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PERIODIC ORBITS AND SOLENOIDS
IN GENERIC HAMILTONIAN DYNAMICAL SYSTEMS

By Professor L. MArkuUs and Professor KENNETH R. MEYER

1. Minimal Sets of Hamiltonian Dynamics: Points, Circles, Tori,
and Solenoids. The recurrent trajectories of conservative dynamical
systems have been investigated intensively since the age of Lagrange
and Hamilton [12, 18]. In the qualitative theory of dynamical systems
[2, 13] recurrent motions are often found by locating a minimal set,
that is, a compact invariant set within which every trajectory is relatively
dense and hence recurrent. Classical examples of minimal sets for
Hamiltonian dynamical systems are points (critical or equilibrium
points), topological circles (periodic orbits), and tori filled by almost
periodic trajectories. In fact, points, circles and tori are the only types
of minimal sets for solvable problems of Hamiltonian dynamics, which
are completely integrable as decoupled 1-dimensional oscillators. How-
ever, not all these circles and tori of a solvable problem will persist as
periodic orbits or almost periodic trajectories under Hamiltonian per-
turbations of a generic nonsymmetrical nature; and furthermore more
complicated types of minimal sets will usually appear containing new
sorts of recurrent trajectories.

The principal result of the present investigation is that Hamiltonian
dynamical systems, under appropriate generic conditions, necessarily
have minimal sets that are topological solenoids of every possible type,
and thus these minimal sets are not manifolds.

The local behavior of a Hamiltonian dynamical system is described
by Hamiltonian differential equations

dx’ o0H dy; oH .
= ’ = — . i=1,...,n

dt dy; dt ox!
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or the vector differential system

()-)

in the real number space R%. Here H(x!, ..., x", y{, ..., y,) is the
given real Hamiltonian function of class Ck*! for k = 1, 2, ..., o,
with gradient dH = (H,, H ) transposed as a column vector, and

(= %)

J =

—E, 0

is a standard skew-symmetric 2n X 2n matrix displaying the unit matrix
E,. The linear symplectic space R?" is usually denoted R* @ R”" to
emphasise the use of the canonical coordinates (x, y).

We shall present our researches in terms of the global theory of
generic Hamiltonian systems on a symplectic manifold M, as described
below and in section two later (see [1] and the Memoir [9] for the basic
concepts and further references.) We recall that a symplectic manifold
M is a differentiable 2n-manifold (a connected separable, metrizable
manifold without boundary, and with a distinguished maximal atlas of
C® local coordinates or charts) together with a prescribed symplectic
form Q(a C* 2-form that is everywhere closed and nonsingular on M).

The Theorem of Darboux asserts that M is covered by special local
charts, called canonical coordinates (x!, ..., x",x"*!, ..., x?)in which

Q=X dxAdxnti.

In such a canonical coordinate chart, usually denoted (x!, ..., x",
Y1, -+, ¥n), the components of the tensor Q are just the constant matrix

0 E,
J= .
—~E, 0

A canonical map or symplectomorphism between sympectic mani-
folds is a diffeomorphism that preserves the symplectic form. In this
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case the Jacobian matrix 7, computed in terms of canonical coordinates,
satisfies the identity 7ZJT’ = J at each point. That is, T belongs to the
symplectic linear group Sp(2n, R), which is a Lie group whose Lie
algebra consists of all Hamiltonian matrices A with AJ +J4" = 0.

The symplectic form @ on M defines an alternating bilinear product
{u, v} = Q(u, v) for vectors u, v in any tangent space TpM at P € M.
In this way TpM becomes a symplectic linear space isomorphic to
R” @ R”, and this isomorphism is displayed explicitly in terms of
canonical coordinates around P wherein Q(u, v) = u’'Jv.

By means of the symplectic form Q we construct a duality between
contravariant and covariant vectors on M. Namely, if o is a 1-form at
P € M, then the corresponding tangent vector is denoted by o* (and also
o = (o%),) where o(v) = {o*, v} = Q(o*, v) foreach v € Tp.

A Hamiltonian H is a real Ck*!-function, for k = 1, 2, ..., o,
on the symplectic manifold M. The gradient dH has the dual dH* or
Xy which is the corresponding Hamiltonian vector field in class Ck
on M. In any canonical coordinate chart (x!, ..., x*, y;, ..., y,)
on M the tangent vector field dH" is given by the local Hamiltonian
differential system

dx _ 0H dy,-=_6H i=1 "
e~y  dt o T

The trajectories (solution or integral curves) of such a Hamiltonian vector
field, constructed always from a single-valued global Hamiltonian func-
tion, define a (local) differentiable flow on M. In the most important
cases we treat, where M is compact or else the cotangent bundle of a
compact n-manifold, this flow is continued for all times ¢ € R. It is
the trajectories and the flow of such a Hamiltonian dynamical system on
the symplectic manifold M that are investigated here.

