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On a System of Equations in
Automatic Control Theory”

K. R. MEYER

I. Introduction

Letov [1] has introduced the study of a control system in which the
equations of the control take into account the applied load. In particular
he has taken an equation of Khokhlov that describes a loaded hydraulic
servomotor and used this to describe the action of the automatic
roll stabilization system in the Queen Mary. In this paper the system
introduced by Letov will be examined with the aid of a lemma due to
Yacubovich [2] as generalized by Kalman [3]. A rather complete answer
can be given for the noncritical case as well as for some critical cases.

The system to be investigated is

(1) 0= Av — blu,

where v is the state vector and u is the control. The control u is governed
by the equations

f= p(w)$(0)
(2) c=cv— pH
w=1— 6usgno.
In (1) and (2) v, b, ¢ are n-vectors, u, o, w, p, 0 are scalars and 4 is an

n X n matrix. The functions vy, ¢ are scalar continuous functions such
that (1) and (2) have unique solutions and satisfy the following conditions

(3a) od(o) > 0, o # 0; #(0) = 0; iooqS(a) do = + o

(3b) p(w) > 0, w>0; p(w) = 0, w=0
[dy(w)/dw] exists and is continuous and (dy/dw) = 0 when w > 0.
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Also the constant 6 will be taken as nonnegative and p = 0. The problem
to be considered is to find conditions on the control parameters that insure
asymptotic stability in the large for all such ¢ and .

II. The Nonsingular Case

We will in this section consider the case where the matrix 4 has 2p
simple imaginary characteristic roots and ¢ characteristic roots with
negative real parts. Since we may take p = 0 we will be considering not
only a critical case but also the noncritical case. We shall assume that
(4, b) and (4, ¢’) are completely controllable and completely observable
respectively in order to apply the Kalman-Yacubovich lemma. A pair
(4, b) is said to be completely controllable if x” exp {47} = 0 for a finite
interval of ¢ implies that x = 0 and (4, ¢’) is completely observable if and
only if (4’, ¢) is completely controllable. Following Lefschetz [4] we
shall make the following change of coordinates x = Av — by, o =
c¢'v — pu and so (1) and (2) is equivalent to the following (4) provided
p # c'A71D.

x = Ax — by(w)p(o)
" 6 = c'x — pyp(W)p(o)
w=1—0usgno
yu=cAx — ¢

where y = p — ¢’A7%b. We shall assume without loss of generality that
y is positive. Let A be in the canonical form 4 = diag (X, K, -S) where
K = diag (iky, . . . , ik ), the k’s are distinct and positive, K is the conjugate
of K, and S an ¢ X ¢ real stable matrix. The system (4) then reduces to
y =Ky — fuw)¢(o)
7 = Ky — fp(w)(0)
z = Sz — dyp(w)p(o)
6 =gy +8T+ ez — pyp(w)d(o)
w=1—0usgno
Y= g,K_ly -+ g_lK—lji' +eSz—o0
where y, f, g are p vectors and z, d, e are real £ vectors.
Consider the following Liapunov function for the system (5)

®)

(6) V=7yQ0p+zRz + 522/«62 + B f:w(W)sﬁ(a) do
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where Q is a real positive definite diagonal matrix, R is a positive semi-
definite symmetric matrix and « =0, =0, o + f > 0. Now the
derivative of (6) along the trajectories of (5) is

—V=—y{KQ + QK}j — z'{S'R + RS}z
+ {Qf — K¢ — fg} yp(w) (o)
+ {Qf — «k7%¢ — Bz} Py(w)d(a)

@) + 2{Rd — %' S — g e}lzy)(w)qﬁ(o‘) + aop(w)d(o)

+ Bl + o] | L o) dol w40 sgn o

Now since Q is real and diagonal KQ + QK = 0. Assume that for some
such Q

F— oK 1lg — =0
® of g— Pg

Of —aK7g — g =0
then an equivalent form for (7) is after completing the square

©) —V=2(C—q9)z + (JrpWd(o) + ¢'z)*
+ a0y + 0] | - PH0) do | p((o) sen o

where
(10a) —C = SR 4+ RS
(10b) T = fp

- o B [B
10 =Rd —=8"1e =L,
(10c) . \/Tq ) 0 e

Now by the Kalman-Yacubovich lemma there exists a positive symmetric
matrix R and a g satisfying C — g¢’ = 0 and (10a, b, ¢) if and only if

(11) Bp + Re(xe’'S™ + Be)S,,7'd = 0
for all real w where S,, = (iwl — S).

