
LIE TRANSFORM TUTORIAL - II

KENNETH R. MEYER

1. Introduction.

This survey paper is an extension of Meyer(1988)1 since it contains complete proofs of the
main theorems and some generalizations of Lie transform theory. However, the first part of
this paper deals with the applications of Lie transforms to various perturbation problems
leaving the technical proofs to the later sections.

Over the years many different techniques have been developed for handing various pertur-
bation problems. Some are suited for a few special problems while others are quite general,
but almost all were developed before the computer age. To our knowledge only one general
technique was developed specifically to be used in conjunction with a computer algebra sys-
tem, namely the method of Lie transforms. It is truly an algorithm in the sense of modern
computer science: a clearly defined iterative procedure.

The method was first given in Deprit(1969) for Hamiltonian systems of differential equa-
tions, then generalized to arbitrary systems of differential equations by Kamel(1970) and
Henrard(1970). The predecessor of this method was a limited set of formulas given in
Hori(1966). All these papers appeared in astronomy journals far from the usual journals of
perturbation analysis. Through the seventies only a few papers on this subject appeared
outside the astronomy literature. Recently, several books have presented the method but
only in the limited context in which it was initially developed.

In this paper we would like to indicate the great generality of the method by illustrating
how it can be used to solve perturbation problems that are typically solved by other methods,
often special ad hoc methods. In most cases we have chosen the simplest standard examples.
There are many topics of current research that are not considered here since this is to be a
tutorial, not a summary of new results.

Below we will indicate how the method of Lie transforms can be used to: calculate the
function given by the implicit function theorem; calculate the coordinates given in the split-
ting lemma of catastrophe theory; calculate the center and stable manifolds of a critical
point; calculate a limit cycle or invariant torus; calculate the Poincare normal form for a
center; do classical averaging to arbitrary order; calculate Floquet exponents; calculate the
Darboux coordinates of symplectic geometry. All these seemingly distinct calculations can
be done with one simple algorithm – the method of Lie transforms.

Most of the first part of the paper consists of examples of problems that can be solved by
Lie transforms, without spending too much time on the derivation or the theory. One main
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theorem summarizes the power of the method and it is given in Section 2. The proof of this
general theorem is postponed until Section 8. The middle sections are all examples.

Section 8 is written independently of most of the paper so if you are interested in the
proof itself you can skip the examples and go directly from Section 2 to Section 8. On a first
reading this might be the best approach.

2. The Main Theorem of the Theory:

In the traditional setting of perturbation theory one is given a differential equation de-
pending on a small parameter ε. When ε = 0 the differential equation is simple and well
understood, say for example a harmonic oscillator. The problem is to understand the solu-
tions of the equations when ε is non-zero but small. To gain generality think of any smooth
tensor field defined on some open set D ⊂ Rn depending on a small parameter. The tensor
field might be a function; a contravariant vector field, i.e. an ordinary differential equation;
a covariant vector field, i.e. a differential form; a Riemannian metric; a symplectic structure;
or any of the other classical tensors of differential geometry. The important thing about
these objects is that there is a Lie derivative defined for them.

Let F be a smooth tensor field defined on an open set D ∈ Rn that is for each point
x ∈ D there is assigned a unique tensor, F (x), of a fixed type say p-covariant and q-
contravariant. Let W be a smooth autonomous ordinary differential equation defined on D,
i.e. a contravariant vector field on D, and let φ(τ, ξ) be the solution of the equation which
satisfies φ(0, ξ) = ξ. The Lie derivative, £WF , is simply the directional derivative of F in
the direction of W and is a tensor field of the same type as F itself. The general definition
is given in any non-elementary book on differential geometry and in Section 8. For now we
shall simply give examples.

Differential geometry has used many different notations which still persist today making
a general presentation difficult. For example the object W given above might be called an
autonomous differential equation on D and so W is thought of as a smooth function from D
into Rn and is denoted by

(2.1)
dx

dτ
= W (x).

Then W is considered as a column vector with components W 1, . . . ,W n. In classical tensor
terminology W is 1-contravariant and we write W i where i is a free index ranging from 1 to
n – here the superscript tells you it is contravariant. More recent notation is

(2.2)
n∑

i=1

W i(x)
∂

∂xi
= W 1(x)

∂

∂x1
+ · · · +W n(x)

∂

∂xn
.

In any case let φ(τ, ξ) be the solution satisfying the initial condition φ(0, ξ) = ξ. The
simplest tensor field is a smooth function f : D → R1, i.e. to each point of D you assign a
scalar. The Lie derivative of f along W , £Wf , is a smooth function from D to R1 also and
is defined by

(2.3) £Wf(x) =
∂

∂τ
f(φ(τ, ξ))

∣∣∣∣
τ=0

= ∇f(x) ·W (x),
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the dot product of the gradient of f and W.
The next simplest tensor field is a vector field, either covariant or contravariant. First let

χ be a contravariant vector field or differential equation on D. Using differential equation
notation for χ we write

(2.4) χ : ẋ = F (x)

where ˙=
d

dt
. The column vector F is a representation of the contravariant vector field χ in

the x coordinates. Do not confuse t and τ they are different parameters for different vector
fields. Changing variables in (2.4) from x to ξ by x = φ(τ, ξ) where τ is simply a parameter
gives

(2.5) ξ̇ =

(
∂φ

∂ξ
(τ, ξ)

)−1

F (φ(τ, ξ)) = G(τ, ξ).

G is the representation of χ in the new coordinates system ξ. The Lie derivative, £Wχ, is
defined by

(2.6) £Wχ(x) =
∂

∂τ
G(τ, ξ)

∣∣∣∣
τ=0

=
∂F

∂x
(x)W (x)− ∂W

∂x
(x)F (x).

Note that x and ξ are the same when τ = 0. £Wχ is a smooth contravariant vector field on
D. We usually abuse the notation and confuse the vector field χ with its representation F
in a coordinate system by writing £WF for (2.6).

Let η be a 1-covariant vector field on D, i.e. a differential form, so

(2.7) η =

n∑

i=1

hi(x)dx
i.

