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Abstract. Measurements of atomic spectra display recurrences associated with classical
periodic orbits of the electron. As the energy is changed, bifurcations of these periodic
orbits are visible. Calculations show that many of these bifurcations have the generic struc-
tures listed by Meyer [1970], but symmetries of the system force some bifurcations to have
nongeneric structures. By imposing an external electric field, some symmetries can be bro-
ken. These physical systems force us to address new mathematical questions: what are
the generic structures of bifurcations of periodic orbits of two-parameter area-preserving
maps? We give a partial answer to this question, and we show how the results are visible
in calculations.

1. Physics

It is possible to measure in the laboratory the periods Tk or the actions Sk of classical
periodic orbits of an atomic electron. This is a deep and complicated statement. Electrons
obey laws of quantum mechanics, not classical mechanics, so we know that it is impossible
to measure both the position and the velocity of an electron, and we do not imagine that any
one electron actually moves in time along a definite path. Instead, the electron’s behavior
is described by the Schroedinger wave equation.

There is, however, a close relationship between the propagation of Schrödinger waves and
the motion of a stream of particles along classical paths. First, the centroid of a well-localized
wave packet moves in time according to classical equations of motion. A packet can be made
to follow closely a classical periodic orbit; then the time required for the packet to return to
its original location is close to the period of the classical orbit. Second, the change of phase
of a Schroedinger wave as it propagates from one point to another is approximately equal to
the action

∫
p · dq integrated along a classical path between these points. Such changes of

phase produce interference effects which are observable in laboratory experiments.
By computer calculation of classical orbits of electrons, it is possible to construct quantum

wave functions, and we can use these wave functions to interpret and even to predict the
results of measurements of the absorption spectra of atoms (Du and Delos [1988]). In this
paper, we will not give any details about how this is done. We will just pretend that electrons
are classical particles that obey Newton’s laws. We will say that our friends (Holle et al.,
[1988]) found a way to place an atom in a magnetic field, and to kick an electron out of the
atom such that they knew precisely how much kinetic energy the electron was given, but
they could not tell in what direction it was kicked. They measured the time required for the
electron to return to the atom (or the classical action around its orbit).

This article appeared in Conservative Systems and Quantum Chaos, (Ed. L. Bates and D. Rod), American
Mathematical Society, Providence, R.I., 1996, 93-112.
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A sample measurement is shown in Figure 1. The large peaks mean that, after repeating
the measurement many times, they often found electrons returning after acquiring approx-
imately 1.5, 3.0 or 4.5 units of action, but they did not ever find electrons returning with
(for example) 0.7 units of action. We call this set of observations the recurrence spectrum
for the given kinetic energy.

Figure 1. Heavy line: a measured recurrence spectrum for a hydrogen atom
in a magnetic field. The horizontal coordinate represents classical action, and
the vertical axis is called the recurrence strength; it is proportional to the
number of electrons that return to the atom on orbits of given action. (It
is actually measured by evaluating the Fourier transform of the absorption
spectrum.) Light line: corresponding theoretical recurrence spectrum.

They then repeated the measurements with different initial kinetic energies given to the
electron. The results are shown in Figure 2 – Main et al. [1994]. Again each peak corresponds
to one or more recurrences – classical orbits which at the given energy return to the atom
after acquiring a certain quantity of action. The most striking feature of this figure is the
splitting and proliferation of peaks as the energy increases. These are bifurcations – as
we vary the energy continuously, we pass through points at which a returning orbit splits,
producing additional recurrences.

