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Abstract. This paper gives a constructive method for finding canonical forms for symplectic and
Hamiltonian matrices. No restrictions are made on the eigen values or their multiplicity. Real
canonical forms are treated in detail.

1. Introduction

This paper exhibits a constructive method for deriving canonical froms for Hamilto-
nian and symplectic matrices under conjugation by symplectic matrices. Special care
has been taken to treat the case of real canonical forms in detail.

The basic result for a real Hamiltonian or symplectic matrix A4 is that there exists a
real symplectic matrix 7 such that T~ ' AT has the form

A O Az O
4j1 Aj2

o . 0
4 0 4 Q

Aj3 Aja

where the real submatrix
<Ai1 Ai2>
Az A
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214 ALAN J.LAUB AND KENNETH MEYER

is a canonical block analogs to the the usual Jordan blocks. In this block, the matri-
ces A;;, [=1, 2, 3, 4 are all real square matrices and the particular form of the blocks
depends on the eigenvalues of 4. The canonical blocks for Hamiltonian matrices are
given explicitly in Section 3 (see (1), (2), (3), (4), (6), (7), (9)) while those for symplectic
matrices are given in Section 4 (see (10), (11), (12), (13). (14), (15), (16)).

Some fundamental work on this topic was presented by John Williamson in three
classic papers (Williamson, 1936, 1937, 1939). He gave necessary and sufficient condi-
tions for two Hamiltonian or two symplectic matrices to be conjugate under conjuga-
tion by symplectic matrices in terms of elementary divisors and other invariants.
Unfortunately, a constructive procedure for computing the canonical forms was not
provided. Furthermore, explicit forms were demonstrated only for very low-order
cases, some cases for which the extension to higher orders is not obvious. Williamson’s
work is co-ordinated and extended by Wall (1963). In more recent papers, either
explicit canonical forms are not given (or if they are, they are for only specific low
order cases), or real transformations are not considered, or the ‘difficult’ cases (eigen-
values 0 or +iv in the Hamiltonian case, eigenvalues on the unit circle in the symplec-
tic case) are not satisfactorily discussed or are avoided (Moser, 1958 ; Robinson, 1971;
Roels and Louterman, 1970; Siegel and Moser, 1971). However, explicit canonical
forms were simply not the focus of most of these papers. Burgoyne and Cushman
(1971) have recently presented a constructive method for the Hamiltonian case of pure
imaginary eigenvalues. But the method presented here is not only constructive but also
it handles all of the ‘difficult’ cases. Moreover, both the Hamiltonian and symplectic
cases are, to some extent, handled simultaneously. The method is essentially a special
case of a far more general algebraic result of Springer and Steinberg (1970). (See also
Springer, 1951.)

Section 2 contains some preliminary lemmas and definitions which will be needed
for the construction of the canonical forms. Many of these lemmas are either elemen-
tary or well known and so many proofs are omitted. The survey (Robinson, 1971) has
many of these results. The main result of this section is Lemma 5 which reduces the
problem to finding canonical forms for the linear transformation restricted to genera-
lized eigenspaces.

Section 3 deals with the canonical forms for Hamiltonian matrices on these genera-
lized eigenspaces. Certain cases are, in fact, trivial. The non-trivial cases where the
matrix has zero or pure imaginary eigenvalues are treated in detail by using an exten-
sion of the symplectic form. This extension of the symplectic form, 2, was introduced
by Springer (1951) and Springer and Steinberg (1970) and greatly simplifies the discus-
sion of these difficult cases.

Section 4 deals with the canonical forms for symplectic matrices on the generalized
eigenspaces.

2. Preliminary Lemmas

A symplectic space is a pair {V, w)» where V is a 2n-dimensional vector space over a
field F and w is a nondegenerate alternating bilinear 2-form on ¥. Since w is nondege-
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CANONICAL FORMS FOR SYMPLECTIC AND HAMILTONIAN MATRICES 215

nerate the mapping w*:V—->V*:v—>w(v, -) is an isomorphism. The standard
example is ¥'=F?" and w(x, y)=x"Jy where J is the 2n x 2n shew symmetric matrix

0o I,
7= <_In 0)

and 1, is the n x n identity matrix. A symplectic basis for V is a basis v, v,, -, v,, such
that (v, v;)=J;; where J=(J;;). A symplectic space always admits a sym-
plectic basis and so all symplectic spaces are isomorphic to the standard example.

A symplectic subspace U of a symplectic space is a subspace such that o | UxUis
nondegenerate. If U is a symplectic subspace of V then there exists a unique symplectic
subspace W such that V=U®W and o (U, W)=0; in fact, W={veV:w(u, v)=0
for all ue U}. Conversely, if o (U, W)=0and V'=U@® W then both U and W are sym-
plectic subspaces. Such a decomposition will be called a symplectic decomposition.

U is a Lagrange subspace of V if it is a maximal subspace of ¥ such that o (u;, #,)=0
for all u,, u,eU. A Lagrange subspace always has dimension n and there is a second
Lagrange subspace Y such that V'=U@® Y but this decomposition is not unique. Such
a decomposition will be called a Lagrange splitting of V.

LEMMA 1. Let V=U®Y be a Lagrange splitting of V. Then if u,,..., u, is any basis
for U, there exists a unique basis y,,..., y, for Y such that u,---, u,, y4,..., ¥, is sym-
plectic basis for V.

Proof. Let=w | Ux Ysothat®:Ux Y- F.

Define ¢;: Y — F (i.e., ¢,€ Y *=dual space of Y) as follows:

qoi(‘):@(ul’.)’ i=1)'"9n-

We show that ¢, ..., ¢, are a basis for Y *.

Since dim Y*=nr it suffices to show that ¢,,..., ¢, are linearly independent
(over F).

Suppose

Z aiq)i=0’ OCiGF.
i=1

By definition of the ¢,

n

i=1
Now, since U is a Lagrange subspace we have

n

0= Z d)(aiuia y)= z a)(ociui,u +y), Yue U, VyGY,
i=1

i=

whence

0= o(xu;, v)=w<z o, v), VoeV
i=1

i=1

since V=U®Y.
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216 ALAN J.LAUB AND KENNETH MEYER
Thus ) 7_, ou;=0 by the nondegeneracy of w. Hence oy =+ =a,,=0 since uy, ..., u,
are a basis for U and so ¢, ..., ¢, are linearly independent and thus a basis for Y*.

