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AN ANOSOV TYPE STABILITY THEOREM FOR ALMOST PERIODIC SYSTEMS

Kenneth R. Heyer1

ABSTRACT. In this paper I discuss a natural generalization of the

structural stability theorem for Anosov diffeomorphisms i.e.

diffeomorphisms which have a global hyperbolic structure. The maps

discussed define skew product dynamical systems over a discrete
almost periodic system. This is the natural generalization for
almost periodic systems of the Poincaré map for periodic systems.

This follows from the Miller-Sell method of embedding an almost

periodic system of differential equations in a flow. General-

izations are given of the shadowing lemma, the expansive property,

and the openness and the structural stability of Anosov systems.

I. Introduction. Recently, George Sell and I have been developing a geometric
theory of systems of almost perlodic ( a.p. ) differential equations along the
lines suggested by Smale (1867) for autonomous or periodic systems. Smale’'s
program seeks global étability results and rest heavily on the concept of a
hyperbolic structure. One of the main tools of this theory is the shadowing
lemma of Anosov (1967) and Bowen (1975).

Miller (1965) and Sell (1967) showed how to embed the solutions of an
almost pericdic system of differential equations in a dynamical system . This
dynamical system is a skew product flow over the translation flow on the hull
of the a.p. equations. This embedding introduces geometric techniques into

the theory of a.p. systems.

In Meyer and Sell (1987a), we present a simple analytic proof of the
classical shadowing lemma which easily generalizes to the skew product systems
of Miller and Sell. In Meyer and Sell (1987c) we present a slightly different
generalization of the shadowing lemma. In Meyer and Sell (1987b,¢), we give a
generalization the Smale horseshoe basic set and Melnikov's method to a.p.

systems. This paper will give a generalization to a.p. systems of the Anosov
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170 KENNETH R. MEYER

(1967) stability theorem. The proof of this stability theorem is a simple
application of the generalized shadowing lemma given in our previous papers
once we establish that the generalized Anosov systems are open in the

appropriate topology.

Although one usually thinks of Smale’s program as dealing solely with
dissipative systems, both the horseshoe and Anosov systems appear in
Hamiltonian systems. In fact Poincaré (1838) discussed transverse homoclinic
orbits, which imply horseshoes, in the restricted three body problem.
Geodesic flows on manifolds with negative curvature are Hamiltonian Anosov
systems -- see Anosov (1967). Markus and Meyer (1974) give another example of
Hamiltonian Anosov systen,

The Section II gives a brief introduction to some of the basic geometric
results about almost periodic systems. In particular the hull of an a.p.
function, the translation flow on the hull, the existence of cross sections,
and almost periodic suspensions are defined and discussed. Section III gives
the Miller-Sell embedding of the solutions of a system of a.p. equations into
a skew product dynamical system. It also gives the definitions of a skew
Anosov system, skew equivalence and skew structural stability. With these
definitlons the main theorem says the skew Anosov systems are skew
structurally stable. Section IV contains a discussion of the shadowing lemma
for skew Anosov systems, the proof of the openness of skew Anosov systems and
the proof of the structural stability of skew Anosov systems using these two

facts.

II. The Hull, Cross Sections, and Suspensions. Throughout this paper almost
periodic ( a.p. ) will be in the sense of Bohr(1958). Besicovitch (1932),
Bohr (1959), Favard (1933) and Fink (1874) are good general references on
almost periodic functions and differential equations. The examples and some
of the other elementary facts given here are discussed in more detail in Meyer
and Sell (1987c). Let C = C(R,R") ( or C(R,C")) denote the space of
continuous functions from R into R" ( or C" ) with the topology of uniform
convergence on compact set -- the compact open topology. Translations define

a flow on C as follows
(1) n: CxR— C: (f,1) > fT

where ft(t) = f(t+1). For any f € C the orbit closure of f is called the hull
of f and is denoted by H(f). If f is a.p. then H(f) Is a compact minimal set;
each element g € H(f) is a.p. with H(f) = H(g); n|H(f) is equicontinuous; and
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H(f) can be given a compact, connected Abelian group structure. We also let
AP denote the space of a.p. functions with the sup norm on R. The hull is
defined in this space and the above results hold there also -- see Sell
(1971).

If £ is a.p., lts associated Fourier series will be denoted by
(2) f ~ Z 8 exp iukt.

It follows that fr ~ z 8, exp iuk(t+t). If ftn — g, use the Cantor diagonal
procedure to select a subsequence if necessary such that

(3) T mod 21t/uk as n — », for all k.