Mathematical analysis shows that bifurcations of periodic orbits fall into certain char-
acteristic patterns. Bifurcation theory is a very old subject, having roots in the work of
Poincaré, but many long-neglected questions remain unanswered. A special aspect of the
bifurcations visible here arises because atomic electrons obey Hamiltonian equations of mo-
tion, so their orbits conserve energy, and ensembles preserve volume in phase space and area
in Poincaré planes. Bifurcations that occur in such systems have special structures that do
not necessarily occur in more general, dissipative systems. Many macroscopic systems also
obey Hamiltonian equations of motion to some degree of approximation, but nevertheless,
it appears that these experiments are the first that force us to confront questions about the
structure of bifurcations of periodic orbits in Hamiltonian systems.
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Figure 2. (a) About 25 recurrence spectra measured at various values of
electron energy are drawn in a single graph. The horizontal axis is again
classical action, while the vertical axis is electron energy, the parameter e in
Hamiltonian H1. (The electric field parameter f equals zero in this experi-
ment.) (b) A corresponding family of theoretical recurrence spectra is shown
as a needle graph. In both figures we see bifurcation and proliferation of re-
currences with increasing e. This is correlated with the change from orderly to
chaotic classical motion of the electron. The structures in this experiment are
explained in detail by Main et al. [1994]. Peak 3 is produced in a saddle-node
bifurcation, peaks 4 and 5 are associated with a 4-island chain bifurcation, the
mountain range 6 is related to orbits that are produced in an orderly sequence
of pitchforks and period-doublings, and peaks 9 and 10 arise from period-
triplings.
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With properly-chosen coordinates, the Hamiltonian for an atomic electron in fixed parallel
electric and magnetic fields is

H1 = T (pq, pr) + V (q, r)

=
1

2
(p2

q + p2
r) − 4e(q2 + r2)

− 2q2r2(q2 + r2) + 2(q6 + r6)

− 16fqr(q2 + r2)

What is essential about this? (a) There are two degrees of freedom. (b) The kinetic en-
ergy is purely quadratic in the momenta, so the system has “time-reversal invariance”. (c)
The potential energy contains two parameters, e and f . (In atomic physics, the parameter
e combines the conserved total energy and the magnetic field strength, while f is propor-
tional to the electric field strength. Also, in this physical application, H1 has the fixed value
H1(pq, pr, q, r) = 2.) (d) The potential energy is invariant under inversion (q, r) → (−q,−r).
(e) If f = 0, the potential energy is invariant under reflections (q, r) → (−q, r) → (q,−r).
Small but nonzero values of f break this reflection symmetry. (Additional reflection symme-
tries are also present.) (f) The periodic orbits that are detected in the experiment are the
ones that pass through the origin (q=0, r=0) going in any direction.

Let us now pose general questions. (1) Given an arbitrary, smooth Hamiltonian function
H(pq, pr, q, r; e, f) defined in a phase-space (pq, pr, q, r) with smooth dependence on one or
more parameters e, f , given that it possesses periodic orbits (PO’s), how do these orbits
bifurcate as the parameters are varied? What can be said about the geometrical structure of
the newly created PO’s? This question, fundamental to a physicist, may not be sufficiently
well-posed to have any definite mathematical answer. However, a closely related question
has been answered. (2) Such Hamiltonian differential equations induce two-dimensional
area-preserving maps (Poincaré surfaces of section). What are the generic structures of
bifurcations of PO’s of smooth two-dimensional one-parameter area-preserving maps? This
question was answered by Meyer [1970]; it was shown that there are five and only five
generic types of bifurcation. (3) What structures are generic under symmetries, such as
those mentioned above? This question was answered in Rimmer [1982], also see Mao and
Delos [1992], deAguiar et al. [1987]. (4) What are the generic structures of two-dimensional
two-parameter area-preserving maps?

To illustrate the importance of this question, let us consider a specific example. For f = 0,
the Hamiltonian H1 has a periodic orbit having r = 0, pr = 0; if we vary the parameter e, then
at a certain point that orbit undergoes an “antipitchfork” bifurcation: it changes from stable
to unstable, and simultaneously two other unstable PO’s merge with it and are destroyed.
This antipitchfork bifurcation is a nongeneric structure – it exists because of the symmetries
of the system. It is common for an unstable PO to collide with a stable PO (at which point
they annihilate each other), but it is not common for two distinct unstable PO’s to collide
simultaneously with a stable PO. Now if f is changed to a nonzero value, the reflection
symmetry of V (q, r) is broken and the stable PO moves off the r = 0 line. What happens
when it bifurcates? Does it still change from stable to unstable? Is the antipitchfork structure
still present? This change of f corresponds to imposing an electric field on the atom. A
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Figure 3. A representation of a pitchfork bifurcation (stable goes unstable
and two new stable orbits of the same period are created), and a representation
of a “broken pitchfork” (the stable orbit moves aside to make way for a saddle-
node bifurcation).

change in the structure of this bifurcation might have observable physical consequences for
the system. What are they?