Now let y,, ..., y,€ Y be the unique dual basis of ¢, ..., ¢@,. (Actually, the dual basis of
®4,..., @, is a basis for Y** but we make the usual identification between elements of
Y** and Y since for dim Y< oo, Y= Y ** by the ismorphism 7: Y — Y ** defined by
1(y)=T,, Vye Y where T,e Y** Ty:Y* — Fis defined by T, (¢) =@ (¥), Voe Y *).
Then ¢;(y;)=0;;0r & (u;, y;)=0,;=w(u;, y;)fori, j=1,..., n.
Thus uy, ..., u,, y4, ..., ¥, 1s a symplectic basis for V.

DEFINITION 1. Let V' be a 2n-dimensional symplectic space and let 4: V' — V be a
real linear transformation (matrix). Define A4, the adjoint of A, by the relation
o (Ax, y)=w(x, Ay). Since this is equivalent to the statement that xT4TJy=xTJ 4y,
an equivalent definition is 4= —JATJ.

Now, the usual definition that 4 be Hamiltonian is that

w(Ax,y) + o(x, Ay) =0, Vx, yeV.
This is equivalent to

0= w(x, /T~y) + w(x, Ay)
=w(x,(4+4)y)

whence 4= — A by the nondegeneracy of w.
The usual definition that 4 be symplectic is that

w(A4Ax, Ay) — o(x,y)=0,  Vx,yeV.

Since A4 is symplectic, it is nonsingular so let Ay=v, or y=A4"1y.
Then
0=0w(4dx,v)— o(x, A~ ')
=w(x,d—A4")0)

whence 4= A" by the nondegeneracy of w.

DEFINITION 2.
(4) = — A if A is Hamiltonian
TV ZN A4 if A is symplectic.

DEFINITION 3. A is said to be o-symplectic if A=0(4), i.e., if 4 is Hamiltonian or
symplectic.

Given a symplectic space {V, ), {4d:w(4x, Ay)=w(x,y), Vx,yeV} is a Lie
group often denoted by Sp(V), sp(V), the Lie algebra associated with Sp(¥'), can be
shown to be

{4:0(4x, y)=—w(x, Ay), Vx, yeV}.
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CANONICAL FORMS FOR SYMPLECTIC AND HAMILTONIAN MATRICES 217

LEMMA 2. Let A be a-symplectic. If A is an eigenvalue of A then o (1) is also an eigen-
value of A.
Proof. See Robinson (1971).

COROLLARY 2.1. If A is an eigenvalue of the o-symplectic matrix A (V=R>"), then
a (1), A, and o (1) are also eigenvalues of A with the same multiplicity as A. In particular,
1 and —1 have even multiplicity if they are eigenvalues of AeSp(R?*") and 0 has even
multiplicity if it is an eigenvalue of Aesp (R?").

Suppose now, unless otherwise stated, that A:V —V is a-symplectic. Let n,(A)=
=ker (A — A, 1 (A)= Uy n: (A) (finite union)

fi(2) = ker (4 — ALY, 7i(4) = U e (4).

LEMMA 3. If us =0 (1), then w(n, (1), n; (1)) =0.
Proof. Let xen,(A),i.e., Ax=21x

and yen, (u),i.e., Ay=py.

As in the proof of Lemma 2, we also have ¢ (4) x=0 (1) x=Ax.
Now,
po(x, y) = o(x, py) = o(x, Ay) = o (o(4) x, y)
=w(ix,y) = lo(x, y).

Thus (1~ 1) @ (x, y)=0so u# A implies o (x, y)=0.
COROLLARY 3.1. Let A have distinct eigenvalues 2i,..., 2, 0(A;),...,0(4,)eF

(dim V'=2n implies multiplicity of each eigenvalue is 1) with eigenvectors q,..., qy,
PVis---5 Yy respectively. There exists a symplectic basis for which A takes the form

0 (A1)

LEMMA 4. n, (1) =1 (7).
Proof. The proof is by induction on k.
Let xen, (p), i.e., Ax=pux.
Then 6 (4) x=0 (1) x or Ax = jix whence x&fj, ().
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218 ALAN J.LAUB AND KENNETH MEYER

Thus 1, ()=, (1). By symmetry (i.e., using the fact that o>=identity) we get
i (1) =ny () so ny () =17 (7).

Induction hypothesis: 5, (1) =7, (7).

Let xen . (p), i.e., (4—pul)**! x=0. Rewriting this as (4 —ul)*(4—pl)x=0 we
have (4 — pl )xen, (1) and so (4 — pl) xeff, (i) by induction hypothesis. Thus

0=(d— a4 —pl)x=(Ad—pul) (A @) x

since for ¢ analytic, o(4) A=Ao(A). (In particular, A4 '=A47'4 and A(—A4)=
==(_“A)A);
Hence (4 — I )* xen, (u)=7, (&) so

O0=A—-pl(A—-jl)x=(4- gl x

whence x€&f, 41 () and we have ;. ¢ (1) S 11 () -
A symmetrical argument shows the reverse inclusion so 7, (1) =7+, (%) and the

lemma is proved.

LEMMA 5. If u#A=0 (1), then o (n (), n(1))=0.

Proof. Since n(1)=J, (1) and 5 ()= nx (1), where the unions are finite and
1;S"j+1, the proof is by induction on k. For k=1, #(A)=n,(4) and n(x)=n, (1) so
the result follows by Lemma 3.

Induction hypothesis: o (17, (4), 7, (1)) =0.

We show this implies o (1,4 (1), 7, ())=0 and by reversing the roles of the argu-
ments we show @ (1,+1 (A), 1+, (1)) =0.

Suppose uen, 4 (1), i.e., (A— AT 'u=0;ven, (n), ie., (A—pl)* v=0.

Then

0=ow(u, (4 —ul)v)
=o(u, (A— A +[1—u]Dv)

<i<> (- o, (4 - ) v)
<Z€> (A=w" o((A-21) u,v).