We shall now show that (8) and (11) imply asymptotic stability in the
large for the system (5). First we shall show that ¥ is positive definite in
¥, z and o. By the Kalman-Yacubovich lemma the set {z: z’Rz = 0} is a
linear space of unobservable states relative to (S, «e’S—1 + Be’). If « or
f = 0 then R is positive definite by the complete observability of (4, ¢)
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and hence of (S, ¢). If g =0 then clearly ¥ is positive definite since
then o > 0. Let « = 0, and # > 0 then V is positive definite if y = 0,
z = 0,w = Oimplies that ¢ = 0, assume that 0 = o, # 0. Then —ypu, =
0o and 0= 1 — Buysgn oy or 0 = 1 + 6(oy/y) sgn o, which is a con-
tradiction since y and 0 are positive. So ¥V is positive definite if « or
g =0.

Now let « > 0 and > 0 and let us show that z,’Rz, and e'S—z,
cannot be both zero at the same time unless z, = 0. Assume the contrary.
Then by the lemma z, is such that (xe’S™ + fe’)eSz, = 0 for all 7 so by
letting ¢ = O this implies that 'z, = 0. By differentiating & times and
letting ¢ = 0 it follows that e'S*z, = 0. But [¢, €'S, ..., &'S* ] are
linearly independent vectors and hence z, = 0. Now that this fact has
been established it follows easily by checking all possibilities that 7 is
positive definite. ‘

Now by the assumption on the divergence of the integral it follows
that ¥V— o as |y, |z|, |o| = c and so by a theorem of LaSalle [5] all
solutions of (5) are bounded and tend to the largest invariant subset
Mof E={(y, 7, z, 0): V(y, §, z, 0) = 0}, as t — c0.

Case I. o # 0. Let P = (yy, Jo Zo» 0¢) # 0 be a point such that
the solution of (5) starting at P for ¢ = 0 remains in £ for all #. Such a
solution is a solution of the linear system obtained from (5) by letting
p(w)é(o) = 0, thus the solution is:

y={expKt}y,, = {expKt}j, 2z = {expSt}z,
o= 0, + g K {exp Kt}y, + §K " {exp Ki}y, + e'S" {exp St}z,
yu = —ay w=1+ 0y 'o,sgno.

Now ¢ cannot be zero for a finite time interval since this would contradict
the complete observability of (4, ¢") and thus w =0 and o, # 0. But
since S is stable there exists a 7' such that for all # > T, |e'S exp {St}z,| <
(|oo|/4) and since g’ K exp {Kt}y, + &K' exp {K1}j,is an almost periodic
function with zero mean value there exists a #* > T such that it is less
than (Jo,|/4) in absolute value for all # in a small interval around ¢*.
Therefore near t*, w = 1 + 0y~l0, sgn g, > 0 which is a contradiction.
Thus the largest invariant subset of E is M = {0}.
Case II.