Full answers to all of these questions are not now available. We can begin below with a
partial answer to question (4) above. We will show that pitchfork, antipitchfork, and period-
doubling bifurcations break in certain characteristic ways when the symmetry is broken
(Figure 3).

To emphasize that the result is very general, and does not depend in any way on the special
physics of Hamiltonian H1, we change the notation. The Poincaré plane is denoted (x, y)
and we begin with an area-preserving mapping of the plane that depends on two parameters
(µ, ν).

2. Mathematics

Notation. Let P be a smooth, area preserving mapping of a region O in the plane,
R2, into the plane which depends on two parameters. Let u = (x, y) be coordinates in the
plane and let the two parameters be denoted by µ and ν. We are interested in the nature
and bifurcation of fixed points and periodic points of P as the parameters are varied. The
region O should contain an open neighborhood of the fixed point in question. We denote
the two components of P by (X,Y ) and so P : (x, y) → (X,Y ). Sometimes we will show
the dependence on the parameters by writing X(x, y, µ, ν) etc. Iterates of P will be denoted
by P k = P ◦ P ◦ · · · ◦ P = (Xk, Y k). There are several places where ± are needed, so α and
β will be ±1.

That P is area preserving means that the Jacobian matrix DP (u) = ∂(X,Y )/∂(x, y)
has determinant identically equal to one. Let P have a fixed point at u0, P (u0) = u0 and
let A = DP (u0). A is a 2 × 2 matrix with determinant +1 and characteristic equation
λ2 − (trace A)λ + 1. Its eigenvalues are called the (characteristic) multipliers of the fixed
point and since detA = 1 they are reciprocals, thus the multipliers will be denoted by λ, λ−1.
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The linearization or first approximation of P at the fixed point is the map u → Au. Based
on the linear approximation there are three basic cases:

(1) Hyperbolic case: |trace A| > 2. The eigenvalues of A are real and satisfy 0 < λ < 1 <
λ−1 or λ−1 < −1 < λ < 0. The fixed point is unstable by the linear approximation
and by classical results the fixed point is still unstable when the higher order terms
are included.

(2) Elliptic case: |trace A| < 2. the eigenvalues of A are complex and lie on the unit
circle so are of the form λ = eiθ, λ−1 = e−iθ. The linearized map is a rotation by
the angle θ and so the origin is stable for the linear approximation. The higher order
terms can make the origin unstable, but by the KAM theory except for some low
resonance cases where λ is a small root of unity the origin is stable generically. See
Moser [1962, 1968].

(3) Parabolic case: |trace A| = 2. The eigenvalues of A are +1,+1 or −1,−1. The
bifurcations and stability depends heavily on the higher order terms. We shall look
at this interesting case in detail when additional generic assumptions are made on
the higher order terms.

The multipliers tell a lot about the dependence and bifurcation of the fixed points. The
first important observation comes from the implicit function theorem. A fixed point of P
satisfies the equation

(2.1) P (u, µ, ν) − u = 0.

Assume that u = u0 is a fixed point for P for some value of the parameters, say µ = µ0, ν =
ν0, thus (u0, µ0, ν0) satisfies equation (2.1). The Jacobian of (2.1) at u0 is DP (u0, µ0, ν0)−I =
A−1 and so if +1 is not a multiplier the hypotheses of the implicit function theorem hold and
there is a smooth function η(µ, ν) defined for µ, ν near µ0, ν0 which satisfies P (η(µ, ν), µ, ν) =
η(µ, ν). Moreover, (η(µ, ν) is the only solution near u0. Thus the fixed point can be continued
as an isolated fixed point for values of the parameters near µ0, ν0. The eigenvalues vary
continuously with the parameters also. Thus a hyperbolic (respectively elliptic) continues as
a hyperbolic (respectively elliptic) fixed point, but parabolic fixed points can and in general
do change type.

The fixed point is called elementary if its multipliers are not +1. In this case we can change
coordinates and parameters by u′ = u − η(µ, ν), µ′ = µ − µ0, ν′ = ν − ν0 so that in the
primed variables the fixed point of P is at the origin for all small values of the parameters.
We shall assume that this change has been made and drop the primes on the variables.

