retrograde.

Thus the restricted N-body problem has two families of elliptic periodic orbits
which are close to circular orbits of very large radius.

5. Nearly Elliptic Orbits

Some central configurations are symmetric in that they are invariant under a
reflection in a line. The collinear configurations of Euler and Moulton are invariant
under a reflection in the line through the bodies, and the equilateral triangle
configuration of Lagrange in the three-body problem with equal masses is invariant
under a reflection in a median of the traingle. In this section we shall exploit the
symmetry to establish additional periodic solutions which are nearly elliptic.

Assume that the central configuration giving rise to the restricted problem is
symmetric and that the coordinate systems of Section 3 are so chosen that the line of
symmetry is the abscissa in position space. This is the usual choice of coordinates for
the restricted three-body problem. Then the Hamiltonian (3.3) is invariant under the
anti-symplectic involution

&> &, Mm=>""71,
(5.1)

&>—&, N2=>72,

where &= (&1, &)7 and 1 =(n1, 12)". In this case an easy and classical argument
shows that if a solution crosses the line of symmetry orthogonally at times 0 and
T >0, then this solution is 2T-periodic and the orbit is symmetric (see Birkhoff,
1927). That is, if £ =[¢1(¢), ¢2(t)17, n = [1(t), ¥2(£)]" is a solution of (3.4) such that

¢2(0) = 0 9 ',[/1(0) =0 ’
$2(T)=0, $1(T)=0,

where T > 0 then this solution is 2 T-periodic. Many authors including Birkhoff and
Moulton have used this fact to prove the existence of periodic solutions when the
equally simple arguments (used in Section 2) give a more general existence theorem

(5.2)
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with additional information. In many cases, especially those considered by Arenstorf
(1966, 1968, 1978), the method of the previous section fails and it is necessary to use
the symmetry property. Here we consider a case where the symmetry is essential to
the proof of the existence of the periodic solution and therefore we use the methods
developed by Arenstorf. 7

If the O(u>) terms in (3.3) are not present, then (3.3) is the Hamiltonian of the
Kepler problem in rotating coordinates. We shall show that some of the symmetric
elliptic periodic solutions of this Kepler problem can be continued into the restricted
problem. In order to ease the calculations Delaunay’s elements /, g, L, G are
introduced. First make the symplectic change of coordinates from (& n) to
(2, 6, R, ®) where (z, 8) are polar coordinates in the £-plane and (R, @) are their
conjugate momentum. The transformation is given by

E1=12co0s 8, ni=R cos §—(O/z)sin 8,

(5.3)
E=12sin 6, n2=R sin 8 —(O/2)cos 6,
and so the Hamiltonian (3.3) becomes
H=-0+up’3(R*+0%/:)—1/:+0u°) . (5.4)

Next introduce Delaunay’s elements by the sympletic change of variables which is
generated by the function

i G* 2 1\
W(,60,L,G)=G+ J (——2—4-—-—?) dp. (55)
L(L—(L2—G2)1/2] p p
G is angular momentum, !/ is the mean anomaly, and g is the argument of the
perihelion; both / and g are angular variables and so are defined modulo 2. In these
coordinates

H=-G-u*/QLH+0W”). (5.6)

Delaunay’s elements (/, g, L, G) are a valid set of coordinates in the domain in phase
space which is the union of the elliptic solutions of Kepler’s problem. In these
coordinates an orthogonal crossing of the line of symmetry occurs when both / and g
are integer multiples of 7. See Szebehely (1967) for a complete discussion of
Delaunay’s elements and the symmetry condition.
The equations of motion are
[=u?/L?, L[=0,
. (5.7)
g=-1, G=0,
plus terms O (u °). These equations are autonomous and so we may take the fast angle
g as the independent variable so that the equations become

dl -’ dL dG _

@“ L3 ’ Eg_ ’ @ 0, (58)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981CeMec..23...69M&amp;db_key=AST

¢ 23, T6pMD

TB10ENET .

rt

78 KENNETH R. MEYER

plus terms O(u’). For the moment ignore the O(n’) terms and seek a symmetric
periodic solution of the approximate equations. Let a and b be relatively prime
integers and set p,3 =q/b. Start with initial conditions L=1,G=1,L =7 and
integrate on g from 7 to (1 + b)7r to obtain the approximate solution

l=m—w’br=(1-a)m, L=1, G=1. (5.9)

Thus, this approximate solution satisfies the symmetry condition and so to this level
of approximation is a symmetric period solution.

