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Abstract. The Hamiltonian for orbits near .#4 and mass ratios near u: is brought into a normal form.
A theorem shows that two coefficients in this expansion predict the behavior of the periodic orbits.

1. Introduction

Buchanan (1941) proved that there exist two families of periodic orbits which emanate
from the Lagrange triangular point £, in the restricted problem when the mass ratio
parameter u is equal to the Routh critical mass ratio u;. Several authors, Pedersen
(1933, 1939), Deprit (1968), Palmore (1967), have investigated the behavior of these
periodic solutions for u>pu; either by numerical integration or approximate series
expansions. These investigations have led to the conjecture that the two families
detach as a unit from the equilibrium point and recede as y increases from ;. We shall
present a mathematical demonstration that this conjecture is correct. Moreover we
compute the characteristic multipliers with sufficient accuracy to state that these
periodic orbits are all of elliptic type in a sufficiently small neighborhood of the origin
for u sufficiently near u; regardless of conjectures.

The method of proof is the continuation method of Poincaré. The essence of the
argument is summarized in the perturbation lemma given in the next section. This
perturbation lemma is applied to a general Hamiltonian system near a degenerate
equilibrium to yield sufficient conditions for the existence of periodic orbits. These
results are summarized in the theorem of Section 3. We then check the hypothesis
of this general theorem for the Hamiltonian of the restricted problem at .%Z,.

The authors would like to thank Dr J. Palmore for first calling their attention to
this interesting problem.

2. The Perturbation Lemma

In this section we present a lemma which gives sufficient conditions for the existence
of periodic solutions of a differential equation which admits an integral in a critical
case. A standard theorem of Poincaré’s continuation method states that if all but two
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of the characteristic multipliers of a periodic solution are not one then the periodic
solution persists under a small perturbation provided both the perturbed and un-
perturbed systems are autonomous and admit an integral. (see Poincaré, 1892 or
Siegel, 1956). This is the non critical case. The lemma given below considers the case
when to the first approximation all periodic solutions have all characteristic multipliers
equal to one. This is the critical case. In the critical case it is necessary to place further
restrictions on the perturbation in order to insure the existence of some periodic
solutions after the perturbation. The lemma given below is a natural extension of
the perturbation theorems given in Coddington and Levinson (1955) chapter 14 to
the case when the system admits an integral. Although this lemma is found implicitly
in Lewis (1956) and Hale (1969) we shall present a proof here for completeness.
Consider the system

E=A¢+ef (& e) e

where £€R", €€ R, A is an n x n constant matrix such that exp (47 )=1 for some 7>0
and fis an n-vector valued analytic function defined in a neighborhood of the origin
in R"*1, Since exp (4T ) =1 all solutions of (1) when ¢ =0 are 7T-periodic. Assume that
(1) admits an integral I(&, ¢)=¢TSE +eH (&, &) which is analytic in a neighborhood
of the origin in R"*!, Here S is an n x n constant symmetric matrix.

Let B be a real parameter and define

T
B(p, £) = A + f e85 f (e8¢, 0) ds. @
0

LeMMA: If there exists analytic functions &(o), () where o is a real parameter and
&(x)eR" and B(a)€R for |a| <o, such that

B(B(x), &())=0 3)
SE(a) #0 4
rank (Z_}Z , z—?) (B(a), E(a))=n—1 (5)

for |a| <o, then there exists an analytic two parameter family of periodic solutions of (1),
denoted by ¢ (t, a, €), such that

o (t, o, &) is defined for all t; all ¢, |¢| < &g and all a, |o| < Loy (6)
¢ (t, o, 0) = (exp At) & (a) @)
The period of ¢ (t, «, €)is T + eB () + 0(&?). (8)

The characteristic multipliers of ¢ (t, @, &) are 1 + ey; () + 0(&?)

where u; (o) are the eigenvalues of Z—? (B (), E(a)). 9)
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PRrOOF: Let Y (1, &, ¢) be the solution of (1) which satisfies ¥ (0, &, ¢)=¢. In order to
find periodic solutions of (1) it is enough to solve the equations ¥ (T, &, £) =¢ for some

T+#0, £ and &. By the variation of parameters formula
t

Y(t, & e)=e"C +e f eI (Y (s, &, ), &) ds. (10)
0
We introduce a new parameter  and compute
Y(T + e, & e)=C +eK(B, &, ¢) (11)
where
K(B,&¢e)=B(B, &)+ 0(e) (12)

thus we must solve K(f, £, ¢)=0 and in view of assumptions (3) and (5) we can solve
n—1 of these equations by the implicit function theorem. Thus we must show these
equations are dependent.