The above argument shows that a fixed point can bifurcate only when its multipliers are
+1. However, there may be periodic points which bifurcate from the fixed point. The above
argument shows that the fixed point is isolated as a periodic point of period k if DP k(0) = Ak

does not have eigenvalues +1. This can happen only if the multipliers are roots of unity.
If there are no parameters then generically all the fixed points are either hyperbolic or

elliptic and the multipliers of the elliptic points are not roots of unity. If there is one
parameter then fixed points with multipliers ±1 or other roots of unity occur generically for
isolated values of the parameter. The bifurcations which can occur in generic one parameter
families are described in Meyer [1970], but see the pictures in Abraham and Marsden [1978].

This paper will begin the classification of the generic bifurcation when the mapping P
depends on two parameters. In this case there are curves in parameter space where P
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has fixed points with multipliers that are a specific root of unity. Only the parabolic case
is considered here when the multipliers are ±1. The case when the multipliers are +1
is discussed in the next section and when they are −1 in the subsequent section. The
bifurcations for higher roots of unit will be the topic of a later paper.

Creation – Multipliers = +1. Poincaré (1899) associated to the map P a generating
function G with the property that fixed points of P are critical points of G and vice versa.
Specifically, let P = (X,Y ) be defined in a disk about the origin in the plane and consider
the differential form

(2.2) Ω = (Y − y)d(X + x)− (X − x)d(Y + y).

Since P is an area preserving d(XdY − xdy) = dX ∧ dY − dx ∧ dy = 0 and similarly
d(Y dX − ydx) = dY ∧ dX − dy ∧ dx = 0. These identities and

Ω = (Y dX − ydx) − (XdY − xdy) + d(xY − xX)

imply that dΩ = 0, i.e. Ω is closed. Since we are working on a disk Poincaré’s lemma asserts
that a closed form is exact so there is a function G such that dG = Ω.

The basic facts about this generating function are given in the following lemma and the
proof can be found in Meyer [1970]. Also see the original discussion in Poincaré [1899] and
another discussion in Weinstein [1972].

Lemma 2.1. Assume that for µ = ν = 0 the map P has a fixed point at the origin whose
multipliers are not equal to −1. Then the generating function G defined by (2.2) is a function
of x, y for x, y, µ, ν small. It has the following properties:

(1) A critical point of G (i.e. where Gx = Gy = 0) is a fixed point of P and conversely.
(2) A nondegenerate maximum or minimum of G corresponds to an elliptic fixed point

of P and conversely.
(3) A nondegenerate saddle point of G corresponds to an hyperbolic fixed point of P and

conversely.

To obtain a rough picture of the map draw the level lines of G – but remember this is
only a first approximation of the full picture.

From catastrophe theory if there are no parameters then generically G has only non-
degenerate critical points and so generically P has only elliptic of hyperbolic fixed points. If
there is one parameter then G can have a fold critical points i.e. G might be of the form

(2.3) G = ±y2/2 + x3/6 − µx.

This gives rise to the elliptic-hyperbolic (sometimes called saddle-node) bifurcation discussed
in Meyer [1970] and subsequent papers. Two parameters gives rise to the cusp catastrophe
with generating function

(2.4) G = ±y2/2 + x4/12 − µx2/2 + (2/3)νx = αy2/2 + x4/12 − µx2/2 + (2/3)νx.

See Poston and Stewart [1978] for a readable introduction to catastrophe theory and addi-
tional references.

Remark: By Thom’s theorem on the classification of elementary catastrophes there are
coordinates such that a cusp catastrophe is of the above polynomial form, but these coordinates
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Figure 4. Regions in the parameter plane for the cusp bifurcation.

Figure 5. Graphs of g vs x for various values of parameters.

are not symplectic coordinates! Therefore, we will not derive the map from G, but simply
study its critical points.

The critical points of G are solutions of

(2.5) Gy = y = 0, Gx = x3/3 − µx + 2ν/3 = 0

The singular locus where G has a degenerate critical point is found by solving Gx = 0 and
Gxx = x2 − µ = 0. This locus is the cusp µ3 = ν2. Figure 4 labels various regions in the
parameter plane. Regions b and e are on the singular locus. Figure 5 shows the graphs of
g(x) = G(x, 0, µ, ν) as a function of x for the various regions in the parameter plane.
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Figure 6. The cusp bifurcation, α = +1.