By fixing a and taking b large the scale parameter wx is small and so one might
expect that these approximate solutions can be continued into the restricted prob-
lem. However, the problem is complicated by the fact that taking b large corresponds
to integrating the equations over a large variation of g. As Arenstorf has observed,
the usual implicit function theorem cannot be applied since one cannot set u = 0 and
find the approximate solution. Thus we must follow Arenstorf and make careful
estimates.

First, we shall fix the integer a and the initial condition for G once and for all. Let
the subscript f denote the full solution of (5.8), the subscript a the approximate
solution of (5.8), and the subscript e the error term. Integrate the full Equation (5.8)
with Lo, =7 when g =7 to g =(1+b)7 to obtain

lf(b, =2 LO) = la (b, &, LO) + le(b7 o, LO) ’ (510)
where '
I(b, u, Lo)=m—u>bm/L3. (5.11)

The error term L, is due to the O(u°) terms which must be added to (5.8). The error
term is O(u’) and the Lipshitz constant for the equations is O(x>) and so by the
standard Grownwall estimate (see Hartman, 1964)

ll<ciu’E€=** -1), (5.12)

where c; and ¢, are constants. In this estimate the solutions must lie in a compact
neighborhood of the approximate solution. A similar estimate holds on the first
partials of /.

The approximate equation has a solution of {,(b, u, Lo) =(1—a)m by taking
w>=a/b and Lo=1. Also at this solution 8l,/3L, = 3am which is a fixed non-zero
number. From the estimate (5.12) the error term can be made arbitrarily small by
taking b large and fixing w?=a/b since in this case the estimate (5.12) reads
I.|<ci(a/b)*"?(e=* —1). Similarly the derivatives of /, can be made small by taking b
large. These estimates assure that we remain in a compact neighborhood of the
approximate solution. Thus, the implicit function theorem of Arenstorf (1966, 1968,
1978) applies and there exists a by such that if b > b, there is a solution L () such that

i1b, (a/b)"*, Li(b)]=(1~a)m .
Thus, the solution of the restricted problem with these initial conditions is a

symmetric periodic solution.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981CeMec..23...69M&amp;db_key=AST

723, . T69M

TB10ENET .

rt

PERIODIC ORBITS NEAR INFINITY IN THE RESTRICTED N-BODY PROBLEM 79

6. Stability of the Nearly Circular Orbits

By introducing the coordinates used by Poincaré (1892) we can easily establish that
the nearly circular orbits found in Section 4 satisfy the ‘twist condition’ of Birkhofi,
Arnold and Moser and so are of general elliptic type. Thus, a theorem of Birkhoft
(1927) gives additional periodic solutions of long period which encircle these nearly
circular orbits, and the theorems of Arnold (1961) and Moser (1962) establish the
existence of invariant tori which are filled with quasi-periodic solutions which
enclose the nearly circular orbits in an energy surface. The theorems of Arnold and
Moser prove that these nearly circular orbits are stable.

The transformation from polar coordinates to Delaunay’s elements given in the
last section is singular at the circular orbits of the Kepler problem and so these
elements do not constitute a valid coordinate system in a neighborhood of the
circular orbits. This singularity is due to the geometric fact that the argument of the
perihelion is not defined for circular orbits. Poincaré suggested another symplectic
transformation which is again singular at the circular orbits, but such that the
composition of the two transformations is not singular at the circular orbits. Thus,
these new coordinates of Poincaré are valid in a neighborhood of the circular orbits.

There are two cases (1) the direct circular orbits and (2) the retrograde circular
orbits and a corresponding set of coordinates for each case. We shall only consider
the direct orbits since the other case is similar. Consider the symplectic change of
variables from Delaunay’s elements (l,g,L,G) to Poincaré variables
(Q1, Q,, Py, P,) generated from the function

W,=Pi(l+g)—3P5tang. 6.1)
The Hamiltonian (5.6) becomes

H =—P,+3(Q3+P3)~n*/2Pi + O(u”), (6.2)
and the equations of motion are

Qi=-1+u4°/PI+0u’), Q:=P+0(’),

Pi=0), Py=—Q;+0(u”), 2

Q, is an angular variable and so defined modulo 2, P; is a radial coordinate and
(Q3, P,) are rectilinear coordinates. It can be shown that the composition map from
(2, 6, R, ©) to (Q1, Q,, Py, P,) is an analytic, symplectic transformation in a neigh-
borhood of the direct circular orbits of the Kepler problem (see Szebehely, 1967 or
Schmidt, 1970). For a bounded time interval the solutions of (6.3) with initial

conditions (Q10, Q20, P19, P2o) at t =0 are

Ql=Q1o+f(1+.U~3/P:1$o)+O(P«S), 02=oncost+onsint+O(u5), )
(6.4

P1=P10+O([.L5), P2=—onsint+oncost+O(p,5).