Since I=¢(TSE+eH(E, e) is an integral ETSE+eH(E, e)=(¢ +eK)'S(E+eK)+
eH (£ +¢K, ¢) which rearranges to

{267S + 0(e)} K (B, &, e)=0. (13)

For a moment let o be fixed and choose coordinates so that ¢7.S=(1,0,..., 0). Then
we see by (13) that the first equation of the set B(f, £) =0 must be identically zero.
Thus we may apply the implicit function theorem to solve the last n—1 equations in
the set K(f, £ ¢)=0. But by (13) if the last n— 1 equations of K (B, &, ¢) =0 are satisfied
then so must the first.

The characteristic multipliers of these periodic solutions are the eigenvalues of
Y0 =I+¢0B[dE +0(e*) and so (9) follows.

3. The Main Theorem

In this section the lemma of the previous section is applied to a system of equations
which has many of the properties of the restricted problem for mass ratio parameter p
near the Routh critical value g,. This theorem will be applied to the restricted problem
in a subsequent section after the equations have been normalized.

Below we shall consider a real analytic system which has been transformed into a
complex system in order to simplify the computations.

Recently Roels and Louterman (1970) have found the canonical form for a
Hamiltonian matrix with repeated eigen values under a symplectic change of variables.
For a 4 x4 Hamiltonian matrix with repeated eigenvalues iw and —iw, w>0, the
canonical form is either diagonal or of the form

wi 1 0 0
0 wi 0 0
Bo = 0 0 —wi 0 [}’ (D

0O 0 -1 — wi
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The symplectic transformation to the new complex coordinates y;, ¥,, 3, ¥4 can
always be done in such a way that the reality condition is

YVi=—1¢C)s

Y2 =10CY3

where c is a real number. We will assume ¢>0 as the case ¢<0 is similar.

If we consider a Hamiltonian matrix B(v)=B,+vB; +0(v?) where v is a real
parameter and B; =(b;;) then by the reality conditions b,, =b,; = —b;,=—b;,=b.
The eigen values of B(v) are +iw +\/vb +0(v). Thus if 5#0 and v is small the eigen
values of B(v) are pure imaginary for vb<0 and complex with non zero real part
for vb>0. Henceforth we shall assume that b>0. This does not lead to a loss in
generality since if b<0 one need only change v to —v.

Consider the Hamiltonian system of equations

y=B()y+G(y,v)=JVH 2)

with Hamiltonian H, where y is a 4-vector and G is an analytic 4-vector valued
function of y and the scalar v which is defined in a neighborhood of the origin in C°.
Assume that G has a convergent power series expansion in the y variables alone which
starts with terms of degree at least two. The Hamiltonian function is therefore of
the form

H=i0(y1ys + y2¥4) + yoys + Zz H,(y,v) )

where H, is a homogeneous polynomial of degree » in the y variables and H, (y, 0)=0.