Think of h as the column vector (h1, . . . , hn)T and change variables from x to ξ by x = φ(τ, ξ)
to get

(2.8) η =

n∑

i=1

ki(ξ)dξ
i

where k is a column vector related to h by

(2.9) k(τ, ξ) =
∂φ

∂ξ
(τ, ξ)Th(φ(τ, ξ))

The vector k is the components of the differential form η in the new coordinates ξ. The Lie
derivative of η in the direction of W , £Wη, is a one form whose component vector is given
by

(2.10) £Wη(x) =
∂

∂τ
k(τ, ξ)

∣∣∣∣
τ=0

=
∂h

∂x
(x)TW +

∂W

∂x
(x)Th(x).

The Lie derivative of other tensor fields in the direction W are defined in the same way and
the reader can find a complete discussion in any book on differential geometry.

Let Tpq = Tpq(D) denote the vector space of all smooth p-covariant and q-contravariant
tensor fields D. A symmetric notation for £WK is [K,W ], the Lie bracket of K and W . For
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fixed W the map £W = [·,W ] is a linear operator from Tpq into itself. The set, V = V(D) =
T01(D), of all smooth contravariant vector fields on D is a vector space and [K, ·], for fixed
K, is a linear from V into Tpq. Thus [·, ·] : TpqxV → Tpq is bilinear.

Suppose that the perturbation problem is given as a tensor field Z∗ on D which has a
formal expansion in a small parameter ε. In many cases ε is simply a scale parameter.
Consider

(2.11) Z∗ = Z∗(x, ε) =
∞∑

j=0

(
εj

j!

)
Z0

j (x)

where each Z0
j is a tensor field of fixed type. Specifically assume that

(2.12) Z0
j ∈ Pj ⊂ Tpq, for j = 0, 1, 2, . . .

where Pj is a linear subspace of Tpq. In order to simplify the problem the method of normal
forms seeks a near identity change of variables of the form x = ξ+O(ε) such that the tensor
field Z∗ in the new coordinates is simpler. The traditional approach is simple: assume a
general series for the change of variables, substitute it in the series for Z∗, collect terms, and
try to choose the coefficients in the change of variables series so that the tensor Z∗ in the
new coordinates is as simple as possible. For simple problems that will suffice, however there
are several disadvantages to this approach. The bookkeeping of the terms of the series can
become a major problem especially if the problem has some special structure or symmetry.
For example if Z∗ is a Hamiltonian vector field one would want the vector field in the new
coordinates to be Hamiltonian also. Or if Z∗ is invariant under some symmetry group one
would want this to be true in the new coordinates also. Figuring out what the form of the
nth term in new series can be quite difficult using the straight plug and chug method. Also,
this procedure is not easily coded in a symbolic computer language.

Hori(1966) was interested in perturbation theory for Hamiltonian vector fields and sug-
gested that the near identity transformation be given as the solution of an autonomous
ordinary differential equation. Unfortunately, not all near identity transformations are so-
lutions of autonomous equations and so Hori was not able to develop a general theory.
Deprit(1969) took Hori’s idea one step further by using non-autonomous equations. He was
able to give a simple set of recursive formulas that overcomes the objections given above.
Hori and Deprit worked with Hamiltonian systems, but soon afterwards Kamel(1970) and
Henrard(1970) considered the general case.

Thus to simplify the perturbation problem given by Z∗ in (2.11) we seek a near identity
change of coordinates of the form

(2.13) x = x(ξ, ε) = ξ + · · ·

where x(ξ, ε) is constructed as a formal solution of the system of equations and initial con-
ditions

(2.14)
dx

dε
= W (x, ε) =

∞∑

j=0

(
εj

j!

)
Wj+1(x), x(0) = ξ.

It can easily be shown that for any change of coordinates of the form (2.13) there is a unique
differential equation of the form (2.14) for which it is the solution function. The W above is
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a smooth vector field on D for each ε, so we take

(2.15) Wj ∈ Ri ⊂ V, for all i = 0, 1, 2, . . .

where Ri is a linear subspace of V, the space of smooth vector fields on D. The problem
defined by Z∗ may have some special symmetry, like a reflective symmetry, or a special
structure, like being Hamiltonian, and this is reflected in the assumption that we have
identified the subspace Pi to which the Zi belong. To preserve this symmetry or structure
it may be necessary to restrict the change of variables by requiring the Wi to lie in the
subspaces Ri.

In the new coordinates ξ the tensor Z∗(x, ε) becomes

(2.16) Z∗ = Z∗(ξ, ε) =

∞∑

j=0

(
εj

j!

)
Zj

0(ξ).

We say (2.13) or (2.14) transforms (2.11) into (2.16). Also we shall say the tensor Z∗ in
(16) is in normal form and hence simplified by definition if we have identified subspaces
Qi, i = 1, 2, . . . such that

(2.17) Z i
0 ∈ Qi ⊂ Pi, for i = 1, 2, 3, . . . .

The fundamental theorem of the theory is:

Theorem 2.1. Assume (i) [Pi,Rj] ⊂ Pi+j for i, j = 1, 2, 3, ... and (ii) for any i = 1, 2, 3, . . .
and for any A ∈ Pi there exists B ∈ Qi and C ∈ Ri such that

(2.18) B = A+ [Z0
0 , C].

Then one can compute a formal expansion for W as given in (2.14) with Wi ∈ Ri for all i
which transforms (2.11) to (2.16) where Z i

0 ∈ Qi for all i.

The proof of this theorem in almost this level of generality can be found in Meyer and
Schmidt(1977) and is given in sightly more generality in Section 8, see Theorem 8.2.. The
proof is completely constructive in the sense that an effective algorithm is given to find the
expansion of W and Z∗ term by term. In practice Z0 is given and so one takes the subspaces
Pi as small as possible. The spaces Qi and Ri come from an analysis of the equation in
(2.18).

3. Function Applications.

In this section we will show some applications of the method of Lie transforms when the
problem involves simply functions as opposed to vector fields.

The implicit function theorem. One of the fundamental theorems of analysis is the implicit
function theorem. We will show how to compute the implicitly defined function using Lie
transforms.

