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It is well known that a transformation of the form

oW oW
P (g.P), Q‘:?pf(q’l)) (1)

defines a contact transformation from the ¢,p variables
to the Q,P variables where q,p,Q,P are n vectors, W is a
scalar function with continuous second partial derivatives
with respect to all arguments, and subscripts denote com-
ponents of the vectors.l. 2 It is not always true that any
contact transformation can be written in the form (1) or
even in one of the other three common variations of (1).
This fact is pointed out in Refs. 2 and 3, and the author
recommends Ref. 2 as a careful and readable source on
contact transformations (see in particular, pp. 69 and 70
of Ref. 2). This note shows, however, that any contact
transformation can be written as a composition of a
linear orthogonal contact transformation and a contact
transformation of the form (1). That is to say, given
any contact transformation one can first make a change
of variables that is linear, orthogonal and preserves
Hamiltonian form and then write the transformation in
the form (1). The above is to be taken as a local state-
ment, that is, the above statement holds only in a suffi-
ciently small neighborhood of a point. Also, we assume
that all functions are sufficiently differentiable that the
indicated derivatives are continuous and that the implicit
function theorem can be applied. The assumption that
all functions considered have continuous second partial
derivatives with respect to all arguments will suffice.

To avoid confusion, a contact transformation is taken

in the sense of Whittaker, p. 293.1 That is:

Definition: A transformation
F:Q=alg.p), P=q.p) (2)

where q,p,Q,P are n vectors and ¢ and ¢ are n-vector-
valued functions of g and p is called a contact
transformation if there exists a scalar-valued function

S(q,p) such that
dS(q.p) = ‘Z_; {pidg: + @:(q,p)d¥s(g.p)}.  (3)

Observe that (3) is often written

dsS = ‘Z_: {pidqi -+ Qidpi},

and that this short notation is the cause of some of the
confusion in the literature. The equality (3) states that
S must be considered as a function of p and ¢ only.
Indeed, the whole question of when a contact transforma-
tion (2) can be written in the form (1) rests on the
question of when can S be written as a function of g,P.

NOTES AND DISCUSSION

If the second equation in (2) can be solved for p in
terms of P and g and the result substituted into S, we
would have the desired function W. But when can we
solve the second equation in (2) for p in terms of g and

1

2%

for P? If the sub-Jacobian det{ % } is nonzero, then we
3

can solve this equation, but there is no reason to suppose

that it is nonzero. At this point a result in Ref. 3 can be
used to straighten things out.

The formal proof is as follows. Let (2) or F be a
given contact transformation. Without loss of generality,
we can assume that F takes the origin into the origin since
otherwise we would shift the origin by a translation.
Let T be the Jacobian matrix of F evaluated at the
origin, i.e.,

rA B}
T=| B
lc b
where
_ ¢ _ Qi _}ay[lm }
A—{ 24, (0,0)}, B—{apj (0,0)}, C—}aqj (0,0)
an
_ i
D= { o (0,0)}.

Now, by a result in Ref. 3 (p. 44), there exist non-
singular contact matrices O and R where O is orthogonal
and R is positive definite symmetric such that T = RO.
This result for contact matrices is the analog of the
well-known result in three dimensions that says that
any matrix of a linear transformation is the product of a
pure rotation (or rotation and reflection) and a pure
dilation. It should be remarked that in Ref. 3, as in many
other references, a contact matrix is called “symplectic”
and is sometimes given a different but equivalent defini-
tion.2

Let O be the transformation whose representation is
the matrix 0, Define a new transformation G by G =
FoO™; and so F = G°O. Observe that we have “factored”
the transformation F into two operations: first apply O
and then G = FoO™. Another way of looking at G is
that we have changed coordinates by the linear transfor-
mation O and now ¥ has the form G in the new coordi-
nates. We now want to show that G can be written in
the form (1).

G is a contact transformation, since it is the composi-
tion of two contact transformations and moreover, its
Jacobian matrix at the origin is TO™ = (RO)O? = R.
Thus, if G is given by Q =alq’,p"), P = b(q’,p’) and

A B
R=| i R
Lc D
where
da. (
A = - (0,0) &, ete.
{aq,- (0.0)¢

Now R is positive definite and symmetric, and so, by
Sylvester’s criterion, 4% each principal subdeterminant
of R is positive and therefore, in particular,

, obs
D= { ap;’

(0,0) } is nonsingular.