Although for v=0 the eigenvalues of B, are not simple, the normalization procedure
of Birkhoff (see Section 4) can still be used to eliminate all third order and most of
the fourth order terms in (3) when v=0. This holds true for small v#0. Thus we can
assume H to be of the form

H =i0(y1y3 + y2y4) + Y2ys + Hy (3, v)
+ alyfyg + az)’f)’s)% + asyfyi

+ 3 B () @

with H, (y, 0)=0. (Let g =2a;(0).)
The main theorem of this section is

THEOREM: (A) If g <O then there exists a neighborhood N of the origin in y-space,
a vy>0, an hy>0 and a two parameter family of periodic solutions of (2), denoted by
p(t, v, h), which lie in N for all |v|<v,, |h|<hg, h#0 when v<0. The parameter h
may be taken as the value of the Hamiltonian. The function p is analytic in all its
arguments in its domain of definition. ( Note that when v<0 the domain of h does not
contain 0.) For all values of v and h under consideration the periodic solution p(t, v, h)
is elliptic, i.e. two characteristic multipliers are not + 1 and have unit modulus. For V fixed
and —vy<¥<0, p(t, ¥, h)—0as h—07 and the frequence tends to wi\/(— vb) +0(¥).
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For ¥ fixed and 0 <V < v, the one parameter family of periodic solutions p (t, v, h) does
not contain the origin in y-space. (B) If g >0 then there exists a neighborhood N of the
origin in y space, a vo>0, an hy>0 and an analytic two parameter family of periodic
solutions of (2), denoted by p(t, v, h) defined for —v,<v<O0 and |h| <hq. In this case h
cannot be taken as the value of the Hamiltonian and must be considered as just another
parameter. For fixed v, —v,<v<O0, p(t, v, h)—>0" as h— +hy and as h— —hy and the
Sfrequence of p(t, V, h) tends to @ i\/(— b) +0 (V). There exist an h, (V) and h, (V) such
that —ho<hy (¥)<h,(V)<hgandp(t, v, h) is elliptic for —ho<h<h,(¥), h, (V)<h<h,
and p (t, v, h) is hyperbolic for hy (V)<h<h, (V). As v—0, p(t, v, h)—0 for all h, |h| <h.

REMARKS: Additional formulas for the dependence of the frequence and the
multipliers on the parameters can be gleaned from the proof. For v<0 and 4 small
the family p (¢, v, k) is just the two families (A <0 and 4 >0) given by the well known
Liapunov center theorem. Thus in case (A) the two families persist for v=0 and as
a unit detach from the origin as v becomes positive. In case (B) the two Liapunov
families are globally connected for v<0 and collapse into the origin as v—0".

PrOOF: In order to apply the lemma of the previous section we must introduce a
scale factor ¢ as a small parameter. Let

2 2 2
Y18y, Ya—8 ), V3 —>¢& Y3, Ya—>EYs, vV—oEey.

This is a simplectic transformation with multiplier &*. Therefore from (4) the new
Hamiltonian becomes

K=¢H=io(yys + y2ya) + £(¥203 + vby,ys + 3gy1yi) + 0(&°).
5)

The reality condition implies that b and g =2a; (0) are real. The system (2) becomes
y=JVK = Cy +¢eD(y,v) + 0(&?)
where C=diag (wi, wi, —wi, —wi) and
Dl (y’ V) =DY2
D, (y,v) = vby, + gyivs
D3 (y,v) =~ vbys — gy1ys
Dy(y,v)=—s.

Thus we have reduced (2) to the form considered in the previous section and it remains
to compute the bifurcation equations B(f, y). They are

wB;, = ﬁ(UZiJH + 2my,

B, = Bw’iy, + 2=n (vby, + QJ’%J’4)
wB; =— pa’iy; — 2n (vby, + gyiy1)
wB, = — ﬂa)ziy4 —2nys.

Solving B; =0 for y, and substituting into B, =0 yields y, (aB* +vb +gy, y,) =0 where
a=w*/(2r)*. A similar equation results from B;=B,=0. By the reality conditions
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J1=—cy, and since ¢>0 is assumed we introduce the real variable r*=—y,y,.
Thus we are led to the equation

ap® — gr* =—vb.

When g >0 the graph of the above equation is as shown in Figure 1.

A v<0y_0
v>0
r
Fig. 1.
f?
elliptic r=V-2a/g f3
hyperbolic
r
elliptic

Fig. 2.
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Thus for each fixed v the equation B=0 has a one parameter family of solutions.
The qualitative features of this family are those described in part A of the above
theorem. The value of the Hamiltonian (5) along this family is

3

K=h=—2"(vbf + ap®) +0(e).
ng

Since dA/dp <O for each family the value of the Hamiltonian can serve as parameter.
When g <0 the graph is as shown in Figure 2.