I

k
>
i=0
k
>
=0
Now, by Lemma 4, ue#, . ; (A) implies u€jy , ; (1) and thus

O=A—- A" u=(A- 2" (A- 1) u

whence (4 — AI) ueffy,;_; (%)

Then by the induction hypothesis w ((4 — A7) u, v)=0, i=1,..., k since (A— A1) ue
eﬁk+1—i()~'):nk+1—i(i)’ i=1,..., kand vem (u).

Hence from the equations above, we have 0= (1— pu)* (4, v) which implies, since
1 # 2, that o (u, v)=0 and hence that o (1., (1), 7, (1)) =O0.

Similarly, we show @ (41 (1), 1 +1 (1)) =0.

Therefore, by the induction process, @ (17 (1), 1 (1)) =0.
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CANONICAL FORMS FOR SYMPLECTIC AND HAMILTONIAN MATRICES 219

Suppose {V, @) is a 2n-dimensional symplectic space and that 4: V' — V is o-sym-
plectic. Let 4 have the distinct eigenvalues Ay, ..., A, 6(4,),.... 6(4), @1, ¢, Where
6(0;)=0;. If A is Hamiltonian, r=1 and ¢, =0 while if 4 is symplectic, r=1 or r=2
andgo,=+11,0,=F1.

Now, by the Jordan Canonical Form Theorem,

V= <C? n (x,.)> ® <6;> n(o (%-))) @ <6? n (@i)>,

where the direct sums indexed by i are, of course, finite. With this decomposition of V
we have the following lemmas:

COROLLARY 5.1. #(e;) is a symplectic subspace of V.

COROLLARY 5.2. If A is symplectic then det A =1.

Proof. By Corollary 5.1, the eigenvalues +1 or — I of 4 must have even multiplicity,
while for eigenvalues 15 +1, 1/ is also an eigenvalue so det 4 =product of its eigen-
values=1.

COROLLARY 53. W=(®;n(4,))®(®;n(c(4;))) is a symplectic subspace of V.
Note. By Lemma 5, (®;7(4;)) and (®;n(c(4,))) are a Lagrange splitting of W.

3. Canonical Forms for Hamiltonian Matrices

Suppose {V, w) is a 2n-dimensional symplectic space, F=R, and 4:V — V is Hamil-
tonian. Consider the following decomposition of V:

v=(ehen-uw)l)e
® <€j) [n(u;+iv)®n(u;—iv)]®[n(—u—ivy)@n(—p; + ivj)]]>
® (c? [n(iv) ®n(~ ivj)]) ® (1(0)),

where p;, v,>0 for all j (finite number). Dropping the subscripts, we shall derive
canonical forms for each of these four classes of eigenvalues. Note that the third sub-
space cannot be treated simply as a special case of the second, for while # (iv), # (—iv)
are a Lagrange splitting of the symplectic space 5 (iv)@®n (—iv), the space is not real.
However, n(u+iv)®n(u—iv), n(—u—ivédn(—u+iv) are a Lagrange splitting of
[n(@+iv)®n(p—iv)]®[n(—pu_iv)®n(—u+;v)] and both Lagrange subspaces are
simply complexifications of real spaces.

Case 1. Consider 4 | n(u)®n(—p)
A is invariant on both 5 (u) and (- p). Choose a basis ¢y, ..., g, of n(x) such that
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220 ALAN J.LAUB AND KENNETH MEYER

w.r.t. this basis the matrix of 4 | 7 (i) is in Jordan canonical form

K,
5+ O
A1 = ) .
O "8
where 6,=0or 1.

Then by Lemma 5, w(g;, 4;)=0,i,j=1,..., k. By Lemma 1, we can complete

q1s---» g to a symplectic basis gy, ..., gy, P15 .., P Where p,en (—p).
With respect to this basis, the matrix of 4 is

A, O
0 A4,/
Since we must have —JA4TJ= — A4, a short computation shows that we must have

A, = — A7]. Thus the canonical form is:

U

52". O

O

_ﬂ.—éz. O

O .6k N

O

O..';.Sk

.._.'u

Case 2. Consider 4 | [ (u+iv)@n(u—iv)]®[n(—p—iv)®n(—p+iv)]

By the same reasoning as in Case 1, we may choose 4 | [ (u+iv)@®n(z—iv)] to be in
real Jordan canonical form. The desired canonical form is then seen to be:

O

-8B -4 0O

B

4, O

’ )

O ..-.'.—‘Ak

— B
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CANONICAL FORMS FOR SYMPLECTIC AND HAMILTONIAN MATRICES 221

. v (1 0 0 0
B—(_v ﬂ) and Ai—<0 1) or (0 0).

We shall now consider 4 | (0) before 4 | (iv)@®#n (—iv) in order to better illustrate
the constructive procedure of Springer and Steinberg.

where

Case 3. Consider 4 | 7(0)

For simplicity, let 4 denote A4 | 7(0) and let ¥'=#(0). Suppose {V, ) is a symplectic
space of dimension 27 and that 4: V' — V'is a linear Hamiltonian transformation which
is nilpotent of index k+1<2n, i.e., A*#0, 4**1=0 (4%2"=0 by Cayley-Hamilton
Theorem). Let F=R. By the Jordan Canonical Form Theorem, V has a basis of the
form:
vy, Avy, ..., A%y,
Uy, AVy, ..., A%0,,
v,, Av,, ..., A*v,,

r

where A%*1y,=0,i=1,..., r.

This, however, is not a symplectic basis.

Let A be the commutative algebra generated by 4, i.e., e iff b=yl +o A+ +
+ oy A*, a,eF. (D=0 iff xg=0a;=--=0,=0). Then A~ F[x]/(x**!). In general, if the
minimal polynomial of A4 is p**!(x) with p(x) irreducible over F, we consider A~
~F[x]/(p** ().

Let B denote V considered as a module over 2. We then notice the pleasant fact
that v, v,,..., v, are a basis for B. This result, along with the *-sesquilinear form
Q:Vx V- U to be introduced below, will be exploited to constructively derive canon-
ical forms for Hamiltonian matrices all of whose eigenvalues are zero. Let A: A - F
be linear and nonzero on p*(x) F[x] modp**!(x) F[x]. For example, if p(x)=x,
O=agl+a, A+ +oA*eW, a,eF, then A(P)=0,.