Figure 7. The cusp bifurcation, α = −1.

If α = +1 then a non-degenerate minimum x0 of g(x) gives rise to a non-degenerate
minimum of G at (x0, 0) and hence to an elliptic fixed point of the map P . If α = +1 then
a non-degenerate maximum x0 of g(x) gives rise to a non-degenerate saddle point of G at
(x0, 0) and hence to a hyperbolic fixed point of the map P . See Figure 6.

When α = −1 it is the other way around. Namely, if α = −1 then a non-degenerate
minimum x0 of g(x) gives raise to a non-degenerate saddle of G at (x0, 0) and hence to an
hyperbolic fixed point of the map P and a non-degenerate maximum x0 of g(x) gives rise to
a non-degenerate maximum of G at at (x0, 0) and hence to an elliptic fixed point of the map
P . See Figure 4
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Figures 4-7 summarizes the new bifurcations which occur with two parameters when the
fixed point has multiplier +1.

Period Doubling - Multipliers = −1 The discussion of period doubling for area pre-
serving maps given below is a substantial improvement to the original discussion in Meyer
[1970]. In this section we will proceed formally and not worry about the convergence of
the normal form. One only has to fuss with the implicit function theorem to show that the
formal periodic points are true periodic points. In fact by Artin’s implicit function theorem
a formal analysis suffices in the analytic case — see Artin [1968].

Assume when µ = ν = 0 that P has a fixed point at the origin with multipliers −1. Then
the Jacobian matrix of P at the origin is symplectically similar to one of the following

(2.6)

(
−1 0
0 −1

) (
−1 ±1
0 −1

)
,

see Meyer and Hall [1992]. The first matrix is so degenerate that it takes three parameters
to unfold it — see Arnold [1972]. That is, generically the first matrix in (2.6) may appear in
a three parameter family not in a two parameter family. Since we are considering only the
two parameter case we need only consider the second matrix.

Lemma 2.2. Assume P has a fixed point at the origin with multipliers −1 and that DP (0)

is

(
−1 α
0 −1

)
then the normal form for P is

(2.7) P (u) = −Φ(u)

where Φ is the time 1-map of a Hamiltonian system with Hamiltonian G where G is of the
form

(2.8)
G(u) = G(x, y) = αy2/2 + K(x)

= αy2/2 + ax2/2 + bx4/4 + cx6/6 + · · · .

Here as above α = ±1, a, b, c etc. are constants (which depend on the parameters µ and ν of
course.) The formal series K is even.

Proof. See Meyer and Hall [1992] pages 197-198. �
We shall proceed with a formal analysis, i.e. assume the system is in normal form. It

should be clear that our conclusions are based on only a finite number of terms in the
normal form and so the system need only be in normal form up to a certain degree. A
liberal dose of the implicit function theorem will show that the formal analysis suffices, see
for example the arguments in Meyer [1970] or in Hale and Chow [1982].

Lemma 2.3. P has u0 = (x0, y0) as a periodic point of period 2 if y0 = 0 and x0 is a critical
point of K (Kx(x0) = 0). Moreover, u0 = (x0, y0) is an elliptic point of P if and only if u0 is
a non-degenerate maximum or minimum of G and u0 is a hyperbolic point of P if and only
if u0 is a non-degenerate saddle point of G.

Proof. Since K is even, if u0 = (x0, 0) is a critical point of G then so is −u0 = (−x0, 0). Thus,
the Hamiltonian flow defined by G leaves ±u0 fixed, Φ(±u0) = ±u0. So P (±uo) = ∓u0 and
u0 is a periodic point of period 2.

Conversely, let u0 be a 2-periodic point of P . Since K is even the time one map satisfies
Φ(−u) = −Φ(u), so φ2(u0) = u0. This means that u0 is on a periodic orbit of period 2
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of the flow defined by G. Since the flow is a small perturbation of the flow defined by the
Hamiltonian αy2/2 all non-critical point periodic orbits have very long periods. Thus u0 is
a critical point.

If ±u0 is a non-degenerate maximum or minimum of G then u0 is an elliptic critical
point of the flow defined by G and A = JDG(±u0) has pure imaginary eigenvalues. Thus
the eigenvalues of exp(A) are on the unit circle as are those of exp(2A). But exp(2A) =
DP 2(±u0), so the fixed point is elliptic. A similar argument shows that a non-degenerate
saddle point of G corresponds to a hyperbolic periodic point of P . The converse follows by
the same line of reasoning. �

Thus all we need to do is study the generic unfolding of critical points of functions like G
and really just K. We will call G the generating function.