Consider a function (or formal power series) f(u, x) defined in neighborhood of the origin
in Rm ×Rn into Rn such that f(0, 0) = 0 and ∂f

∂x
(0, 0) = D is nonsingular. Then the implicit

function theorem asserts that there is an analytic function (or formal power series) ψ(u)
defined in a neighborhood of the origin in Rm into Rnsuch that ψ(0) = 0 and f(u, ψ(u)) ≡ 0.
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Introduce a small parameter ε by scaling u → ε2u, x → εx and f → ε−1f , that is define F∗
by

(3.1) F∗(u, x, ε) = ε−1f(ε2u, εx) =
∞∑

i=0

(
εi

i!

)
F 0

i (u, x)

and F 0
0 (u, x) = Dx. Let x be the variable and treat u simply as a parameter in the problem.

The functions F 0
i (u, x) are vector of polynomials in u and x and so let Pi be the vector space

of such vectors of polynomials in u and x.
By Theorem 2.1 we must be able to solve (2.18) where A is any polynomial. In this case

the Lie bracket is [F 0
0 , C] = DC. Clearly we can solve [F 0

0 , C] + A = B by taking B = 0
and C = D−1A. Thus if we define Qi = {0} and Ri = Pi, then for any A ∈ Pi, we can
solve (2.18) for B ∈ Qi = {0} and C ∈ Ri = Pi. Thus one can compute a transformation
such that F ∗(u, ξ, ε) = Dξ. But F ∗(u, ξ, ε) = F∗(u, φ(u, ξ, ε), ε) = ε−1f(ε2u, εφ(u, ξ, ε)).
So φ(u, o, 1) = ψ(u) satisfies f(u, ψ(u)) ≡ 0. This shows that the implicit function can
be computed by Lie transforms. In general the method of Lie transforms only produces
a formal series, but in this case the implicit function theorem assures that formal series
converges when the series for f does. Note that the parameter ε was only used to order the
terms in the series since it was set to 1 in the end.

The splitting lemma. The splitting lemma is an important tool in the analysis of critical
points of a function and catastrophe theory (see Poston and Stewart(1978)). Let V (x) be
a real valued analytic function defined in a neighborhood of the origin in Rn and x ∈ Rn.
Assume that the origin is a critical point for V and for simplicity assume that V (0) = 0.

Assume that the rank of the Hessian,
∂2V

∂x2
(0), is s, 0 ≤ s ≤ n. Then the splitting lemma

says that there is a change of coordinates x = φ(y) such that in the new coordinates

(3.2) V (y) =
1

2
(±y2

1 ± · · · ± y2
s) + v(ys+1, ..., yn).

Scale by x→ εx, and V → ε−2V or define

(3.3) U∗(x, ε) = ε−2V (εx) =
∞∑

i=0

(
εi

i!

)
U0

i (x).

Here the U0
i (x, µ) are polynomials in x of degree i+ 2, so let Pi be the vector space of such

polynomials. U0
0 (x) is a quadratic form in x and so by making a linear change of variable if

necessary we may assume that

(3.4) U0
0 (x) =

1

2
(±x2

1 ± x2
2 ± · · · ± x2

s).

To solve (2.18) let

(3.5) C = cxk1
1 · · ·xkn

n .

be a monomials of degree i+ 2 and where c = (c1, . . . , cn)T is an n-vector. Then

(3.6) [U0
0 , C] = ±c1xk1+1

1 xk2
2 · · ·xkn

n ± · · · ± csx
k1
1 x

k2
2 · · · xks+1

s · · ·xkn
n

so the kernel of [U0
0 , C] consists of all homogeneous polynomials of degree i+ 2 in xs, . . . , xn

and the range of [U0
0 , C] consists of the span of all monomials which contain one of x1, . . . , xs
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to a positive power or equivalently those polynomials which are zero when x1 = · · · = xs = 0.
Thus we can solve (2.18) by taking Pi as the space of all scalar homogeneous polynomials of
degree i+2, Qi the subspace of Pi consisting of all scalar homogeneous polynomials of degree
i + 2 in xs, . . . , xn alone, and Ri the space of all n-vectors of homogeneous polynomials of
degree i+ 1 in x1, . . . , xn.

Thus the method of Lie transforms will construct a change of coordinates so that in the
new coordinate

(3.7) U∗(y, ε) =

∞∑

i=0

(
εi

i!

)
U i

0(y)

where for i ≥ 1 the U i
0(y) depend only on ys, . . . , yn. Setting ε = 1 gives the form given by

the splitting lemma in (3.2).
In Meyer and Schmidt(1988) the problem for finding bifurcations of relative equilibria in

the N -body problem was reduced to finding the bifurcation of critical points of the potential
constrained to a constant moment of inertia manifold. The constraint equation was solved by
the method of Lie transforms to compute the implicitly defined function. Then by applying
the splitting lemma algorithm we obtained the bifurcation equations in a form that could be
analyzed by hand.

4. Autonomous Differential Equations

In this section we will show how Theorem 2.1 can be used to study autonomous differential
equations. There are many more applications than the ones given here.

The classical normal form. Consider the equation

(4.1) ẋ = Lx+ f(x)

where x ∈ Rn, L is an n × n constant matrix, f is an analytic function defined in a neigh-
borhood of the origin in Rn whose series expansion starts with second degree terms. Scale
the equations by x→ εx and divide the equation by ε so that equation (4.1) becomes

(4.2) ẋ =
∞∑

i=0

(
εi

i!

)
F 0

i (x),

where F 0
0 (x) = Lx and F 0

i is an n-vector of homogeneous polynomials of degree i+ 1 so let
Pi be the space of all such polynomials.

Assume that L is diagonal so L = diag (λ1, . . . , λn). In order to solve (2.18) let

(4.3)
A = axk, B = bxk, C = cxk

k = (k1, . . . , kn), x = (x1, . . . , xn), xk = xk1
1 · · · xkn

n

and substitute into (2.18) to get

(4.4) bxk = axk + (L− (Σksλs)I)cx
k.
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The coefficient matrix, L− (Σksλs)I, of cxk is diagonal with entries λj −Σksλs. So to solve
(2.18) take

(4.5)

cj =
−aj

λj −
∑
ksλs

, bj = 0 when λj −
∑

ksλs 6= 0

cj = 0, bj = aj when λj −
∑
ksλs = 0

Let ej = (0, . . . , 0, 1, 0, . . . , 0)T be the standard basis for Rn. From the above we define

(4.6)
Qi = span {ejx

k : λj −
∑
ksλs = 0,

∑
kk = i+ 1}

Ri = span {ejx
k : λj −

∑
ksλs 6= 0,

∑
kk = i+ 1}

so the condition in (ii) of the Theorem 2.1 is satisfied. So (4.2) can be formally transformed
to

(4.7) ẏ =
∞∑

i=0

(
εi

i!