We now define Q: V' x V' — A so as to satisfy the equation

o (Px, y)=A4(PQ(x, ¥)), Vx, yeV, Voe.
An easy computation gives:

Qx,y)=w(@* %, ) I+ oA 'x,y) 4 + -+ o(x, y) A*.

DEFINITION 4. Let ®=al+o,4+... +0, 4. Define @*eA by
Q* =gl — oy A +---+ (— 1) A",

DEFINITION 5. Qs said to be a *-sesquilinear form if for all o, a,€F; &, ®,eU;
and x;, x,, yy, y,€V we have

Q (o, Py x; + 0, Pyx5, yy) = 0, D Q (x5, ¥y ) + 2, P22(x3, ¥y)
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222 ALAN J.LAUB AND KENNETH MEYER

and
Q(xy, 0, By + 0,D,,) = 0, DTQ (x, ¥y) + 0, P52(x4, ;).

LEMMA 6. Q is nondegenerate *-sesquilinear form. Furthermore, Q(x,y)=
=(=D"" ey, x)*.

LEMMA 7. &=agl+a, A+ +0,A*eWis nonsingular iff oo #0.

LEMMA 8. Suppose ®=ayl+o; A+ - +o,A*eWN is nonsingular, i. e., 0y#0. Then
there exists a square root ¥ of @ such that ¥ =sgn (o) P.

Furthermore, ¥ is also nonsingular.

Proof. Suppose o, >0. Let ¥ =,I+ ;4 +--- + A" and compare coefficients in the
equation ¥? = 9.

We find

J
aj=h§0ﬁhﬁj_h, i=0,1,..,k.

Clearly, if o ;e R and a,>0, we can solve recursively for f,eR, j=0, 1,..., k. In par-
ticular, f,= i\/ oy 70 so ¥ is also nonsingular.
If 5 <0, find ¥ such that ¥?= — @ as above.

THEOREM 9. Let V, w, A be as in the introduction to case 3. Then V has a symplectic
decomposition V=U,®---QU,®Y,®---®Y; into A-invariant subspaces. Further, U,
has a basis e, Ae,, ..., A e; (4 | U, isnilpotent of index k;+1<k+1) with

+1 if s=k;
0 otherwise

o (A, &) = {

and Y; has a basis f;, Af;,...., A™ [}, g;, Agj,..., A™g;(A | Y is nilpotent of index
m;+1<k+1)with
1 if s=m;

w(Asfj’ gj) = {0 !

otherwise

and
Co(Asfj,fj) = w(Asgj: gj) =0, Vs.

LEMMA 10. Let W be a subspace of V. Let Ay, =A | W. Suppose Ay : W — W is a
linear Hamiltonian transformation which is nilpotent of index ky +1(<k+1) and let
W,y be the commutative algebra generated by Ay,. Let B denote W considered as a vec-
tor space over Wy, Define Qu: Wx WUy, by Qp=Q | (Wx W). Let &,,..., £, be a
basis for W. Suppose, by relabeling if necessary, that Qu (&,, &) is nonsingular. Then
there exists a basis ey, &5, ..., &, forW such that Qu (ey, ey )= £ 1, Qy (ey, £;)=0 and
MW= L{ey}DL{E,..., &} where &{ } means linear span in the module sense and
Q{ew} has a basis, as a vector space over F=R, ey, Ayey, ..., A ey.
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LEMMA 11. W. W, Ay, Qy as in Lemma 10 (except now Ay is nilpotent of index
my +1(<k+1)). Suppose again that £, ..., £, is a basis for W but that now Qu (&, &)
is singular for all i=1, ..., y and, by relabeling if necessary, that Qy (£, &,) is nonsingu-
lar. Then there exists a basis fy, gw, &5, ..., &, for W such that Oy ( fw, gw)=1, Qw(fw>
Sw)=Qw(gw gw)=0, Qy (fw> fli)=QW(gW, ¢)=0and W= L{ fy, Iwi®L{E, -, 5;}
where { fw, gw} has a basis, as a vector space over F=R, fy, Awfws---s» AW fw> 9w
AwGws--s AW Gw-

Proof of Theorem 9. Let £, ..., &, be a basis for B. We first show that Q (&, £;) must
be nonsingular for some i and j (possibly equal). Suppose Q(&;, £;) were singular for
all i and j. By Lemma 7, the coefficient of 7 must be 0, i.e., w(4*¢;, &;)=0. Further-
more, o (A*"H*1 ¢, £,)=0 for all nonnegative integers /;, /, by the nilpotency of A.
Now fix /;. Then w (A4*(4" &), A”¢;)=0V1,>0. Since {4"2¢;: I, >0} forms a basis for
V over F, the nondegeneracy of o implies A*(4"¢;)=0. But this holds for all /; >0 and
{A4"¢,:1, >0} forms a basis for ¥ over F so we conclude that 4*=0 which contradicts
the hypothesis of k£ +1 as the index of nilpotency of A4.

Having established the existence of a nonsingular Q(&;, £;) suppose, by relabeling if
necessary, that Q(&,, &,) is nonsingular. (If Q (¢,, ;) is singular for all i, proceed to the
use of Lemma 11 below.) Apply Lemma 10 with W=V to get V=U,® W,,, with e,
Aey, ..., A*e, being a basis for U, (the numerical subscripts on the basis corresponding
to the first application of Lemma 10 and 4 being written for 4 | U,). If W, # {0}, con-
sider next Wy, A | Wy, Q | (Wy, x Wy,), etc. instead of ¥, 4, @, etc. The remarks at
the beginning of this proof may again be applied and it may again be possible to apply
Lemma 10 with W= W, to get W,,=U,®W,, and hence V=U,®U,® W,, with
ey, Ae,, ..., A, being a basis for U,(4=4 | U,). Then consider W,,, 4 | Wy, etc.
and so on until finally V=U,®...®U,®W,,, where, if &,,..., &, is a basis for W,,,
Q(&;, &;)is singular fori=1, ..., § (where Q means Q | (W, x W,,)).