Then the Fourier coefficients of fT converge to the Fourler coefficlents of g

SO

(4) g~ z 2, exp iuk(t+ak).

Thus, if g € H(f) there are angles o defined mod 2u/0k such that (4) holds.

Example 1: Consider a quasi-periodic function of the form

(5) q(t) = a,exp ju,t + a_exp lo.t

1 2 2

where ul/u2 is irrational and al,a2 are real. In this case

H(q) = { a,exp lol(t+a1) + 2,exp 102(t+a2): o« defined mod 21:/01 }.

i

Thus the two angles @,,@, are coordinates for H(q), or H(q) is homeomorphic to
the two torus.

Example 2: Consider a limit periodic function of the form
L]
t
(8) Lt) = Zak exp i2n [ _k]
0 2

where the a are chosen so that the serles converges absolutely and uniformly.

In this case g € H({) if and only if

@ t o+ o
(7 glt) = z 2, exp ior [ ___7?_—']
0 2

where the angles ® are defined mod zkand satisfy @ = et mod 2k. In this
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case H({) is homeomorphic to the standard solenoid -- gee Figure 1.

Figure 1. H({4) -- The solenoid.

Aflowe : X x R — X, Xa compact metric space, admits a (global) cross
section Z if i) Z is a closed subset of X, ii) all trajectories meet Z, and
i11) there is a positive continuous function T : Z — R such that

0(2,T(z)) € Z for all z € Z and o(z,t) ¢ Z for O < t <T(z). The function T
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is called the rfirst return time. The Poincare map ( or section map ) is the

map

(8) P:

N

—Z: z — olz,T(z)).

The translation flow on the hull of an almost periocdic function always
admits a cross section. Let £ be a.p. and have a Fourler series given in (2)
then if g e H(f)

(9) g, ~ Z a  exp iuk(t+ak+t) ~ X a, exp imk(ak+r) exp iwkt

thus the Fourier coefficient corresponding to the frequency @, is
a, exp 1uk(ak+'r) which is has a constantly changing argument as t varies

provided v * 0. Thus a cross section to the translation flow on H(f) is

(10) Z=4{geHf): arg ( a exp 1uk(ak+r) ) =0},

In this case the first return time is 2n/uk and the Poincaré map defines a

discrete a.p. dynamical syétem.

Example 1. A cross section to the transliation flow on H(q) is
al = 0 mod 21[/01 and a2 can be used as a coordinate it this cross section. In
this case the Poincaré map is the irrational rotation of the circle

P : % = a, +(u2/u1)2n.

Example 2. A cross section to the translation flow on H({) is
¢1 = 0 mod 1 -- the shaded disk in Figure 1. Topologically, this cross
section is a Cantor set and the associated Poincaré map Is equivalent to the

classical adding machine. The adding machine is the dynamical system

W -]
(11) 7 g {0,1} — g {0,1} : SBna — kT 1,

i.e. the space is all binary integers with the product topology and the map
adds 1 to a binary integer. See Meyer and Sell (1987¢) for more details.

Let P : Z — Z be a discrete a.p. dynamical system, say the irrational
rotation of the circle or the adding machine. Let D: X — X be a discrete
dynamical system, i.e. D is a homeomorphic of the topological space X. The
P - almost periodic suspension of D is defined as the suspension of the
product systemP xD: Zx X — 2 x X : (z,x) — (P(z),D(x)). That is, first
define the parallel flow



174 KENNETH R. MEYER

v: (ZXXXR)XRo(ZxXxR): {{z,x,1),t) = (z,%, 1+t)

and then drop this flow to the quotient space ( Z x X x R )/~ where ~ is the
equivalence relation (z,x,1) ~ (P(2),D(x),T+1)

III1. Skew Product Flows and Skew Anosov Systems. Now let G be the space of
functions f from R" x Rl into R such that for every compact set K ¢ Rzn, (1)
the function 1s uniformly continuous on K x R and (ii) there is a constant k

such that
If(x,t) - f(y,t)] <klx-yl, t €R, x,y € K.

Let G be given the compact open topology. Define the flow m: GX R —G:
(F,t} : — Ft where Ft(x,t) = F(x,t+t) and define the hull as before. Let
L(x,t) € G be almost periodic in t uniformly in x (u.a.p.), Consider

the system of differential equation

(1) %X = F(x,t), F e H(L).

This might be a Hamiltonian system on an even dimensional space. Let
®(t,x,F) be the solution of (1) such that ®(0,x,F) = x. Assume that & is
defined for all t € R, x € R", F € H(L). Miller (1965) defined a flow on
R x H(L) by

m: (R xH(L) ) xR — R x H(L)
(2)

( (%, F), t)—(8(t,xF), Ft ).