)
F i

0(y),

where F i
0 ∈ Qi for all i ≥ 1. Setting ε = 1 brings the equations to the form

(4.8) ẏ = Ly + g(y)

where the terms in g lie in some Qi. It is easy to check that a term h(y) is in some Qi if and
only if h(eLty) = eLth(y) for all y and t. Thus g in (4.8) satisfies

(4.9) g(eLty) = eLtg(y).

This formulation for the normal form does not require that L be in diagonal form (L must
be diagonalizable!) . This is the classical normal form as found in Diliberto(1961) et al. For
example if n = 3 and

(4.10) L =




0 −1 0
1 0 0
0 0 −1




so L has eigenvalues −1, and ±i then the normal form is

(4.11)

u̇ = −v − va(u2 + v2) + ub(u2 + v2)

v̇ = u+ ua(u2 + v2) + vb(u2 + v2)

ẇ = −w + wc(u2 + v2),

where the a, b and c are arbitrary series. This normal form yields the so called center manifold
since the plane w = 0 is invariant and the equations on this center manifold are in Poincare’s
normal form for a center.
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Invariant tori. Consider a system of coupled van der Pol equations written in polar
coordinates. Or more generally a system of the form

(4.12)

ṙ = R∗(r, θ, ε) =
∞∑

i=0

R0
i (r, θ)

θ̇ = Θ∗(r, θ, ε) =
∞∑

i=0

Θ0
i (r, θ)

where r is a m-vector, θ is an n-vector of angles, R0
i and Θ0

i have finite Fourier series in the
θ’s with coefficients which are polynomials in the r variables. Let Pi be the space of all such
functions.

Assume that Θ0
0 = ω is a constant vector, R0

0 = P (r) and that there exist a constant

vector r0 such that P (r0) = 0 and
∂P

∂r
(r0) has no eigenvalue with zero real part. Then there

is a formal change of variables (r, θ) → (ρ, φ) such that the equations (4.12) are of the form

(4.13)

ρ̇ = R∗(ρ, φ, ε) =
∞∑

i=0

Ri
0(ρ, φ)

φ̇ = Φ∗(ρ, φ, ε) =

∞∑

i=0

Φi
0(ρ, φ)

where R∗ and Φ∗ are like R∗ and Θ∗ but have the additional property that

(4.14) R∗(r0, φ, ε) ≡ 0 and Φ∗(r0, φ+ ωt, ε) ≡ 0.

The first condition in (4.14) says that r = r0 is an invariant torus for the equations (4.13)
and the second condition says that the equations on the invariant torus are in normal form.
If there are no resonances among the frequencies ω then Φ∗(r0, φ, ε) ≡ 0.

Here

(4.15)

Z0
0 =

(
P (r)
ω

)
, C =

(
U
V

)
=

(
u(r)eikθ

v(r)eikθ

)

A =

(
a(r)eikθ

α(r)eikθ

)
, B =

(
b(r)eikθ

β(r)eikθ

)

kθ = k1θ1 + · · · + knθn
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then

(4.16)

[Z0
0 , C] =




∂P

∂r
0

0 0







U

V


−




∂U

∂r

∂U

∂θ

∂V

∂r

∂V

∂θ







P

ω


 =

=




∂P

∂r
ueikθ − ∂u

∂r
− iukωeikθ

−∂v
∂r
eikθP − ivkωeikθ


 =

(
(b− a)eikω

(β − α)eikθ

)
.

To solve the second set of equations take

(4.17)
v =

α

kω
β =

dα

dr

P

kω
when kω 6= 0

v = 0 β = α when kω = 0.

For the first equation in (4.16) first let D = ∂P
∂r

(r0) and note that u = (D − ikωI)−1 solves
Du − ikωu = −a for all k since D has no eigenvalue with zero real part by assumption. So
we take

(4.18)

u = (D − ikω)−1a

b =

(
∂P

∂r
(r) − ∂P

∂r
(r0)

)
u− ∂u

∂r
P (r)

.

This formulas satisfy the equations and clearly b(r0) = 0. The space Qi is the span of all
the solutions given for B and the space Riis the span of all the solutions given for C above.
Thus we have verified the conditions of the Theorem 2.1. This was the procedure used in
Meyer and Schmidt(1977) to calculate the regions in parameter space where two coupled van
der Pol oscillators had frequencies that were locked in. The so called entrainment domains.

5. Non-Autonomous Differential Equations

In many applications the differential equations involve time explicitly so one must consider
equations of the form ẋ = f(t, x). In this case one would allow the transformation generated
by W to depend on t also. But this case can be reduced to the previous case by replacing
the original system with the equivalent autonomous system ẋ = f(τ, x), τ̇ = 1 where τ is a
new variable.

Consider the system

(5.1) ẋ = Z∗(t, x, ε) =

∞∑

j=0

(
εj

j!

)
Z0

j (t, x),

and the near identify transformation

(5.2) x = x(t, ξ, ε) = ξ + · · ·
10



generated as a solution of the equation

(5.3)
dx

dε
= W (t, x, ε) =

∞∑

j=0

(
εj

j!

)
Wj+1(t, x), x(0) = ξ

which transforms (5.1) to

(5.4) ξ̇ = Z∗(t, ξ, ε) =
∞∑

j=0

(
εj

j!

)
Zj

0(t, ξ).

The translation of the Theorem 2.1 to the non-autonomous case goes as follows.