Again the qualitative features are described in part B of the above theorem.
It is left to show that the rank of (0B/dB, dB/dy) is 3 along these families. In

4 iof 2njw 0 0 R
2n o 2r
— (vb — 2gr°) iwp 0 —gy1
) )
0B
— = 2r . 2n ’
oy - — gV 0 —iwf —— (vb —2gr®)
) )
2
0 o - — iwp
- a’ J

look at the submatrix which is formed by omitting the first column and the third row.
Its determinant is (2n/w)?gy?. Thus rank (0B/0f, 6B/dy)=3 unless y; =0.

The nonzero eigenvalues of dB/dy are =+2n/w(—2gr>—4ap®)'/%. For g>0 the
nontrivial characteristic multipliers are conjugate complex of unit modulus and
p(t, v, h) is elliptic. For g<0 and —gr2<2af?, p(t, v, h) is elliptic, if —gr?>2ap?,
then p (¢, v, h) is hyperbolic.

4. Normalization of the Hamiltonian

Given is the Hamiltonian (Equation 3, Section 3)

0
H=io(y1ys + y2Vs) + y2y1 + Zz H,(y,v) 1)
with H, (y, 0)=0 and H, is a homogeneous polynomial of degree » in the y variables,
whose coeflicients are functions of v.
First we want to show that for v=0 the terms of third order can be eliminated by
a symplectic transformation to new variables (1, 775, 73, 4)- Following Birkhoff (1927)
this transformation is in first approximation

0K 0K
2 }’i+2=’7i+2——3 i=1,2 (2)
Miva d

i

yi=n+

where K;=K; (1, 72, 113, 14) is @ homogeneous polynomial of degree 3 with terms
c; s e 1<i<j<k<4. The transformation leaves second order terms unchanged
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and we try to determine the 20 coefficients c;; such that the third order terms dis-
appear. This leads to
0K, 0K, 0K, 0K, 0K, 0K, H
<n3 o.M + 14 o, T 6712) + 13 . ", + H; =0.
Equating coefficients leads to a linear system of 20 equations for the c;;,’s. Either by
inspecting this system or by evaluating the corresponding determinant, which is 382°
it is seen that the c¢;;;’s are determined uniquely.

If v#0 the presence of H, (y, v) will complicate the linear system of equations for
the ¢;;’s, but the additional terms are of order O(v). Thus for small |v| the determinant
will remain to be different from zero, and thus again we can find the ¢;;’s, such that
in the transformed Hamiltonian all third order terms have disappeared.

The fourth order terms of the new Hamiltonian are treated accordingly by a
transformation of the form (2), which uses now a homogeneous polynomial of degree 4.
It turns out that all but 3 of the 40 fourth order terms in (1) can be eliminated. These
are the terms containing 23, y3 5y, and y?y%, where in particular the coefficient of
y2y% is an invariant under this transformation.

5. Application to the Restricted Problem

The Hamiltonian of the restricted problem of three bodies at £, starts with the
following quadratic terms:
3.3

Hy = 3(px + py) + ypx = Xpy + 337 —— = (1 = 2p) xy — "

p is the mass ratio and a critical value is p; =% (1 —%\/ 69) when the corresponding
Hamiltonian matrix has the canonical form (1) of Section 3. The repeated eigenvalues

are i/2\/2 and —i/2\/2.
For mass ratios u =y, +v the corresponding matrix is of the form B, + vB; +0(v?).
It has the eigenvalues

ié\/ii\/vbw(v). (1)

On the other hand the characteristic equation belonging to the linearized system at £,
for any mass ratio is known to be

P+ A2+ u(1—p)=0.
It has the solutions
AR=3(—1+.J1-27u(1l —p)
= 1(—14iv3./69v)+0(v)
comparing it with (1) we find
b=3%./69.
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In order to get the value for g we refer to the computations done by Deprit (1968).
There the period of an orbit near £, for u =y, was assumed to be T =2n\/ 2(1+v)ie

T —Ty=2n/2v.