If W,,# {0}, the remarks at the beginning of this proof still hold so that we may
apply Lemma 11 to W, to get V=U,®---@U, B Y, ®W,, with f;, Af,,..., A™f1, 93,
Ag;,..., A™g, being a basis for Y, (again numerical subscripts on the basis corre-
spond to the first application of Lemma 11 and A4 stands for 4 | Y,). Then consider
W,, to generate a Y, and so on. Since dim V' < oo, the process must terminate with ¥V
finally being decomposed into V=U;®---@U,® Y@+ @ Y. That the decomposition
is a symplectic decomposition follows immediately from Lemmas 10 and 11.

Proof of Lemma 10. For notational convenience in the proof we shall drop the ‘W’
subscripts. Note first that & must be odd for from Lemma 6 we have Q(¢,, &)=
=(=1)**1 Q(&,, &;)*. The coefficient, «,, of I for Q(&;, £,) must be nonzero by
Lemma 7 and is invariant under the *-operation so «y=(—1)**! «, whence & is odd.
Thus ®=Q (&, £))=Q(&,, &)* so that & must clearly be of the form ol +a,4>+
tog A+ oy A5

Since @ =&* is nonsingular, by Lemma 8 there exists a square root ¥ of ¢ such
that ¥?=sgn(x,) ¢. Moreover, by examining the proof of Lemma 8, we see that
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224 ALAN J.LAUB AND KENNETH MEYER

Y=Y* also. Suppose sgn(xy)= +1. (A precisely analogous proof works when
sgn (ao)= —1). Let e be defined by the equation &; = We (or e=¥ " '¢,). Then

PP = P2 =P =Q(E, &) = Q(Pe, Pe) = PP*Q(e, €).

Thus Q(e, e)=1 (or 2 (e, ¢)= — I when o, <0).
Now, fori=2,..., y,let i =¢&,— Q(e, &;)* e. Then

‘Q(e’ é:) = Q(ea 61) - ‘Q(e7 Q(e: éi)*e)
=Q(e, &) — (e, & Qe €))
=0.

Since the transformation from the basis £,,--+, £, to e, &,..., &, is invertible, the latter
set of vectors is also a basis for B and the lemma is proved.

Proof of Lemma 11. Again, as in the proof of Lemma 10, we shall drop the ‘W’ sub-
scripts for notational convenience. Also, we may as well assume Q(¢,, &,)=1; if not,
simply make a nonsingular change of variables. Now, there are two cases to consider.

Case A: m is even. By Lemma 6, Q(&;, &)=(—1)"" Q(&, &)*=—Q(&;, &)*,
Vi.

Thus Q(¢&;, &;) must clearly be of the form o4 +azA4® +osd®+---+o,,_ A1
which we shall call type I. Also by Lemma 6, Q(&,, £,)=—1. Let f=¢,+%¢,. We
determine ¥ so that Q( f, f)=0and Pis of type I,i.e., ¥ =—¥V*.

0=Q(f£if)=Q(, &)+ Q((&, P&) + Q(PE,, &) + Q(PE,, PE,)
=QULE)+YP*—-V + PP*Q(&,, &).

If ¥=—¥* we wish to solve

¥ =3[Q(En &) + P20(6 £)].

Notice that the product of three type I terms is again of type I so that the right hand
side of the equation is of type I. Clearly, we may solve recursively for the coefficients of
¥ starting with the coefficient for A4.

Case B: mis odd. By Lemma 6, Q(¢&;, &,)=(—1)""1 Q(&, &)*=Q (&, &;)*, Vi. Thus
Q(&,, &) must clearly be of the form a, 4% +o,A* +--- +0a,,_ A™ ! (recall: Q(&;, &)
singular implies «,=0) which we shall call type IT. Also by Lemma 6, Q(&,, &,)=1.
Let f=¢; + W¢&,. We determine ¥ so that Q(f, f)=0and ¥ is of typeIl, i.e., ¥ =¥*.

0=0Q(ff)=Q(, &) + V5 + ¥ + P¥*Q(E, &2)-
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If ¥ =¥*, we wish to solve.

¥ =—1[Q(E,, &) + P2Q(&,, &,)].

Notice that the right hand side of the equation is of type II and we can clearly solve
recursively for the coefficients of ¥ starting with the coefficient for 42.

In either case, f, &5, ..., £, is a basis and, without loss of generality, we may as well
assume that Q(f, &,)=1I (and Q(&,, f )= +1 according as m is odd or even). Let
h=¢&, —1Q(&,, &) f. Then one can check that Q(k, #)=0 whether m is even or odd.
Let g be defined by the equation h=Q( f, h)*g. Then Q(g,g)=0 and Q(f, h)=
=Q(f, h) Q(f, g)so Q(f, g)=1I Finally, noting that

I if mis odd
Q(g,f)—{_l if miseven,

let &=¢,FQ(g, &)*—Q(f, &)* g (the minus sign being chosen when m is odd, the
plus when even). Then one may check that Q( f; &)=€(g, £;)=0,i=2,..., 7, and the
lemma is proved.

Canonical Blocks for A ] U,

Note. In this case and in canonical blocks for 4 | Y ; we continue to exclude the proper
subspace subscripts on certain variables. Assume Q (e, )= +I and recall k¥ must be
odd in this case. Let /=(k +1)/2. Since Q(e, e)=w (A ¢, &) [+w(A* e, &) A+ +
+ (e, €) A*=1, we have

) 1 if s=k
w (A%, e) =04 = {0 otherwise .

Letg,=A'te,p,=(—1)**1"I4**1 Je;j=1,. ., I Then

w(g,q;)=w(A"te, A7) i j=1,...,1
=(—1)Y"r (4" % e)
=0 since i+j—2<k-1

a)(p,-,pj)=a)((— 1)k+1—iAk+1—ie,(_ 1)k+1—jAk+1—je); ij=1,.,1
=0 since 2(k+1)—i—j=>k+1

and

(g p;) =0 (A Ve, (= 1T 4 ey =1,
= (A7 e, )
BER ey
_{ 0 if i#j.

Thus q,..., q;, py,---, p; form a symplectic basis for U;. With respect to this basis,
A l U, has the following canonical form: ((k 4+ 1) x (k +1) matrix)
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3)

Note that 4¢q,=A'e=(—1)'p,.

In case Q(e, e)=—1, let g;,=(—1)’"'4’7'e, p;=A4*"'"Je and check results ana-
ogous to above to find that the canonical form is precisely the negative of the one
shown above.