w=0, —V=Tpmd0) +q'2)*
7 d
+89] |7 y(0) do | p0) o) s o
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A solution remaining in £ must be bounded for all ¢ in (— oo, o) since
such a solution must lie in a level surface of 7 and also for such a solution
\/;w(w)qb(o') = —q'z(t). Since o = 0 we may take f = 1 and thus the
equation for z reduces to the linear equation z = (S + p~*dg')zif p % 0
or to z={S—(¢'S™d)tdg'S™}z if p=¢g'd=-=¢'S"1d=0
and ¢'S™ d # 0 (such an m exists by the Kalman-Yacubovich lemma). A
solution of a linear equation that is bounded for all # must be the sum of
exponentials with pure imaginary exponents thus y(w)¢(o) is of the form

p(W)p(0) = 2 a; exp {iw;t} where a; = ad_j;, w; = —w_;, wy = 0. Using

this form for p(w)$(0) in eq. (4) we can calculate x(¢) and o(¢). Since such
a solution must be bounded it follows that ¢, = 0 and w, # k, for any
sand r. Letting &' denote sum excluding j = 0 we have

n D
x(1) = — ' a(Agb) exp {iw;t} + > v; exp {ik;t} + v,
0 —p

PO = 3 a, exp fioy)

n

o) = 0o — 2" a;(iw)p + C'Az'_a},-b) exp {iw;t}

D
+ > c'v,(ik;) T exp {ik;t} + c'vg
—D

where v; = ¥_; are n vectors and o, is a constant. We can assume we are

not in Case I and so yp(w)é(o) # 0 and since o(t)w(w(r))d(o(f)) = 0 it
follows that

T—x

lim [ oy do) di = — 3 asa_ (i) (o + ¢ ATLE) > 0

We shall have a contradiction and thus prove our theorem once we
establish the following:

LEMMA. Let the linearized system obtained from (1) by placing 6 = 0
and y(1)¢(0) = va be asympotically stable for all v > 0. Then if iw, is a
characteristic root of S+ p~tdg’ if p 5 0 or of S — (¢'S™ d)1dg'S™
if p =0 and m is as above such that iw, 5% ik, for any j then (ing)™ X
(p + ¢'A,\b) is a nonnegative real number.

Proof. The characteristic equation of the linearized system is
|41 {4 4+ v(p + ’4;7b)} and so (iwe)*(p + ¢’A,;,7'b) can not be a
negative real number since in this case there is a positive # such that
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iw, 1s a characteristic root of the matrix of the linearized system with
w(w)$(0) = 0. The lemma then follows if we show Re (p + ¢’4;1b) =
Re (p + €'S;,l d) = 0. The characteristic equation of S+ p~*dg’ is

AL —S—p~tdg| =S, — p~tdg'| = S| I[ — p~*dg'S;7]
= |S,| {l — p~¥¢'S;7 d}
and so p = p¥q'S; d=dRS;}d—}eS;;ld Now ¢¢=—-C=
Siw,R + RS;,, and so 2RedRS;;!d =|q'S;, d|* = p. By combining
we have Re (p + e’S{wi d) = 0. A similar argument holds if iw, is a
characteristic root of S — (¢'S™ d)= dg’'S™*1. '

Thus we have shown that (8) and (11) along with the added assumption
about the linearized system imply asymptotic stability in the large.

We will now put (8) and (11) into an invariant form that is in a form
that can be applied directly to (4) without reducing (4) to the Jordan
form (5). Assume that there exists « = 0, f = 0, o + f > 0 such that
(13) Bp + Re (ac’A™ + pc)A;, b =0

for all real w such that w ¢ {+ky, +ky, ..., £k}
(4 (e’ A7 + Bc) Ay b = (g’ K™ + g")Kuf
+ (@K™ + pE)K S + (/ST + fe)Ssd.

It follows from the fact that S is a stable matrix that the last term in (14)
is bounded for all real w and hence

(15) Re{(eg'K™ + )K" f + (1K™ + pg)Ke f} 2 M > —0
but the functions in the brackets in (15) is of the form

< [a; + ib; a; — ib;

J J + J J
z {io) —ik; Hiw 4 ik;
and hence b, = 0 or that («g,(ik,)™* + fg,)f; is real.