This is an example of a skew product flow, where the space is a product and
the flow acting on the second factor is a flow in its own right. Under the
general assumption of smooth F in (1) the function & and its first partial
with respect to x will be continuous on Rn x H(L), but it makes no sense to
speak of a partial derivative of ¢ with respect to F because H(g) is not a
manifold in general. See Sell (1971) for a general discussion and more
details.

Example 3. Consider the differential equation
(3) x = f(x) + ep(t), p € K(r)

where f : R® — R" is smooth and r : R - R is a.p. Also assume that
solutions are defined for all t and for all values of the small parameter e.
Let Z be any cross section for the flow on the hull of r with constant first

return time T and Poincaré map P. Let ¢(t,x) be the solution of (3) such that
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¢(0,x) = x when € = 0. In order to do a perturbation analysis one considers
(3) as an a.p. system even when ¢ = 0. That being the case, when £ = 0 the
dynamical system defined by (2) equivalent to the P-almost periodic suspension
of ¢(T,x). Thus we can consider (3) as a pertﬁrbation problem where the
unperturbed system is a P~almost periodic suspension. Notice that in this
example the perturbation would not change the flow on the base, it.e. the
translation flow on the hull of r would be the same for all values of the
perturbation parameter €. This is the motivation for the definitions given
below.

Let P: Z — Z be a discrete a.p. dynamical system and M a smooth,
connected, compact manifold. Then A : M x Z — M x Z will be called a skew
Anosov system ( over P ) if
i) A is a skew product system over P, i.e. A(m,z) = (B(m,z),P(z));
i1) B: Mx Z — M, has a continuous partial derivative with respect to its

first argument, denoted by DlB;

111) there exist subspaces Efm 2) and E?m 2) such that
_ .S u
(4) TmM = E(n’z) ® E(m'z) for all (m,z) e Mx 2

and this splitting is continuous;

S

. S . gl
iv) DlB(m,z) : E(m'z) - EA(m,z) DIB(m,z) i E

u
(mz)

Alm,2)
v) there are constants C > 0 and 0 < A < 1 such that

D Bn(m,z)(u) tscanu for u e ES andn>0
1 (m,2z)
(8)

# DB M(m)(u) W sCA™ 1 u for u e EX and n > 0,
1 (m,z)
and all (m,z) € M x 2.

let A, : MXZ o5 MxZ: (mz) - (Bi(m,z).P(z)) 1 =1,2 be two skew
product systems over the same base P : Z — Z. We say A1 and Az are
skew equivalent if there is a homeomorprism H: M x 2 - M x 2

(m,z) — (h(m,z),2) such that the following diagram commutes:
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Mx2 —M w3 Mx2Z

(8) H

MxZ2 —— Mx2Z

Note that here and several times below we treat the second variable
differently. Here we require that H be the identity map on the second factor.
Thinking about the differential equation examples given above these seems
natural since the second factor corresponds to the time translate of the
equations. Thus H does not change the clock.

Let cé - cé(n X Z, M x 2) be the space of functions

¢ MxZ—-oMx2Z: (mnz2) — (¢(mz),P(2)) where ¢ has a continuous first
partial with respect to it first argument and we place the topology of uniform
convergence of the functions and there first partial with respect to its first

argument. That is two such functions are close if their values are close and
1
P

stable if the 1s a neighborhood N of & in Cé such that if ¥ € N then ¢ and ¥

are skew equivalent. The main result of this note is:

their first partials are close. We say that ¢ € C. is skew structurally

Theorem: Skew Anosov systems are skew structurally stable.

IV. The Shadowing Lemma, Openness, and the Proof of Structural Stability. Let
P : Z — Z be a discrete a.p. dynamical system, M a smooth compact, connected
manifold and A: MxZ 5 Mx Z: (mz) — (B(mz),P(z)) be a discrete skew
product dynamical system. For a > 0 a (skew) a-pseudo-orbit for A is a

bisequence ((mi.zi)}, -0 < 1 <, with Zi,q P(zi) and d(m (m ,21) < a

<.+ B
for all i. Here d is some distance function on M. Note th;II{zi}iis a
P-orbit and so we allow jumps of distance « in the M direction only. If we
think in terms of the differential equation examples of the previous section
this means we allow jumps in the solutions of one equation but do not allow a
Jump in the equations. An A-orbit { Ai(mo,zo) = (mi’zi) } (skew) B-shadows an
«a-pseudo-orbit { (pi,zi) } if d(mi.pi) < B for all i and of course

Ziy © P(zi). Note that the base orbits are the same. In Meyer and Sell
(1987c) we give a simple proof of:
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Theorem ( The skew shadowing lemma ): If A is an skew Anosov system, then for
every B > 0 there is an a > 0 such that every a-pseudo-orbit is B-shadowed by
an A-orbit. Morecver, there is a ﬁo > 0 such that if 0 < B < BO then the
A-orbit given above s uniquely and continuously determined by the

a-pseudo-orbit.