Canonical Blocks for A | Y;

Since Q(f, f)=2(g, g)=0and Q( f, g)=1, by the definition of Q we have w (4%, f )=
=w (A%, g)=0,Vs; 0 (A%, §)=06y

Letg,=A""'f, p;=(—D)"*1 774" 17 g; j=1,...,m+1.

By the properties above we find

w(q,9;)=0, Lhj=1,...,m+1
w(p,p;)=0, Lj=1,....,m+1
and
w(q;, p;) = (47, (- )" 774" g)
= (4™, g)
=0;;.
Thus qy,..., @m+1> P1s---> Pm+1 are a symplectic basis for Y. (They are clearly inde-
pendent and span Y since Y¥; =8{f, g} implies a typical element is of the form
(oo ++-+ + o, A™) f+(Bol +... + BnA™) g and this is clearly a linear combination of
g;’s and p;’s.) With respect to this basis, 4 | Y; has the following canonical form:
(2(m+1)x2(m+1) matrix)

(4)
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Case 4. Consider 4 | n(iv)®n(—iv)

Much of this case is analogous to case 3 so only the essential differences will be noted
here. Let V=n(iv)®n(—iv), F=C. Suppose <V, w) is a symplectic space of dimen-
sion 2n and that 4: ¥ — V'is a linear Hamiltonian transformation. Let B= (A4 | n(@iv))—
—ivl, B= (4 | n(—iv))+ivIand suppose B is nilpotent of index k + 1< 2n. (and hence
also B). Let U be the commutative algebra generated by B. A~ F[x]/((x—iv)*™1).

&eW iff d=agl+a B+ +uB*, a,e F=C. This time we define Q:n(iv)x

xn(—iv)—WAas follows:

Qx,7)=w(B**,y)I+w(B*x,7) B+ +w(x,5) B
for all xen (iv), yen (—iv).

DEFINITION 6. Let &=o0,l+o0,B+---+a,B*eA. Define &*cW by I*=g,/—
— & B+ +(—1)aB"

LEMMA 12. Qis anondegenerate *-sesquilinear form.
LEMMA 13. &=a,l+a,B+--- +o,B*cWis nonsingular iff oy #0.

THEOREM 14. Let V, w, A, and B be as in the introduction to case 4. Then V has a
symplectic decomposition

V= (U1 ® U1)@---@ (Ua@ Ua)@ (Y1 @ 71)@"'@ (YB &) Yﬂ),

where the U@ U, and Y ,® Y; are A-invariant subspaces (U; and Y ; are subspaces of
n(iv)). Furthermore, U, has a basis e;, Be;, ..., B*e; where B | U, is nilpotent of index
k;+1<k+1,(U; has a basis &, Bé,, ..., B"¢;), and

+1 if s=k;, k; odd
w(Be,e)=1+i if s=k k; even,
0 otherwise

i

Y; has a basis f;, Bf;,..., B"f;, g, Bgj,..., B"g; where BI Y; is nilpotent of index
m;+1<k+1 (Y; has a basis f;,..., B™g;) and o (B} §;)=0m, @(BY; f;)=
=w(Bg;, g;)=0, for all s.

Remark 1. In terms of certain reality conditions, to be given in detail later, U,® U,
will be shown to have a real symplectic basis in terms of the real and imaginary parts
of a basis for U,. In terms of this real basis, real 2 (k;+1) x 2 (k; +1) canonical blocks
for 4 | U;® U, will be derived. Similarly, real 4(m;+1) x4 (m;+1) canonical blocks
for 4 | Y;® Y ; will be derived. Thus we shall derive real canonical forms for 4 | n(iv)®
®n (—iv). Note that

« B
Y. 2(ki+ 1)+ ) 4(m;+1)=2n
i=1 =1

J

with max; k; and/or max ;m; equal to k.
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228 ALAN J.LAUB AND KENNETH MEYER

Remark 2. In fact ey, ..., €, f1,--s f5> G1s--o> Gps €155 €05 f1seeus [3o G1s--o» G5 fOrm
a basis for B (recall B denotes V considered as a module over A) and U, U,;=
=8{e, &}, Y;@Y,;=2{ ;9 [ 9,}

Remark 3. The proof of Theorem 14 will follow essentially the same pattern as that
of Theorem 9 and follows from Lemmas 15 and 16. The proofs of these lemmas follow
the pattern of Lemmas 10 and 11.

LEMMA 15. Let W@®W be a subspace of V (W is a subspace of n(iv)). Let Ay =
=A | Wo®W. Suppose Ay: WOW — WO W is a linear Hamiltonian transformation and
that By, =(Ay | W)—ivl is nilpotent of index ky, +1(<k +1). Let Wy, be the commuta-
tive algebra generated by By, and let W3 denote WD W considered as a module over Wy .
Define Qu:Wx W— Uy, by Qup=0Q | (WxW). Let &y,..., &, &, E., be a basis for
M. Suppose, by relabeling if necessary, that Qu (,, &,) is nonsingular. Then there
exists a basis ey, &5, ..., &, &y, é,..., f’zyfor W such that

) +1 if kyisodd
Qu (ew, éw) = {i il if ky iseven’

and W= L{ey, é4} DL{E,, ..., 3;‘;,32, s E;} where L{ey, éy} has a basis (as a vector
space over F=C)

‘QW (eW’ E:) = 0’

ko -~ D = Dkw =
ew> Bwew, ..., By ew, éw, Byéw, ..., By éy

(Bw = (4w | W)+ivI).

LEMMA 16. Let W, I, Ay, By, Qy be as in Lemma 15 (except now By, is nilpotent of
index my +1(<k+1)). Suppose again that &, ..., &,, &, ..., &, is a basis for I such
that Qu (€, &;) is singular for i=1, ..., y and, by relabeling if necessary, that Qu (¢, &,)
is nonsingular. Then there exists a basis fy, 8w, E35---s &, fw Gws Earonns E«, Sfor W such
that Qu (fw, Gw)=1 Qw (fw, fw) =2 (9w gw)=0s Qw (fw E§)=QW(gWa E;)=Oand
W=L{ fw, 9w fw> Gwi ®LLES, .., & ST 'f;} where &{ fw, 9w, fw, Gw} has a

basis (as a vector space over F)

fW: BWfW’ seey B';’Wst Iws BWgW’ tey B;WgWa
Jws s BW fw, Gws s By 0w -
Canonical Blocks for A | U,® U,
Note. In this case and in canonical blocks for 4 | Y;® ¥; we continue to exclude the
proper subspace subscripts on certain variables in the interests of convenience.