Now if we make the further assumption that («g;(ik,)™* + fg,)f; =

h; > 0 we see that Q = diag [(h1/]f11%), (ha/1f2l?), . .. (h,/[f,?)] satisfies
(8), and (13) reduces to (11). By noting that A474, = 4,1 + 47!
we have:

1

THEOREM 1A. Let A have 2p (p = 0) simple imaginary characteristic
roots and { roots with negative real parts and (A, b) and (4, c') be completely
controllable and completely observable respectively. Also let 6 = 0 and
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p = 0. Then the system (1) and (2) is asymptotically stable in the large for
all w(w) and ¢(0) satisfying 3a and 3b provided.: '

(@y=p—c4A7%H>0

(b) There exists constants «. =0, § =0, o + f > 0 such that Bp +
Re («/A) + B)c'A;7b = 0 for all imaginary A not equal to a pole and
((f2) + B)c'A;71b has positive residues on the imaginary axis.

(¢) if & =0 then the linearized system obtained from (1) by letting
0 = 0 and w(1)¢(0) = vo is asymptotically stable for all v > 0.

Now we shall show that the conditions given in Theorem 1A are also
necessary for the existence of a positive Liapunov function of the type
quadratic form plus integral of the nonlinearities.

For the first part of the argument let us assume that the eq. (4) are in
the real form

y =Ky = fy(w)¢(0)
z = Sz — dy(w)$(0)
(16) 6 =gy + €'z — pyp(w)(o)
w=1—0usgno
yu=gKy+eSz—0o

where now y, f, g are real 2p vectors and

s 0 Kk 0k,
e[, B2, %)

By the same argument as in Popov [6] the most general Liapunov
function of the type quadratic form plus integral of the nonlinearities is

(17) V= y'Byy + 2y'Byz + z'Byz + %Z/f + B L p(w)¢(o) do.

We shall also use the e-method used by Popov which consists of sub-
stituting for the variables in ¥ or ¥ a power of e times the variable. The
sign of ¥ or V is then determined by the lowest degree term in e. Thus
in Vlet y —y, z— ez, and p(w)$(c) — e>w(w)$(o) then the lowest degree
is y'(K'B; + B,K)y. Since the diagonal elements in K'B; + B;K cancel
it follows that if ¥ is to be negative semi-definite that K'B; 4+ B,K = 0
and this implies that B; must be diagonal. Now the next lowest degree
term in V is 2y'(K'B, + B,S)z and clearly for ¥ =<0 we must have
K'B, + B,S =0 or By = 0.*

* See Gantmacher, The Theory of Matrices, Vol. I, Chelsea, New York, 1959, p. 220.
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Now to say that the form for V for eq. (16) must be such that B, is
diagonal and B, = 0 is equivalent to saying that the form of the Liapunov
function (6) was the only one possible for the eq. (5). So let us consider
now (6) and (7). By letting y — y, j — 7, z — €%z, 0 — €0, p(W)p(0) —
ew(w)¢(0) the lowest degree term in (7) is {Q.f — aK'g — Bg} yp(w)é(o) +
{Of — oK'z — B3} jp(w)d(o) so (8) must hold. By the necessity part
of the Kalman-Yacubovich lemma (11) must hold and (8) and (11) imply
part b of Theorem 1A.

Now by picking a y(w) that is equal to a constant in some neighborhood
of 1 and satisfying the conditions of 3b and ¢(0) = »o we see that in some
neighborhood of the origin the equations reduce to the linearized system
and hence the condition (c¢) is necessary. For the same y(w) the deter-
minant of the matrix of the linearized system is » [4| (p + ¢'4,71b) and
since a determinant is the product of the characteristic roots (a) is also
necessary. Thus:

THEOREM 1B. If for the system as defined in Theorem 1A there exists a
positive definite Liapunov function of the type quadratic form plus integral
of the nonlinearities whose derivative is nonpositive and the system is asymp-

totically stable in the large then the conditions (a), (b) and (c) of theorem
1A are satisfied.