Theorem 5.1. Let Pj (Rj respectively ) be linear spaces of smooth time dependent tensor
(respectively vector) fields defined for j = 1, 2, ..., x ∈ D ⊂ Rn and t ∈ R and let Qj be a
subspace of Pj. If (i) Z0

j ∈ Pj for j = 0, 1, 2, ..., (ii) [Pi,Rj] ⊂ Pi+j , i, j = 0, 1, 2, ... (iii) for
any i = 1, 2, 3, ... and any A ∈ Pi there exist B ∈ Qi and C ∈ Ri such that

(5.5) B = A+ [Z0
0 , C]− Ċ

then one can construct W as in (5.3) with Wi ∈ Ri which generates a transformation (5.2)
which takes (5.1) to (5.4) with Z i

0 ∈ Qi.

The method of averaging. The method of averaging is a special case of the normal form
theorem given above. The method of averaging deals with a periodic system of the form
(5.1) where Z0

0 = 0, i.e. ẋ = εZ0
1 (t, x) + · · · . One seeks a periodic change of variables, so

the function W must be periodic in t also. Equation (5.5) reduces to B = A − Ċ. Given a
periodic A in order to have a periodic C it is necessary and sufficient that we take B as the
average over a period of A, so B is independent of t, and C as any indefinite integral of A−B.
This shows that the normalized equation (5.4) are autonomous, i.e. Z i

0 is independent of t.
The name comes from the fact that Z1

0 is the time average of Z0
1 .

The Floquet exponents and the Liapunov transformation. A classical problem is to com-
pute the characteristic exponents of Mathieu’s equation ẍ + (a + b cos 2πt)x = 0 or other
similar linear periodic systems. Assume that Z0

0(t, x) = Lx where L is diagonal matrix
L = diag (λ1, . . . , λn) and Z0

i (t, x) = Ai(t)x where Ai(t) in an n×n T -periodic matrix, so let
Pi be the space of all linear T -periodic systems. Seek a linear T -periodic change of variables,
so seek Wi(t, x) = Ci(t)x where Ci(t) is to be T -periodic also and take Ri be the space Pi.
Equation (5.5) becomes

(5.6) B(t) = A(t) + C(t)L− LC(t) − Ċ(t)

where A,B and C are matrices. The equation for the ijth component is

(5.7) bij = aij + (λi − λj)cij − ċij.

This is a linear first order differential equation in cij. If (λi − λj)T 6= n2πi then take bij to
be the average of aij and cij the unique T -periodic solution of (5.7). Thus the space Qi is
all linear systems with constant diagonal coefficient matrices. Thus we can compute a linear
periodic change of coordinates which reduces the linear periodic system (5.1) to the linear
diagonal constant system (5.4), this transformation is known as the Liapunov transformation.
The entries on the diagonal are the Floquet exponents. The equation (5.6) has been studied
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in the more general case when L is not necessarily diagonal. The presentation given here is
merely a simple example.

A very similar problem is to calculate the series expansion of a solution of a linear differ-
ential equation at a regular singular point.

6. The Computational Darboux Theorem

To our knowledge the method of Lie transforms has not been used on tensor fields more
complicated than vector fields. Here we will give a somewhat frivolous example to illustrate
the generality of the method. In order to avoid the notational overload found in modern
treatises like Kobayashi and Nomizu(1963) or Abraham and Marsden(1978), we shall use
classical tensor notation. Thus repeated indices are summed over. Since the problem is a
computational one we must use coordinates in the end anyway. Flanders(1963) is a highly
recommended introduction to differential forms. The fundamental geometry of Hamiltonian
mechanics is embodied in a symplectic structure, Ω, i.e. a closed, non-degenerate 2-form. In
a neighborhood of the origin in R2n

(6.1) Ω = Ωij(x)dx
i ∧ dxj

where we have used the summation convention, Ωij = −Ωji, and the Ωij(x) are real analytic
in x. {Ωij} is a 2-covariant tensor, so if you change coordinates by x = x(y) then the tensor
in the y coordinates is

(6.2) Ω(y) = Ωij(x(y))
∂xi

∂ym

∂xj

∂yn
dym ∧ dyn.

Sometimes we will think of Ω(x) as the skew-symmetric matrix (Ωij(x)), the coefficient
matrix of the form (6.1). Ω is non-degenerate means that the matrix Ω(x) is nonsingular for
all x. (6.1) means that the matrix Ω transforms by

(6.3) Ω → ∂x

∂y

T

Ω
∂x

∂y
.

Ω is closed means that

(6.4) dΩ =
∂Ωij

∂xk
dxi ∧ dxj ∧ dxk = 0.

Since we are working locally, a closed form is exact by Poincare’s lemma so there is a one
form α(x) = αi(x)dx

i such that Ω = dα.
This matrix Ω(0) is nonsingular and skew symmetric so there is a nonsingular matrix P

such that

(6.5) P T Ω(0)P = J =

(
0 I
−I 0

)
,

which means that after a linear change of coordinates the coefficient matrix of Ω(0) is J .
Darboux’s theorem says there is a nonlinear change of coordinates defined in a neighborhood
of the origin in R2n so that in the new coordinates the coefficient matrix of Ω is identically
J in the whole neighborhood. Our computational procedure follows the proof given by
Weinstein(1971).

12



Assume that the linear change of variables has been made so that Ω(0) = J and scale by
x→ εx,Ω → ε−1Ω so that

(6.6) Ω =
∞∑

s=0

(
εs

s!

)
ω0

s ,

where ω0
s is a closed 2-form with coefficients that are homogeneous polynomials in x of degree

s. Let Ps be the vector space of such forms and Qs = {0}. Let A ∈ Ps, B = 0 ∈ Qs, and
C ∈ Rs, where Rs is the vector space of vector fields which are homogeneous polynomials
of degree s+ 1 condition. In coordinates equation (2.18) for this problem is

(6.7) 0 = Asm + Jim
∂C i

∂xs
+ Jsj

∂Cj

∂xm
.

(In general there would be a term +∂Jsm

∂xi C
i in (6.7) but this term is zero since J is constant.)

Since A is a closed two form there is a one form α such that A = dα so (6.7) becomes

(6.8) 0 =
∂αs

∂xm
− ∂αm

∂xs
+ Jim

∂C i

∂xs
+ Jsj

∂Cj

∂xm
.

This equation has a solution C i = αi+n for 1 ≤ i ≤ n,C i = −αi−n for n ≤ i ≤ 2n, or
C = Jα. Thus there is a solution of (2.18) and so the coordinate change given by Darboux’s
theorem can be computed by Lie transforms.