In order to apply the theorems of Birkhoff, Arnold and Moser we must compute
the section (or Poincaré) map in an energy level. If we neglect the O(x°) terms in
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(6.4), we note that for any Py, the solution which starts with Q¢ = P50 = 0 is periodic
of period 27/(1 — u>/P3,) since the angular coordinate Q, is increased by 27 and all
the other coordinates remain fixed. These are the direct circular orbits to this order of
approximation. Let us compute the approximate section map in an energy level. The
hypersurface defined by Q. =0 is transversal to the flow since Q;<0 for small TR
From the first equation in (6.4) we compute that the time T = T (u, Q,, P;, P,) of first
return to this section is

T =2m/(1+u’°Pio) +O(u”)
=2m(1-u’Pi)+ O’ . (6.5)

This is the time for Q; to decrease by 2#. Thus, using Q-, P;, P, as coordinates in this
section we see that the section map takes (Q-0, P10, P20o) to (Q3, P1, P,) where

Pi=Po+ O(MS) )
Q2= Qa0+ 2mu°PioPa+O(1°), (6.6)
p, =P20—27T#3P?0020+ O(MS) .

Now fix the Hamiltonian by taking H = 1 and use this relation to eliminate P;. Thus
we take Q,, P, as symplectic coordinates in the restriction of the cross-section Q; =0
to the energy level H = 1. Thus, Pio=—1 +%(Q%O +P§0) +O(u 3) and so the section

map in the energy level is (Qzo, P20) = (Q>, P») where
Q2= Q0+ 2mu’Pao[—1+3(Q% + P5) + O (k) 6.7)
Py =Pyo—2mu> Qa[—1+3(Q% + P3) I+ O (k). .

In order to give a second proof of the existence of the direct orbits established in
Section 4, we apply the implicit function theorem to the equations

Qmu?) Q2= Q) = Pao[1+3(Q% + P30)]+ O(n?) =0,
(277'#«3)_1(1)2‘1’20) =—Qy[1 +%(Q%o +P§0)]+ O(Mz) =0.

When u =0 the equations in (6.8) have a solution Q¢ = P,o = 0 and the Jacobian of
these equations with respect to Q.0, Py is clearly non-zero when u = Q20 = P2 =0.
Thus, there exists a function Qx(w), P»(u) for small u which satisfy these equations
and so are fixed points of the section map. Thus there exists nearly circular periodic
solutions of the restricted problem.

If we shift this fixed point to the origin by changing variables by

Q20> Q20— éz(,u,) Qz—> Q:— Q~2(M) >
Pao—> Pyo—Py(u), Py~ Py~ Pr(u),

(6.8)

the form of the section map (6.7) does not change except that now the origin is a fixed
point for all small u. Since the origin is always a fixed point we can introduce
polar coordinates Io=3(Q% +P3), I=3Q3+P3),00=tan " (Ps/Q20), O =
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tan~' (P»/Q>) and in these coordinates the section map (6.7) takes (Io, o) to (I, 6)
where

I=IO=O(IL5),
s s s (6.9)
O=0—2mu (—1+1)+0W>).

Remark. Unless the origin is a fixed point of (6.7) this change of coordinates may
introduce terms like 1>/ in the O(r ) terms of (6.9). By first shifting the fixed point
to the origin insures the O(w”>) are uniform for all 6, and I, small.

Now that the section map has been placed in the form (6.9) we see that the
celebrated ‘twist condition’ of Birkhoff (1927), Arnold (1961) and Moser (1962)
holds for this map. Thus, by Birkhoff’s theorem there exists an infinite number of
periodic points of (6.9) which cluster on I = 0 and these give rise to very long periodic
solutions of the restricted problem which cluster on the nearly circular orbits. Also
the theorems of Arnold and Moser imply that (6.9) admits an infinite number of
invariant curves which encircle 7 = 0 and cluster on I = 0. Thus, the nearly circular
orbits are stable.
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