In Meyer [1970] the condition for a periodic doubling bifurcation was complicated by the
fact that the map was not put into a normal form. Then there was one parameter, µ and
a(µ), b(µ), c(µ), etc. depended on the parameter. For the one parameter case the generic
assumptions are α = ±1, a(0) = 0, a′(0) 6= 0 and b(0) 6= 0.

Here is how to interpret these conditions: (1) α = ±1 means that when the map has
multiplier −1 generically the higher degenerate first matrix in (2.6) can be avoided; (2)
a(0) = 0 means that the map has the multiplier −1 when µ = 0; (3) a′(0) 6= 0 means that
the Jacobian of P passes through the second matric in (2.6) with non-zero speed and the

multipliers are ±
√

(−aαµ) + · · · ; (4) b(0) 6= 0 means the first term that cannot be made to
vanish by a normalization transformation does not vanish.

With two parameters µ,, ν one of the last two conditions can be violated for some specific
value of the parameters. In particular we shall continue to assume α = ±1, a(0, 0) = 0. But
we may have aµ(0, 0) = 0 (case 1) or b(0,0)=0 (case 2). In both these cases higher dirivatives
are generically nonzero.

Case 1 : α = ±1, a(0, 0) = 0, aµ(0, 0) = 0, aµµ 6= 0

aν 6= 0, b(0, 0) 6= 0

The full normal form contains terms of degree six and higher, but these terms will not change
the qualitative nature of the bifurcation. So we will truncate the series after the fourth order
term. By Lemma 2.3 the placement and type of the periodic points do not depend on the
sign of G, so by changing the sign of G if necessary the coefficient b can be made positive.
Now scale the variable x so that the coefficient of x4 is 1/4. The values of α and a may
change but not the form of G.

By assumption a is of the form a(µ, ν) = d(µ, ν)µ2+2e(µ, ν)µν+f(µ, ν)ν where d(0, 0) 6= 0
and f(0, 0) 6= 0. Completing the square gives

a(µ, ν) = d{µ + [e/d]ν}2 + {f − [e2/d]ν)}ν.

Change parameters by µ′ =
√
|d|{µ + [e/d]ν}2 and ν′ = −{f − [e2/d]ν}ν. With these

parameters a(µ′, ν′) = βµ′@ − ν′ where β = ±1. Make this change of parameters and drop
the primes.

The prototype generating function in this case is

(2.9) G = αy2/2 + K(x), K(x) = −(ν − βµ2)x2/2 + x4/4.
11



Figure 8. Period doubling in case 1 when β > 0.

The critical points are at the origin and at (x, 0) where x satisfies

(2.10) ν − βµ2 = x2

This equation has two solutions (one periodic orbit of period 2) when ν − βµ2 is positive,
namely at

(2.11) x = ±
√

(ν − βµ2,

and these are nondegenerate minima of K.
Since G = αy2/2 + K(x) when α = +1 a minimum of K gives rise to minimum of G and

so to an elliptic point of P and a maximum of K gives rise to a saddle point of G and so to
a hyperbolic point of P . When α = −1 a minimum of K gives rise to a saddle point of G
and so to a hyperbolic point of P and a maximum of K gives rise to a maximum of G and
so to an elliptic point of P .

Lemma 2.4. When α = +1, P has an elliptic periodic point of period 2 which bifurcates
from the origin when ν − βµ2 is positive. When α = 11, P has a hyperbolic periodic point of
period 2 which bifurcates from the origin when ν − βµ2 is positive.