7. Hamiltonian Systems

For Hamiltonian systems the Lie bracket is replaced by the Poisson bracket. Let F,G and
H be smooth real valued functions defined in an open set in R2n, the Poisson bracket of F
and G is the smooth function {F,G} defined by

(7.1) {F,G} =
∂F

∂x

T

J
∂G

∂x

where J is as in (6.5) the usual 2n × 2n skew symmetric matrix of Hamiltonian mechanics.
A Hamiltonian differential equation (generated by the Hamiltonian H) is

(7.2) ẋ = J
∂H

∂x
.

The Poisson bracket and the Lie bracket are related by

(7.3) J
∂

∂x
{F,G} =

[
J
∂F

∂x
, J
∂G

∂x

]

so the Hamiltonian vector field generated by {F,G} is the Lie bracket of the Hamiltonian
vector fields generated by G and F , see Abraham and Marsden(1978).

Consider a Hamiltonian perturbation problem given by the Hamiltonian

(7.4) H∗(x, ε) =

∞∑

j=0

(
εj

j!

)
H0

j (x).

13



A near identity symplectic change of coordinates x = φ(ξ, ε) = ξ + · · · can be generated as
the solution of the Hamiltonian differential equations

(7.5)
dx

dε
= J

∂W

∂x
(x, ε), x(0) = ξ, W (x, ε) =

∞∑

j=0

(
εj

j!

)
Wj+1(x).

It transforms (7.4) to

(7.6) H∗(x, ε) =
∞∑

j=0

(
εj

j!

)
Hj

0(x).

Theorem 7.1. Let Pj, Qj, and Rj be vector spaces of smooth Hamiltonians on D with
Qj ⊂ Pj. Assume that (i) H0

j ∈ Pj for j = 1, 2, 3... (ii) {Pi,Rj} ⊂ Pi+j for i, j = 1, 2, 3, ...
(iii) for any j and any A ∈ Pj there exist B ∈ Qj and C ∈ Rj such that

(7.7) B = A+ {H0
0 , C}.

Then one can compute a formal expansion for W in (7.5) with Wj ∈ Rj for all j which

transforms (7.4) to (7.6) where Hj
0 ∈ Qj for all j.

The classical Birkhoff normal form for a Hamiltonian system near an equilibrium point
is as follows. Assume that the Hamiltonian (7.4) came from scaling a system about an
equilibrium point at the origin. That is, H0

0 (x) is a quadratic form and H0
j is a homogeneous

polynomial of degree j + 2. Assume that the linear Hamiltonian system

(7.8) ẋ = J
∂H0

0

∂x
= Ax

is such that A is diagonalizable. Then one can compute a symplectic change of variables
generated by (7.5) which transforms (7.4) to (7.6) with

(7.9) H∗(eAtx, ε) = H∗(x, ε).

For a Lie transform proof see Meyer(1974).
Kummer(1976) has shown that Lie algebra theory is useful in studying normal forms in

some special cases in celestial mechanics. Taking this lead Cushman, Deprit and Mosak(1983)
have used results from representation theory to give a complete description of the normal
forms for Hamiltonian systems without the diagonalizable assumption.

8. The General Lie Transform Algorithm

In this section we will give a proof of the main algorithm of Deprit, Theorem 8.1, and the
main perturbation algorithm, Theorem 8.2, for general tensor fields. Theorem 8.2 is a slight
extension of Theorem 2.1. A general reference for the tensor analysis and notation used here
is Abraham and Marsden(1978).

Let E,F,G and E1, . . . ,Ek be vector spaces over K where K is the real numbers R or the
complex numbers C, L(E; F) be the space of bounded linear functions from E to F,E∗ =
L(E,K) be the dual space of E, and Lk(E1, . . . ,Ek; K) be the space of bounded multilinear
maps from E1×· · ·×Ek into K. Define T r

s (E) = Lr+s(E∗, . . . ,E∗,E, . . . ,E; K)−−r copies of
E∗ and s copies of E, so if Z ∈ T r

s (E) then Z : E∗× . . .×E∗×E× . . .×E → K is linear in each
argument. The elements, Z ∈ T r

s (E), are called r-contravariant, s-covariant tensors or simply
14



(r, s)-tensors. In the case r = s = 0 we define T 0
0 (E) = K. If A : E → E is an invertible

linear map and A∗ : E∗ → E∗ is the dual map, then Ar
s : T r

s (E) → T r
s (E) is the invertible

linear map defined by (Ar
sZ)(α1, . . . , αr, β1, . . . , βs) = Z(A∗α1, . . . , A∗αr, A−1β1, . . . , A

−1βs).
Let M be a smooth manifold modeled on a vector space E and p ∈ M any point. In

the classical and still most important case M is simply an open set D in Rm and E is Rm

itself. The tangent space to M at p, denoted by TpM is isomorphic to E itself; the cotangent
space to M at p, denoted by T ∗

pM , is the dual of TpM ; and the space of r-contravariant,
s-covariant tensors at p is T r

s (TpM). The vector bundles built on TpM,T ∗
pM , and T r

s (TpM)
are respectively: TM , the tangent bundle; T ∗M , the cotangent bundle; and T r

sM , the (r, s)-
tensor bundle. Smooth sections in these bundles are called respectively: vector fields ( or
contravariant vector fields or ordinary differential equations ); covector fields ( or one forms
); and (r, s)-tensor fields. Let T (M) be the space of smooth vector fields, T ∗(M) the space
of smooth one-forms, and T r

s (M) the space of smooth (r, s)-tensors. Let V : M → M be
a diffeomorphism, p ∈ M, q = V (p) and DV (p) : TpM → TqM be the derivative of V at
p then DV r

s (p) : T r
s (TpM) → T r

s (TqM). The results of this section are quite general so M
could be a Banach manifold modeled on a reflexive Banach space E, but the author has no
examples which require this level of generality.