NOTES AND DISCUSSION

Thus, we can solve the equation P = b(¢’,p’) for p’ to
obtain p’ = h(q',P).

Since G is a contact transformation there exists a gen-
erating function S’(¢",p’) such that

ds'(q'p) = X {pidgi’ + bi(q.p) dalq’p")}.  (4)
4=1

Let W(q",P) = 8’[¢’h(q",P)]. Now,

RN - . W
dW(q,P)—Z{W dq; +—a‘PTdP¢} (5)

i=1

but dW = dS at corresponding points; and so

dW(q,P) = Y {pi'dqi' + bi(q",p")dP.}, (6)
i=1
where in (6) p’ = h(q’,P).
Now, since
< | ob b, } {abt }
P, = —_— S i ’
dp, Z] 3a7 dqs + Sp7 dps ¢ and 57,

is nonsingular, the differentials dqs’, - -+, dgu’, dPy, -+ -,
dP. are linearly independent and so we can equate coeffi-
cients in (5) and (8) to obtain

oW oW

pi = 297 (g",P) and Qi = P, (q".P). (7

Therefore, G is of the form (1).

Observe that we can obtain one of the other common
variations of (1) when any one of the other sub-Jacobian
matrices is nonsingular. The procedure we have used
gives that A’ is nonsingular, so this gives one variant. By
changing variables again with the linear orthogonal con-
tact matrix

( oI w

-1 0]’
then the Jacobian of the new G is of the form

[ —FB A'W’

|

L'_'D’ C,Jl.

Therefore, now the upper right and lower left sub-
Jacobian matrices are nonsingular and, by the same pro-
cedure, you get the other two variants.

# This Research was supported by the National Aeronautics and
Space Administration, Huntsville, Alabama, under Contract No.
NAS 8-11264. ) .

1E_ T, Whittaker, A Treatise on the Analytic Dynamics of Par-
ticles and Rigid Bodies (Cambridge University Press, Cambridge,
England, 1964 ), 4th ed. .

2H. Pollard, Mathematical Introduction to Celestial Mechanics
(Prentice Hall, Inc., Englewood Cliffs, N. J., 1966). .

3 A, Wintner, The Analytic Foundations of Celestial Mechanics
(Princeton University Press, Princeton, N. J., 1947). .

¢+ F. R, Gantmacher, The Theory of Matrices (Chelsea Publishing
Company, New York, 1959), Vol. 1, p. 306,

5S. Perlis, Theory of Matrices (Addison—Wesley Publ. Co.,
Reading, Mass., 1958), p. 94.

971

On the Equivalence of Truncated Ring Pendula

H. C. JENSEN
Lake Forest College, Lake Forest, 1llinois
AND
W. E. HarsLey
University of North Carolina, Chapel Hill, North Carolina
(Received 24 April 1967)

A standard experiment in the elementary laboratory!
introduces students to the ideas and methods of experi-
mental induction by having them obtain empirically,
without previous derivation, the functional dependence
of the period of a ring pendulum on its diameter.
Students carrying out this experiment are surprised
and intrigned by the discovery that the equivalent
simple pendulum has a length equal to the ring
diameter. Slightly more sophisticated and equally
surprising is the discovery that the period of the
pendulum is not altered by removing from the ring a
segment symmetrical about its vertical axis. This re-
markable fact, which is known to many teachers of
physics,2 suggests the following extension to cases
where the radial thickness of the ring is not negligibly
small; in the more general case also, the removal of a
symmetrical sector has no effect on the period, and the
equivalent simple pendulum has a length equal to twice
the radius of gyration of the ring about its geometrical
center.

Consider Fig. 1, which is a drawing of an annular
ring of inner radius R1 and outer radius Re. The ring has
been truncated by removing a sector of angular width
26, In addition, a small hole has been drilled on the
line MN so that, when the ring is suspended from
this hole, the center C of the ring is directly below
the point of support. Let the ring swing as a physical
pendulum about an axis through a point P at the
top of the hole, with the axis perpendicular to the
face of the ring, and the distance PC to the geometrical
center made equal to the radius of gyration about

Fic. 1. Drawing of a truncated annular ring to be used as
physical pendulum when suspended from the point P (The sym-
bols are defined in the text.)