The exact nature of the bifurcation will be illustrated in the following sequence of figures.
We can rewrite (2.10) as

(2.12) ν = βµ2 + x2

and look at the equation as the equation of a conic section in the µ, x plane. In the case
β = +1 then (2.12) is the equation of a circle for ν > 0. In the case β = −1 then (2.12) is
two lines through the origin when ν = 0 and the equation of a hyperbola when ν is nonzero.
Think of the nature of the bifurcations which occur as µ varies for fixed ν. This is illustrated
in the sequence of figures in Figures 8 and 9. These figures seek to illustrate the full four
dimensional phase-parameter space (x, y, µ, ν). Since y = 0 always it will be ignored and the
sequence of x, µ planes are given for different values of ν.

x = 0 is always a fixed point and it is hyperbolic when α(ν − βµ2) is positive and elliptic
when it is negative. Thus when βν < 0 the origin is of the same type for all µ. But when
βν > 0 the origin changes its stability type at µ = ±

√
βν. In the Figures solid lines and

12



Figure 9. Period doubling in case 1 when β < 0.

dashed lines represent periodic points of different stability type. A bifurcation occurs when
the origin changes stability type.

Figure 8 illustrates β = +1 and Figure 9 illustrates β = −1. The origin is of one stability
type for all µ when βν < 0. When βν > 0 the origin has the opposite stability type for
−
√

βν < µ <
√

βν. The periodic point bifurcates from the origin at ±
√

βν as illustrated.
To summarize this case, if in the normal form (3), aµ(µ, ν) = 0 for µ = ν = 0, then for

ν < 0, as µ increases we find an ordinary period-doubling bifurcation which then reverses
itself. If β = +1 a stable period-1 orbit goes unstable and a new stable orbit of twice the
period bifurcates out of it; the new orbit moves away, then comes back to the now-unstable
period-1 orbit, collides with it, and disappears, leaving the original orbit stable again. (This
phenomenon was seen in a (non-Hamiltonian) electrical network by Hilborn [1990], who
dubbed it “period-bubbling”.) If β = −1, as µ increases, an unstable orbit of period two
approaches a stable period-1 orbit, collides with it and disappears, leaving the period-1 orbit
unstable; then later the unstable period-2 orbit reappears, at which point the period-1 orbit
goes stable. For either sign of β, the words “stable” and “unstable” can be interchanged in
the above description.

Case 2: α = ±1, a(0, 0) = b(0, 0) = 0 c(0, 0) 6= 0,

aµ(0, 0)bν(0, 0) − aν(0, 0)bµ(0, 0) 6= 0.

Again truncate K in Lemma 3 2.3 at the sixth order since higher order terms will not
affect the qualitative features of the bifurcations and let the coefficient c(µ, ν) be constant
for simplicity. These assumptions simply make the analysis easier. Scale by x → |c|−1/6x so
that the coefficient x6 in K is β = ±1.

Without loss of generality we can assume that a ≡ µ and b ≡ βν since the Jacobian
condition aµ(0, 0)bν(0, 0) − aν(0, 0)bµ(0, 0) 6= 0 implies that µ′ = a(µ, ν), ν′ = βb(µ, ν) is a
valid change of parameters. Having made the change of parameters (µ, ν) → (µ′, ν′) we drop
the primes.

Thus in this case the generating function will be

(2.13) G = αy2/2 + βK(x), K(x) = βµx2/2 + νx4/4 + x6/6.
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Figure 10. Parameter space for period doubling, case 2. R = {0, 0, 0, 0}
when µ = ν = 0 (Region a). R = {x1,−x1}, x1 > 0 when βµ < 0. (Region
b). R = {x1, 0,−x1, 0}, x1 > 0 when µ = 0 and ν < 0 (Region (c). R
= {x1, x2,−x1,−x2}x1 > x2 > 0 when 0 < 4βµ < ν2 (Region d). R =
{x1, x1,−x1,−x1}, x1 > 0 when 4βµ = ν2 (Region e). R is empty otherwise
(Region f).

The critical points of G are at y = 0 and x0 where x0 is a critical point of K. The critical
points of K are at x = 0 and at solutions of

(2.14) x4 + νx2 + βµ = 0.

Equation (2.9) is a quadratic in x2 so easy to solve. Roots are symmetric about the origin
since (2.9) is even. Let the set of roots be R. The following summaries are real solutions of
(2.9) (the regions refer to regions in parameter space shown in Figure (10):

Since G = αy2/2 + βK(x) when α and β are the same sign a minimum of K gives rise to
minimum or maximum of G and so to an elliptic point of P and a maximum of K gives rise
to saddle point of G and so to a hyperbolic fixed point of P . When α and β are of opposite
sign a minimum of K gives rise to a saddle point of G and so a hyperbolic point of P a
maximum of K gives rise to minimum or maximum of G and so to an elliptic point of P .