Consider the case where M is an open set in Rm with coordinates (x1, . . . , xm). A (0, 0)-
tensor field is simply a smooth function Z : M → K. A vector field, Z, is given by

(8.1) Z = Z1(x)
∂

∂x1
+ · · · + Zm(x)

∂

∂xm
,

where Z1, . . . , Zm are smooth real valued functions on M. The vector field Z is the same as
the differential equation

(8.2) ẋ = Z(x) (or ẋi = Z i(x), i = 1, . . . ,m).

A covector field, Z, is given by

(8.3) Z = Z1(x)dx
1 + · · · + Zm(x)dxm,

where again Z1, . . . , Zm are smooth functions.
Let U be a smooth vector field (autonomous differential equation) on M and let X(τ, y)be

the general solution of the differential equation

(8.4) x′ =
dx

dτ
= U(x)

which satisfies X(0, y) = y. That is, X ′(τ, y) = U(X(τ, y)). Assume that there is an τ0 > 0
such that X : (−τ0, τ0) ×M →M is defined and smooth. X is a function of two arguments
and let ’ denote the partial derivative with respect to the first argument, ′ = ∂/∂τ , and let D
denote the partial derivative with respect to the second argument, D = ∂/∂y, thusDX(τ, p) :
TpM → TqM, q = X(τ, p) and DXr

s (τ, p) : T r
s (TpM) → T r

s (TqM). Let Z : M → T r
s (M) be

a smooth (r, s)-tensor field on M,p ∈ M, q = X(τ, p). Then Z(p) ∈ T r
s (TpM), Z(X(τ, p)) ∈

T r
s (TqM), and A(τ ) = DXr

s (τ, p)−1Z(X(τ, p)) ∈ T r
s (TpM), so A(τ ) is a smooth curve of

(r, s)-tensors in the fixed tensor space T r
s (TpM). The Lie derivative of Z in the direction of

U (or along U) is denoted by [Z,U ] and is defined as

(8.5) [Z,U ](p) =
∂

∂τ
A(τ )

∣∣∣∣
τ=0

=
∂

∂τ
DXr

s (τ, p)−1Z(X(τ, p))

∣∣∣∣
τ=0
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Since A(τ ) ∈ T r
s (TpM) for all τ its derivative is in T r

s (TpM) so [Z,U ](p) ∈ T r
s (TpM) and

[Z,U ] is a smooth (r, s)-tensor field also and [·, ·] : T s
s (M) × T (M) → T r

s (M) is bilinear.
[·, ·] is called the Lie bracket.

If M is an open set in Rm and Z : M → R is a smooth function ((0,0)-tensor field) then
in classical notation

(8.6) [Z,U ](x) = ∇Z(x) · U(x)

so [Z,U ] is the directional derivative of Z in the direction U . If Z is a smooth vector field
(ordinary differential equation) as in (8.2) then

(8.7) [Z,U ](x) =
∂Z

∂x
(x)U(x) − ∂U

∂x
(x)Z(x)

where Z and U are column vectors. If Z is a one form thought of as a column vector then

(8.8) [Z,U ](x) =
∂Z

∂x
(x)TU(x) +

∂U

∂x
(x)TZ(x).

Suppose that the perturbation problem is given as an (r, s)-tensor field Z = Z∗ on M
which has a formal expansion in a small parameter ε. Consider

(8.9) Z(ε, x) = Z∗(ε, x) =
∞∑

j=0

(
εj

j!

)
Z0

j (x)

where each Z0
j : M → T r

sM is an (r, s)-tensor field.
To simplify the perturbation problem given by Z∗ in (8.9) we seek a near identity change

of coordinates of the form

(8.10) x = X(ε, y) = y + · · ·
where X(ε, y) is constructed as a formal solution of the nonautonomous system of differential
equations

(8.11)
dx

dε
= W (x, ε) =

∞∑

j=0

(
εj

j!

)
Wj+1(x),

satisfying the initial condition

(8.12) x(0) = y

where each Wj : M → TM is a smooth vector field.
The Lie transform of Z(= Z∗) by W , denoted by L(W )Z or Z∗ for short, is the tensor

field Z∗ expressed in the new coordinates and so is an (r, s)-tensor field depending on the
parameter ε also. Specifically,

(8.13) Z∗(ε, y) = L(W )Z(ε, y) = DXr
s (ε, y)−1Z∗(ε,X(ε, y))

In the new coordinates y the tensor Z∗(x, ε) becomes

(8.14) Z∗(y, ε) = L(W )Z(ε, y) =

∞∑

j=0

(
εj

j!

)
Zj

0(y).

We say (8.10) or (8.11) transforms (8.9) into (8.14). The method of Lie transforms introduces
a double indexed array of tensor fields {Z i

j}, i, j = 0, 1, . . . which agree with the definitions
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given in (8.9) and (8.14) when either i or j is zero. The other terms are intermediary
terms introduced to facilitate the computation. The main theorem on Lie transforms by
Deprit(1969) in this general context is the following.

Theorem 8.1. Using the notation given above, the tensor fields {Z i
j}, i = 1, 2, . . . , j =

0, 1, . . . satisfy the recursive identities

(8.15) Z i
j = Z i−1

j+1 +

j∑

k=0

(
j

k

)
[Z i−1

j−k,Wk+1].

Remarks. The above formulas contain the binomial coefficient

(
j

k

)
=

j!

k!(j − k)!
. Note

that since the transformation generated by W is a near identity transformation the first term
in Z∗ and Z∗ are the same, namely Z0

0 . Also note that the first term in the expansion for
W starts with W1. This convention imparts some nice properties to the formulas in (8.15).
Namely, each term in (8.15) has indices summing to i+ j and each term on the right hand
side has upper index i-1.

The interdependence of the {Z i
j} can easily be understood by considering the Lie triangle

(8.16)

Z0
0

↓
Z0

1 → Z1
0

↓ ↓
Z0

2 → Z1
1 → Z2

0

↓ ↓ ↓
Z0

3 → Z1
2 → Z2

1 → Z3
0

↓ ↓ ↓ ↓

The coefficients of the expansion of the old tensor field Z∗ are in the left column and those
of the new tensor field Z∗ are on the diagonal. The formula (8.15) says that to calculate any
element in the Lie triangle you need the entries in the column one step to the left and up.