Continulty means that the map which sends Py — M, is continuous. The
constant BO is a function of the constants C and A in the definition of an

Anosov system.

A is (skew) expansive if there is an £ > O such that given any two
A-orbits { Al(m,z) } and { Ai(p,z) } with m # p there is some J such that
d(BJ(m,z),BJ(p,z)) > €. Note that the second argument is the same. Again
thinking in terms of the differential equations the expansiveness is for the
solutions of one equation. In Meyer and Sell (1887c) an immediate corollary

of the proof of the skew shadowing lemma is:
Corollary: Skew Anosov systems are skew expansive.

In fact the € can be taken as the BO of the shadowing lemma and therefore is a

function of the constants C and A in the definition of an Anosov system.

Here we shall give a new definition of skew Anosov which is different
from the one given in the previous section. In the old definition the
manifold M was given one Riemannian metric and the estimates in III1.6
contained a constant C. In the new definition we assume that
A:MxZ >5>MxZ: (mz) — (B(mz),P(z)) satisfies conditions 1), ii),
111), and iv) of the old definition but change v). Now assume that for each
z € Z, M is given a metric ( , )Z : TM x TM — R which varies continuously
with z and which in tern defines a norm I Hz : TM — R.  Assume there is a

constant 0 < A < 1 such that

3 S
AD | DlB(m,z)(u) "P(z) < Alu Hz for ue E(m,z)

-1 u
It DIB (m,z)(u) ||p 1(2) <Aliu ||z for u € E

(m,z)’

and all (m,z) € M x Z.

Lemma: The new and old definition of skew Anosov system are equivalent.
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Proof. That the old definition implies the new is proved precisely in the
same way &8s Proposition 4.2 of Shub {1987). Assume that A satisfies the new
definition as glven above and fix w € Z. Since M and Z are compact and the

metric varies continuously there is a constant K 2 1 such that

(1) K" Mun_<nun <knuu,
4 W 4

for all u ¢ TpM. pe€ Mand z € 2. Iterating (1) for u € E ?m z)gives

n n
i DIB (m,z)(u) Hpn(z} < A lhu "z

for u € E; ) and using (2) gives

(n,z2z

-1 n n
(2) K DlB (m,z)(u) IIw <KA I IIw

And similarly for u e E(: z)" Thus the old definition holds with the single
)

metric ( , )w on M with the constant C = K?

Theorem: The set of Anosou systems is an open set in Cé(MxZ.MxZL

Proof: Let A: MxZ > Mx 2Z: (mz) — (B(mz),P(z)) be an Anosov
diffeomorphism by the new definition given above and A’ : MXZ 3 Mx 2 :
(n,2) — (B (m,2),P(z)) be close to A in the C} topology. Let 3. = ¥1(M,2) be
the space of C1 vector field depending on a parameter z € Z, i.e. X ¢ 31 if
X:MxZ—-TMx2Z: (mz) — (Y(mz),z) is continuous, has a continuous
partial derivative with respect to it first argument, denoted by DIX. and
Y(m,z) € TmM for all (m,z) € Mx 2. Place on 71 the topology of uniform
convergence of functions and their first partial derivative with respect to

their first argument. Define mappings F, F' : 31 — 31 by the formulas:

F(X)(m,2) = (DlB(A-l(m,z))(Y(A‘l(m.z)),z) = (G(X)(m 2),2)
(3)

F(0(m,2) = (0 (A m2) (v "Hm,20),2) = (6 (X)(m,2),2)

The tangent bundle TM x Z = v TmM x 2 (union onme M ) admits a

10
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decomposition

™Mx2=E eE"
(4)

S S

u u
E =vu E(m,z)’

E=v E(m,z)

where the latter unions are over all (m,z) € M x 2. The first factor of F and

F', G and G', are linear and so using the splitting (4) we can write

o o[ © L[ G
0 G__ G’ G’

-+ ——

The matrix for G is diagonal since the splitting is invariant for A. By v')
and the fact that we have teken A’ close to A in the C; topology it follows
that

, s
1G,ul<Alul and NG, ul<Alull foruek
-1 -1 u
(8} NG _vii<alvil and IG_“vh<AlUviE forveE
1G,_ vih<elvl forveE, NG, ull<ehul foruek

where 0 < A < 1 and € can be taken arbitrarily small by taking A’ close to A.