Case A: k even. We have demonstrated above the existence of a vector e such that
Q (e, €)=il. (The case of — il is analogous.) By definition of Q we have w (B’e, &)=id.

Let u;=B’"'e, v;=(—1)*"/*1iB*"7*l¢; j=1,..., k+1. Then for i, j=1,..., k+1,
k+1, o(u;, u;)=w(v;, v;)=0 since U; and U, are a Lagrange splitting, while o (u;,
v;)=0, i#jand w(u;, v;)= —iw(B*, )=1, j=1,..., k +1. With respect to this basis
for U;® U;, one may quickly check that the matrix of 4 | U,@ U, is given by the
2(k+1)x2(k+1)complex canonical form:
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(5)

With the reality conditions u;=(—1)*"7*?i5,_;,,, j=1,..., k+1, consider the
following real basis for U;® U;:

1 .
q;= \[2 Reu; = \75 (uj+ (= 1" ivg_j42)

.- 1 .
py= (1Y 2 Imu; = 7 (= 1) theejaz + i)
1
It is clear, almost by inspection, that w(q;, ¢;)=w(p;, p;)=0, i,j=1,...,k+1 and
w(qi’ pj)=09 17,‘_.] Whﬂe

1 . .
CO(qﬂ pj) = by [iw (”j’ Uj) +i(— 1)”1 (— 1)y a)(vk—j+29 uk—j+2)]

=1, j=1,.,k+1.

Thus ¢4, ..., Gs15> P1»---» Px+1 are a symplectic basis and one may check that the real
canonical form for 4 | U;® U, is the (2k +2) x (2k +2) matrix:

Oo —V

o 010 L

(6)
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230 ALAN J.LAUB AND KENNETH MEYER

Case B: k is odd. We have demonstrated above the existence of a vector e such that
Q (e, €)=1. (The case of — I is analogous.) By definition of Q, we have w (B’e, €)=4dy.
Letu;=B'"le,v;=(—1)) B*" /*l¢;j=1,...,k+1.Then o (u;, u;)=w (v;, v;)=0 for
i.j=1,...,k+1since U; and U, are a Lagrange splitting, while w (u;, v;)=0, i#j, and
o(;v;)=(—1) w(B e, B /*1¢)
=(— 1) w (B &)=1.
With respect to this basis for U,® U,, 4 again has the complex canonical form (5).
With the reality conditions u;=(—1)*"7"?5,_;,,, j=1,..., k+1, consider the fol-
lowing real basis forU,® U,:

1
_ _,(uj + Uk—j+2); _]Odd
_(2Reu)] |2
9= \/Elmuj B 1

—= (U +ve—j42);  Jjeven
i

1
_ —:(—u#-2+v~); JOdd
_\/ZReuk—j+2 \/2 o ’

\/E Imu,_;
c—j+2 . H
—= (U—jr2—vj);  Jeven
i

It is clear that w(g;, ¢;)=w (p;, p;)=0, i, j=1,..., k+1 and w(g;, p;)=0, i#j while
j=1,..,k+1.
1 _ . — . AR j odd
@ (45 ;) = {Z—wl(zj(j A zj-;f j even
2 j k—j+2> Uk—j+2 i)s J
=1, j=1,.,k+1.
Thus ¢4,..., Gx+1> P1»---» Px+1 are a symplectic basis and one may check that the real
canonical form for 4 | U;@® U, is the (2k +2) x (2k +2) matrix: '

/ O

.

EESH
i O

v+1
(7)
—1—v
O +1—v
1 .
+1 -
-y O
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Canonical Blocksfor A | Y;®Y;
Since Q(f, f)=2(g, §)=0 and Q( £, §)=1, by the definition of Q we have w (B, /)=
=w (B9, g)=0,Vsand o (B, §) =0y

Let

b B 7'f; j=1,...,m+1
I (= 1y "B "2y, j=m+2,..,.2m+2
and

B*mit2f. j=m+2,..,2m+2.
Now, o (u;, u;)=w(v;, v;)=0, 1, j=1,..., 2m+2 since Y;, ¥, are a Lagrange splitting
while w(u,, v;)=0, i#jand forj=1,...,m+1;
o (ujv;) = (BT, (= 1" BTt g)
=w(B",g)=1
and forj=m+2,..., 2m+2,
CO(HJ-, vj) = 0)((_ l)j—m—l Bj—m—Zg’ BZm—_.i+2f)
— (_ l)j—m w(EZm—j+2f‘, Bj—m~2g)
=(—1)Y""(=1)yY"""2w(B", g)=1,
where, in the last equality, we have used the fact that

I =T=w(B",g)=w(B"fg).

With respect to this basis for ¥;@®Y;, one may quickly check that the matrix of
A| Y,®7;is given by the 4 (m +1) x 4 (m +1) complex canonical form:

o {(—1)’"-”1}?'"-”1@7; Fm ey m 1
-

O

-
0O 1w O
iv.. O

__.]_ .

O . '—I'iv
®)

-iv,—1, O

. ___'1

O i
—iv. 1.. O

O ".'.'..1
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232 ALAN J.LAUB AND KENNETH MEYER
With the reality conditions

U, = 1_72m__j+3; j=1,...,m+1
J —ﬁzm_j+3; j=n‘l+2,..-,2m+2

consider the following real basis for Y;@® Y ;:

1 .
’(uj+v2m—j+3); j=1...,.,m+1

qu{ J2Reu; } J2

- \/5 Imuzy—ji3 B

1
\r/i—i (Uj - uzm—j+3);

1

— (- . v:)); Jj=1,...m+1
i \/5 Re uzm_j+3 \/2 ( Uom j+3 + J)’ J 1, +
pj_{i\/ZImuj }_ 1 )

E(uj+02m_j+3); j=m+2,...,2m+2.