Proof. Let Y (ε, x) be the inverse ofX(ε, y) so Y (ε,X(ε, y)) ≡ y,X(ε, Y (ε, x)) ≡ x,DX(ε, y)−1 =
DY (ε,X(ε, y)), and DXr

s (ε, y)−1 = DY r
s (ε,X(ε, y)). Thus (8.13) becomes L(W )Z(ε, y) =

DY r
s (ε,X(ε, y))Z∗(ε,X(ε, y)).

Define the differential operator D = DW acting on (r, s)-tensor fields depending on a
parameter ε by

(8.17) DK(ε, x) =
∂K

∂ε
(ε, x) + [K,W ](ε, x).

In computing the Lie bracket in (8.17) the ε is simply a parameter and so held fixed during
any differentiation. With this notation we have

(8.18)
d

dε

{
DY r

s (ε, x)K(ε, x)

∣∣∣∣
x=X(ε,y)

}
= DY r

s (ε, x)DK(ε, x)

∣∣∣∣
x=X(ε,y)

.
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Define new functions by Z0 = Z, Z i = DZ i−1, i ≥ 1. Let these functions have series expan-
sions

(8.19) Z i(ε, x) =
∞∑

k=0

(
εk

k!

)
Z i

k(x)

so

(8.20)

Z i(ε, x) = D
∞∑

k=0

(
εk

k!

)
Z i−1

k (x)

=

∞∑

k=0

(
εk−1

(k − 1)!

)
Z i−1

k +

∞∑

k=0

[(
εk

k!

)
Z i−1

k (x),

∞∑

s=0

(
εs

s!

)
Ws+1(x)

]

=

∞∑

j=0

(
εj

j!

)(
Z i−1

j+1 +

i∑

k=0

(
j

k

)[
Z i−1

j−k,Wk+1

]
)
.

So the functions Z i
j are related by (8.15). It remains to show that Z∗ = G has the expansion

(8.14). By Taylor’s theorem and (8.18)

(8.21)

G(ε, y) =

∞∑

n=0

(
εn

n!

)
dn

dεn
G(ε, y)

∣∣∣∣
ε=0

=
∞∑

n=0

(
εn

n!

)
dn

dεn

(
DY r

s (ε, x)Z(ε, x)

∣∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

) (
DY r

s (ε, x)DnZ(ε, x)

∣∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

)
Zn

0 (x)

�

In the cases of interest the tensor field is given and the change of variables is sought to
simplify it. When the field is sufficiently simple it is said to be in ’normal form’. The main
Lie transform algorithm starts with a given field which depends on a small parameter, ε,
and constructs a change of variables so that the field in the new variables is simple. The
algorithm is built around the following observation.

Consider the series (8.9) as given so all the Z0
i are known. Assume that all the entries in

the Lie triangle are known down to the N row, so the Z i
j are known for i+j ≤ N and assume

the Wi are known for i ≤ N. Let Z̃ i
j be computed from the same differential equation, so

Z̃0
i = Z0

i for all i, and with W̃1, . . . , W̃N where W̃i = Wi for i = 1, 2, . . . , N − 1 but W̃N = 0.
18



Then

(8.22)
Z i

j = Z̃ i
j for i+ j < N

Z i
j = Z̃ i

j + [Z0
0 ,WN ] for i+ j = n

This is easily seen from the recursive formulas in Theorem 8.1. Recall the remark that the
sum of all the indices must add to the row number, so WN does not effect the terms in the
first N − 1 rows. The second equation in (8.22) follows from a simple induction across the
N th row. The algorithm can be used to prove a general theorem which includes almost all
applications, see Meyer and Schmidt(1977).

Theorem 8.2. Let {Pi}∞i=0, {Qi}∞i=1 and {Ri}∞i=1 be sequences of linear spaces of smooth fields
defined on a manifold M where {Pi}∞i=0 and {Qi}∞i=1 are (r, s)-tensor fields and {Ri}∞i=1 are
a vector fields. Assume:

(i) Qi ⊂ Pi, i = 1, 2, . . .
(ii) Z0

i ∈ Pi, i = 0, 1, 2, . . .
(iii) [Pi, Rj ] ⊂ Pi+j , i, j = 0, 1, 2, . . .
(iv) for any A ∈ Pi, i = 1, 2, . . . there exists B ∈ Qi and C ∈ Ri such that

(8.23) B = A+ [Z0
0 , C].

Then there exists a W with a formal expansion of the form (8.11) with Wi ∈ Ri, i = 1, 2, . . .,
which transforms the tensor field Z∗ with the formal series expansion given in (8.9) to the
field Z∗ with the formal series expansion given by (8.14) with Z i

0 ∈ Qi, i = 1, 2, . . ..

Proof. Use induction on the rows of the Lie triangle. Induction Hypothesis In: Let Z i
j ∈ Pi+j

for 0 ≤ i+ j ≤ n and Wi ∈ Ri, Z
i
0 ∈ Qi for 1 ≤ i ≤ n.

I0 is true by assumption and so assume In−1. By (8.15)

(8.24) Z1
n−1 = Z0

n +
n−2∑

k=0

(
n− 1

k

)
[Wk+1, Z

0
n−1−k] + [Wn, Z

0
0 ].

The last term is singled out because it is the only term that contains the element,Wn, which
is not covered either by the induction hypothesis or the hypothesis of the theorem. All the
other terms are in Pn by In−1 and (iii). Thus

(8.25) Z1
n−1 = K1 + [Wn, Z

0
0 ]

where K1 ∈ Pn is known. A simple induction on the columns of the Lie triangle using (8.15)
shows that

(8.26) Zs
n−s = Ks + [Wn, Z

0
0 ]

where Ks ∈ Pn for s = 1, 2, . . . , n and so

(8.27) Z0
n = Kn + [Wn, Z

0
0 ].

By (iv) solve (8.27) for Wn ∈ Rn and Zn
0 ∈ Qi. Thus In is true. �

The theorem given above is formal in the sense that the convergence of the various series is
not discussed. In interesting cases the series diverge, but useful information can be obtained
in the first few terms of the normal form. One can stop the process at any order, N , to
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obtain a W which is a polynomial in ε and so converges. From the proof given above it is
clear that the terms in series for Z∗ up to order N are unaffected by the termination.
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