Let £ = t(ES,Eu) be the space of continuous vector bundle maps with the
sup norm, i.e. L € £, L(mz) : E?m z) E?m 2) is linear. We want to find L

so that { (u,Lu) : u e E° )} is F’ invariant subspace. Since

" " u ) G,, G,_ u ) G, ,u+ G Lu
Lu GL+ G _ Lu G:+u + G Lu

invariance takes the form

(8) LG, +LG L=C +G_L
or
-1 ’ ’ ’
{(9) L=G _"{-G, +LG,, +1G, L)}

11
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Define an operator T : £ — £ by

(10) T =¢1¢(=<

’
- -

+ L G;+ + LG;L_ }
so a fixed point of T solves (10). Let

(11) L={LeZ: I L¥i= sup sup NI L{m,z)(x) I =1 }.
{(m,z) hxl=1

If L € | then

1

= , , 2 ,
WTWY WS WG 0 (NG, W+ LG, b+nLu®nc i

(12)

=Af{e+Ar+e) =1

provided € is sufficiently small, so T: [ — L. Furthermore, for L, X € |

BT - TR 0 s 06 b w{nL-Kuos G,, W+ 1 LG, L-KG KI}

(13) SALANL =K+ 101G _(L-K) I+ 0 (K-L)G, K I

1A

A{A+2e} HL-KHt

and so for € sufficlently small T is a contracting map which has a unique
fixed point L in L.

Thus we have constructed a bundle E'S = { (u,Lu) : u € E° } which is F’
invariant. The bundle E'" = { (Ku,u) : u € E" } is constructed in a similar
manner. By construction both K and L have norm less than 1 and the dimensions
of the fibers of E'® and E° are the same as are those of E'" and EV. If
v =(vSvY) e EE:'Z) n Ek:,z) then v¥ = Lv® = Lkv" but since the norms of L and
K are less that 1 this implies v' =v® =0. Thus TMx Z=E° 0 E'Y. The

estimates of the form (1) follow at once from the inequalities (7).
Proof of the structural stability of Anosov systems.

Let A be an Anosov system where A : MxZ - Mx Z : (mz) — (B(m,z),P(z))
and first fix « so that all functions in this a-neighborhood of A are Anosov
with the same constants C and A. Let € > 0 be the uniform expansive constant

and BO the uniform constant of the shadowing lemma for all functions in this

12
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neighborhood. Let 8 = min{ &/3, 80/3 )} and restrict a further if necessary so
that the conclusion of the shadowing lemma holds for this « and g and « < 50.
let D: Mx2Z —-Mx2Z: (mz) — (E(m,z),P(z)) be within this « of
nelghborhood of A. Let (m,z) € M x Z be arbitrary.

Then since A and D are « close { Dl(m,z) } is an a-pseudo-orbit for A and
so there exists a y = h(m,z) such that the A-orbit { Ai(y,z) } B-shadows
{ Dl(m,z) }. The function h : M x Z — M is continuous by the shadowing lemma
and hence so is H: MxZ - Mx Z: (mz) — (h(m,z),z). Let
(m,z) # (m",2'). Clearly if z # 2’ H(m,z) = H(n’,2’) so let z = z' and
m# m'. By the expansive property of D there is a J such that
dEd(m2), EX(n',2)) > e, But d(Ed(m2),89(y,2)) < B = /3 and
(E)(n',2),B3(y’,2)) < B s e/3 and so a(B(y,2),B0(y",2)) > e/3or y 2 y'.
Therefore h and H are one to one. Thus for fixed z € Z the map h{.,z) : M — M
is a continuous, one-to-one mapping of a compact, connected Hausdorff space
and so is a homeomorphism. This implies that H is a homeomcrphism also.

Since d(Ei(m,z),Bi(y.z)) < « for all 1 we have

i-1 1

dE " HEMm,2),2),8 By, 2),2) = aEl (m2).B (v, 2)) <« < By

Thus the A orbit through Aly,2z) = (Bl(y,z),z) Bo-shadows the D-orbit through
D{m.z) = (E(m,z),z)and so by uniqueness Aly,z) = H(D(m,z)). But

(y,z) = H(m,z) so AcH = HeD or H is a skew equivalence.
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