Clearly w(g;, q;)=w(p;, p;)=0, i,j=1,...,2m+2, while w(q;, p;)=0, i#j and
w(g;,p;)=1, j=1,...,2m+2. Thus q,,...,42m+2, p,,..., P+, are a symplectic
basis and one may check that the real canonical form for 4 | Y;® ¥, is the (4m +4) x
X (4m +4) matrix:

0_. O O .—.v

—
.
.

0|0
!
OO0

<
L]
L]
L]
—_

©)
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4. Canonical Forms for Symplectic Matrices

Suppose {V, w) is a 2n-dimensional sympletic space, F=R, and A4:V — V is symplec-
tic. Consider the following decomposition of V:

v=(® et )e
S <@;r) [l (uy + v) @1 (u; — iv)1 @ [n((w; + iv;)™ ) @ n((wy — i"j)_l)]]> ®

® (@ 010+ ) @105 = 4)1) @ (1 (1) @ (1 (~ 1),

where p;#0 (except p;#0 in the first class and p; could be zero in the third class),
v;#0 for all j and where y} +v%=1 in the third class of eigenvalues. Dropping the
subscripts, we shall derive canonical forms for each of these four classes of eigen-
values (+1 and —1 are treated in exactly the same say so we do not distinguish these
classes).

Case 1. Consider 4 | n(u)®n(n™")

A is invariant on both n(x) and #(u~'). Choose a basis ¢y, ..., g, of (u) such that
w.r.t. this basis the matrix of 4 | # () is in Jordan canonical form

where 6,=0or 1.

Then by Lemma 5, w(g;, ¢;)=0, i,j,=1,...,k. By Lemma 1 we can complete
g4, ..., 4 to a symplectic basis q,, ..., gy, py, ..., P Where p;en(u™"). With respect to
this basis, the matrix of 4 is

4, 0
0 4,)
where a short computation shows that 4,=(47"')7 (since —JA"J=A471). Thus the

canonical form is composed of canonical blocks (combined as in Section 1) of the
form:
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R O G )i ¢ 1)

Case 2. Consider 4 | [n(p+iv)®n(u—iv)]®[n((w+iv) " )®n((w—iv)™1)]

By the same reasoning as in case 1, we may choose 4 | [ (1 +iv)®n (u—iv)] to be in
real Jordan canonical form.

A=|", ", where B=< K v) and Ai_—_<1 0)
. . —v u 01

(o)

Then the desired canonical form will be composed of canonical blocks of the form:
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O

11
B~1_B2. .. _(_1)k+1B—k i (1)

where

=5 )

and B~/ means (B~ 1)/

Remark 4. We now depart from the techniques of Section 3 and, in the interests of
brevity, use (3), (4), (6), (7), and (9) to develop canonical forms for 4 | n(p+iv)®
@n(u—iv), p* +v>=1, and for 4 | n(1). (The case of 4 | n(—1) is completely analo-
gous so will not be discussed). We shall first consider:

Case 3. A|n(1). (Let A denote 4 | (1) below)

A is a symplectic matrix all of whose eigenvalues are 1.
Consider the following transformation:

A->A-©I)(A+I)'=H
or the inverse transformation:

H-(I+H)(I-H) '=4

LEMMA 17. Aissymplecticiff H is Hamiltonian.
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Proof. Suppose A is symplectic, i.e., —JATJ=471,
Then

— JHTJ=J‘1(AT + )"yt AT -1nJ
=(JATT+ )T (I ATT - 1)
=A" '+ T4 -1T)
= (A‘I(I+A))“1A_1(I— A)
=(I—-A4)(4+1)!
= —H so H is Hamiltonian.

Conversely, suppose H is Hamiltonian, i.e., JH'J= H. Then

—JATT = (I— J HTJ) "N (I + JHT))
=(I-H{I+H)™!
= A1 so A is symplectic.

Remark 5. 1If all eigenvalues of A4 are 1, then all eigenvalues of H are 0 and conver-
sely. This fact together with Remark 6 will enable us to derive canonical forms for
A|n().

Remark. 6. If the transformation P puts H in canonical form, then P also puts 4 in
some canonical form (and conversely). This follows since

P 4P = (I+P‘1HP) (I—P 'HP)!
and

P 'HP=(P AP —1)(P *4P +1)™".

So suppose A is a symplectic matrix all of whose eigenvalues are 1. Compute
H=(A—1I)(A+I)"! (If A is symplectic with all eigenvalues —1, compute (4 +1)
(A—1I)""). Then H is a Hamiltonian matrix all of whose eigenvalues are zero so by
the results of Section 3, there exists a real transformation T such that 7~ ! HT takes one
of the canonical forms (3) or (4), say T~ HT=G.

Then by Remark 6, T also puts 4 in some canonical form, namely (I+G) (I—G) ™!
since

T 'AT =TI+ TGT ") (I- TGT~")™'T
—(I+G)(I-G)".

Thus, corresponding to the real canonical form (3) for Hamiltonian matrices, we
have the real canonical form: ((k +1) x (k +1) matrix)
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O

IR 2 1 (12)
T =2 |1 =2 42:+ o o (=1)"12 ’
2 25 ---------- 2 . . . :
LA
o 7
(_1)12 ........ (_1)’.2 -1

where /= (k+1)/2 (recall kK must be odd in this case), while corresponding to (4) we
have the following real canonical form: (2 (m+1) x 2 (m + 1) matrix).

O

1,=2 42+« (-1)"2

(13)
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Case 4. Consider A | n(u+iv)®n (u—iv) where p> +v?=1, u#0, v>0

By precisely the same reasoning as in Case 3, one can compute (/+G) (I-G)™!,
where G is one of (6), (7), or (9), to get the real canonical forms (14), (15), and (16) but
since they are somewhat complicated, they are not presented here. For example, if

0 0 0 v
0 0 v 1
G= b
-1 —v 00
—y 0 00

then
S e W) v
-1 o' (v e(v) YO ¥ \_
TFOU=O0" = “ym) —v( o0) o =5
-y (v) 0 0 o)

where ¢ (v)=(1—v?)/(1+v?)and ¥ (v)=2v/(1 +v?).
Note that S has eigenvalues ¢ (v)+i¥ (v) of multiplicity 2 and that ¢ (v) + ¥2(v)=
=1.
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