Figure 11 shows the graph of K in the various regions, and Figures 12 and 13 show the
fixed points of P in the various regions.

Summarizing case 2, if ν < 0 and αβ < 0, then as βµ increases through zero, we begin
with a stable periodic 1 orbit with an unstable period 2 orbit nearby. The period 1 orbit
goes unstable, sending out a stable period 2 orbit, which moves toward the unstable period 2
orbit; they collide and annihilate each other, leaving only the original period 1 orbit, which
is now unstable. For αβ < 0, interchange “stable” and “unstable” in this description.

3. Computations

In order to illustrate the splitting of a pitchfork into a saddle-center bifurcation with
a separate orbit close by, we generated Poincaré surfaces of section for the Hamiltonian
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Figure 11. Period doubling case 2, K vs x.

Figure 12. Period doubling case 2, αβ > 0.

H1 near e = −0.13 with f small. As stated above, if f = 0 the potential energy has
reflection symmetry, and a pitchfork bifurcation appears. For small but nonzero f , this
symmetry is broken, so we might expect the nongeneric pitchfork bifurcation to be broken.
The calculations told us that we have more to learn.

For f = 0,the SOS is shown in Figure 14. We see a stable PO in the center with two
unstable PO’s symmetrically placed about it. Calculations show that as e increases, these
two u PO’s move toward the stable PO in the center, collide with it, and disappear, leaving

15



Figure 13. Period doubling case 2, αβ < 0.

Figure 14. Calculated Poincaré surface of section near an “antipitchfork”
bifurcation. As e increases, the two x-points will move toward the o-point,
collide with it and leave a single x-point in the center.

the central orbit unstable. This is the standard “antipitchfork” bifurcation. Now we set f =
0.001. In (q, r) space the PO did indeed shift off the line r = 0. However the SOS retained
its reflection symmetry about the pr axis, and the antipitchfork structure was perfectly
preserved for nonzero f (Figure 15).

We might have anticipated this. In this case, the reflection symmetry (r → −r) of the SOS
is induced by the inversion symmetry of the potential energy, not the reflection symmetry.
The parameter f breaks that reflection symmetry but not the inversion symmetry, so it
preserves the pitchfork structure.
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Figure 15. SOS for the Hamiltonian H1 with small but nonzero f . The
pitchfork structure is preserved.

Figure 16. SOS for the Hamiltonian H2. The pitchfork is broken into one
of the standard forms of a cusp bifurcation.

We decided to break all the symmetries by adding to the Hamiltonian another term,

H2 = H1 + 16g(q + r/2)5.

(Such a term does not arise in atomic systems, but it illustrates the theory.) A numerically-
determined SOS at e = −0.13, f = 0, g = 1 × 10−5 is shown in Figure 16. It corresponds
precisely to that predicted in Figure 4c.
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A similar broken-pitchfork bifurcation was also studied by Prado and de Aguiar [1994],
again by breaking symmetries in a two dimensional Hamiltonian. Another case was cal-
culated by Schweizer et al. [1993]. They studied the bifurcations of the ”parallel orbit”
of an atomic electron in parallel electronic and magnetic fields. This is known to have an
orderly sequence of pitchfork and period-doubling bifurcations. If the electric field is turned
at small angle to the magnetic field, cylindrical symmetry is broken, the system becomes
3-dinensional, and the bifurcations have broken-pitchfork structure.

These calculations raise a fifth question, that should be added to the list in Section 1. (5)
Can we list the types of two-parameter bifurcations that will be generic in the presence of
symmetries? Specifically, we want a systematic way to go from symmetries of the Hamil-
tonian to symmetries of the normal form to symmetries of the SOS to symmetries of the
bifurcations.

4. Conclusion

Experimental measurements of atomic absorption spectra display bifurcations of periodic
orbits. These bifurcations often have the generic structures that are predicted by mathemat-
ical analysis. Some special, nongeneric bifurcations also occur because of the symmetries
of the Hamiltonian. As symmetries are broken, nongeneric bifurcations turn into generic
bifurcations in certain typical (generic) ways. Interpretation and prediction of these mea-
surements will be aided by further development of the mathematical theory of bifurcations.
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