The transformed Jacobian (Equations (130) and (124)) was determined to be

r=c¢C 3—216 > 4
- 59 "
216 (T - Tp)?

59 (274/2)°
Now the value of the Hamiltonian (5) Section 3.
i2
H = 82K = 83 —\2/* (y1y3 + y2y4) + 0(84)
along the solution curves is

H:—gsﬁrz_’_...

27
1 1
=—g — (T = Tp)® +---.
(27)* 4g ( 0)
Since H= —1TI'/2 we can compare it with the result of Deprit and find
592
g= N2
216

Thus g>0 and the orbits near .Z, for mass ratios near the critical mass ratio of
Routh behave as described in part A of our theorem.
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Appendix

We would like to indicate briefly how the perturbation lemma of Section 2 can be
applied to yield several known results in an easy and unified way.

First a degenerate form of the Liapunov center theorem. Consider a system whose
Hamiltonian is

H(x1, X3, ¥1, ¥2) = koI, + oL, + 3 (AI? + 2BLII, + CI}) + K

where I, =(x? 437)/2, ®>0, k is a non zero integer and K is an analytic function with
a convergent power series expansion at the origin beginning with terms of degree at
least .5. Here we see that the linearized system is two harmonic oscillators with one
frequence a multiple of the other. The Liapunov center theorem yields a one parameter
family of periodic orbits which emanate from the origin for k# 11 and whose period
tends to 2n/kw as the members of the family tend to the origin. But what about
periodic orbits of periods near 2n/w i.e. the long period orbits? Introduce a scale
factor e>0 by I,—e&l; and this system is now in a form that perturbation lemma
requires. An easy calculation yields the bifurcation equations and one finds that there
exists a one parameter family of periodic orbits whose period tends to 2n/w as they
tend to the origin provided B—kC#0. Moreover these orbits are of elliptic type.
The Hamiltonian for the restricted problem near the Lagrange points %, and %5
has been put into this canonical form by Deprit and Deprit-Bartholomé (1967).
Using their results one easily checks that B—kC#0 for u=u,, k=4, 5, 6.... This yields
the existence of the long period family at £, for p=p,, k=4, 5, .... which is a result
of Roels (1969). This result and method of proof was observed by the first author
Dr J. Palmore and was announced in Palmore (1969). The canonical form at %, for
u=pu, is slightly different but a similar analysis can be carried out in this case also.

In his investigation of Hill’s orbits in the restricted problem Conley (1963) reduced
the equations of motion in regularized coordinates to a special normal form (c.f.
Equations (5), page 455 of Conley (1963)). One can again apply the lemma of section 2
to yield two one parameter families of periodic orbits about the primaries and thus
give an alternate proof of Conley’s theorem. We must point out that Conley obtains
an analytic family whereas our proof does not give analyticity at the origin.

As our final example let us consider orbits at infinity in the restricted problem.
The Hamiltonian of the restricted problem is

H =31+ 3)— (%172 — x291) — (1 — p)/es — nloz
where
Qf=(x1+,u)2+x§,gi=(x1 +u—1)Y +x3.

Make the scale éhange

x. -2/3

l_)8

1/3
Xis YVi—=> €& )

1/3

which is a symplectic change of variables with multiplier ¢~ '/° so that the new

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971CeMec...4...99M&amp;db_key=AST

PERIODIC ORBITS NEAR -£4 FOR MASS RATIOS NEAR THE CRITICAL MASS RATIO OF ROUTH 109

Hamiltonian K=¢!/3 H becomes
1

K=~ (x1y, — X2)1) + ¢ {%(yf +y3) — W} +0(e).

Note that ¢ small means that we are near infinity in the original x,, x, plane. The
equations of motion derived from K are in the form required by the perturbation
lemma. By calculating the bifurcation equations one finds that there exists two one

parameter families of periodic orbits near infinity for all mass ratios O<u<1.
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