III. The Singular Case

Let us return to the system (1) and assume that 4 has a simple charac-
teristic root zero and the other n — 1 characteristic roots have negative
real parts. It should be noted that we could assume that 4 also has 2p
simple imaginary characteristics roots and use again the methods of the
previous section but we shall not do this in order to avoid lengthy
arguments.. Again we assume that (4, b) and (4, c¢) are completely
controllable and completely observable respectively. Let us assume that
(1) and (2) are in the canonical form

a 7=S0—du
y=—fu
g = p(w)$(0)

29 oc=¢e0+ gy — pu

w=1—0usgno
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where 7, d, e are (n — 1) vectors, y, f, g are scalars and S'is an (n— 1) X
(n — 1) stable matrix. v' = @', y), b’ =, f), and ¢’ = (¢’, g). Now
making the change of coordinates

the above system is equivalent to

£ = Sz — dp(W(o)
, y=—fu
(18) 6= ez — gfu— pp(w)d(0)
w=1—0usgno

ypu=(p—eStu=eS"z+gy—o

provided y = p — €'S7'd # 0 and we can assume again without loss of
generality that y > 0. Consider the following Liapunov function for the
above system

(19) V=Bt Lt p ["smie) do

—V=—z'{S'B+ BS}z+ Z{Bd — o — Bgfy ™S e — -g e},zw(w)gb(a)
20)  + (o — Befy)ov(w)d(0) + (@ — BefrEyp(n)d(o)
+ Bovo (o) + o] [/ 20 g da}w<w>¢<a> _—

Now if gf > 0 we may take o > 0 and f > 0 such that « — fgfy~" =0
and complete the square as in the previous section to obtain

—V = z2{C — qq'}z + (Jrp(w)$(0) + ¢'z)*

+ ﬁ{f 220 406) doloun)c) s o

0

where
—C = S'B + BS
T = fp
\/;q = Bd — ée’.

2
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Now by the Kalman-Yacubovich lemma there exists a B and a ¢ such
that C — g¢’ = 0 and satisfies the above if

(22) p+ReeS,,d=0
for all real w or what is equivalent if

p+Rec'd,b=0
for all nonzero real .
Now by an argument similar to the one found in the previous section,
we have

THEOREM 2A. If A has a simple zero characteristic root and the other
characteristic roots have negative real parts then (1) and (2) or (18) is
asymptotically stable in the large for all $(0), w(w) satisfying (3a) and (3b)
provided

(a) (4, b) and (4, c') are completely controllable and completely
observable.

(b) 6 =0.

(¢) The residue of ¢'A,7b at the origin is positive.

(d) p+ Rec'4,;,7'b = 0 for all nonzero real w.

(e) The linearized system obtained from (18) by letting 0 = 0 and
p(1)é(0) = vo is asymptotically stable for all v > 0.

THEOREM 2B. Let A be as in Theorem 2A. Then if there exists for the
system (1) and (2) or (18) a positive definite Liapunov function of the type
quadratic form plus integral of the nonlinearities whose derivative is non-
positive then the conditions (c) and (d) of Theorem 2A are satisfied.

Remarks. It should be noted that when 0 = 0 the system (1) and (2)
reduces to the indirect control system of the Lurie type. Yacubovich [7]
has shown for the Lurie system that the matrix A can not have an imagi-
nary characteristic root of multiplicity greater than two and a zero
characteristic root of multiplicity greater than one. It can also be shown
by the e-method that you cannot have a positive definite Liapunov
function of the type quadratic form plus integral of the nonlinearities
whose derivative is nonpositive for the case when 4 has an imaginary
characteristic root of multiplicity two. Thus the results given in this

paper are as general as can be obtained by this particular type of Liapunov
function.
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ERRATA

ON A SYSTEM OF EQUATIONS IN AUTOMATIC QONTROL THEORY

To Theorem 1A one must add the hypothesis that « # O when
0£0. If =0 vhen 6 # 0 then one can only conclude stability in

the small.
If 6’4 0 you can only conclude stebility in the small in Theorem

1B.