Each Hamiltonian flow is known to yield a homomorphism of the
additive group R into the group Symp (M) of all C*¥-symplectomorphisms
of M. Furthermore, since

dH  OH . oH .
= — X! pi =0
o ¥ T Y

as computed along any trajectory of dH” in terms of canonical coordi-
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nates, the energy H is conserved; that is, each energy level H = h is an
invariant set for the Hamiltonian flow dH*.

While we shall mainly restrict our attention to the case when M is
compact (for instance, the 2n-torus 7% @ 7™), most of our technical
analysis will take place within one local canonical chart (x, y). Thus
much of our study refers to the behavior of a Hamiltonian differential
system near the origin in the linear symplectic space R* @ R”.

Example 1. Let H be a Hamiltonian on M with a critical point
at Q,, say Qo = (0, 0) in canonical coordinates (x, y). Then dH = 0
at Q, so, ignoring the inessential constant H (0, 0),

1 X
H(x.y)=7(x,y)S + .-
y

for some real symmietric matrix § = §’. Also the Hamiltonian differen-
tial system dH* has a critical point at Q, and near this origin it has the

format
X X
y y

where A = JS is a Hamiltonian matrix in the Lie algebra sp (2n, R).

The eigenvalues (A g, Ay, ..., N,, —A1, —Ay, ..., —A,) of the
matrix A are invariants of the Hamiltonian system about the critical
point Q,, and are independent of the choice of the canonical chart.
The critical point Q, is called degenerate in case some eigenvalue is
zero, that is, A or § is singular.

If all these eigenvalues are nonzero pure-imaginary numbers, then
Q, is an elliptic critical point for the Hamiltonian system dH*. This is
certainly the case when § is strictly positive-definite, since then the
point Q, is Liapunov stable for the Hamiltonian flow.

FExample 2. Let H be a Hamiltonian on M with a periodic orbit .
The behavior of the solutions of dH* in a tubular neighborhood of 7y
can be studied by means of the Poincaré map P of a transversal
(2n — 1)-section L through any point Q, on . Here P maps L (or some
neighborhood of Q, € L) into L by following the trajectories of dH* once
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around the tube encircling y. Also P restricts to a map P, on each
energy level H = h or L(h) in L.

The eigenvalues (uy, u3, -y By, #2~Y, u3™l, oo, u,” 1) of the
Jacobian matrix of the Poincaré map P, at Q, € L are the nontrivial
characteristic multipliers of the periodic orbit vy, and these are inde-
pendent of the choice of & and the local chart. The periodic orbit is
called degenerate in case some (nontrivial) characteristic multiplier has
the value +1. If v is nondegenerate, then « lies in a local band or
2-cylinder filled by periodic orbits vy (k) of dH*, whose (least positive)
period varies smoothly with the parameter £ which is the energy level.
Furthermore, if all these characteristic multipliers u; of y are distinct
for j = 2, ..., 2n, then the corresponding multipliers pj(h) of the
v (k) vary smoothly with the energy A.

If v is nondegenerate and every (nontrivial) characteristic multiplier
has a modulus of one, then v is called an elliptic periodic orbit. In this
case we can define the characteristic frequences w j(mod 1) by u; = e2mo

Remarks. A necessary condition that a nondegenerate critical
point or periodic orbit be Liapunov stable is that it be elliptic. Elliptic
periodic orbits will play a central role in our theory. By a theorem of
Liapunov, elliptic orbits necessarily exist near an elliptic critical point,
at least under generic conditions as discussed later. Moreover, within
a tubular neighborhood of such an elliptic orbit there will be shown to
exist other long-period elliptic orbits which encircle the tube a large
number of times before completing their periods. We shall prove below
that generic Hamiltonians admit sequences of elliptic orbits, with care-
fully selected long-period encirclings, and these converge to minimal
sets of specified solenoidal types.

It is convenient now to define solenoids as topological spaces, to
list some of their important properties, and to indicate a standard type
of minimal flow on each such solenoid. Consider first a fixed positive
prime p, and then define a p-adic solenoid I, by the following con-
struction, as an intersection of a nested sequence of solid tori in R3.
After this, a more general type of solenoid L, will be defined for each
sequence a = (ay, ay, a,, ...) for integers a i = 2 (the p-adic solenoid
corresponds to the choice a; = p forallj = 0, 1, 2, ...).

Let T, be a solid torus in a standard embedding in R3. Let T, be
a solid torus, lying within the interior of T, and longitudinally en-
circling it p-times. Then let T', be a solid torus, lying within the interior
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of T and encircling it p-times (hence encircling the torus Ty p2-times).
Continue in this fashion to define 7, encircling the torus 7 p-times,
and take the meridianal diameters of 7 tending to zero as j increases.
Then the solenoid L, is defined as the intersection £, = MN*;
which is a nonempty compact subset of R3. It is known that dlstlnct
primes give rise to topolegically distinct solenoids [4 p. 122].

A more general type of solenoid X, is specified for each sequence
a = (ag, ay, a,, ...) for integers a; = 2. To obtain I, proceed as in
the above construction (where each a; = p), except that T, encircles
the torus 7 a;-times. A more concise, but entirely equivalent, definition
of £, can be made by emphasizing the central longitudinal circle of
each T, rather than the toroidal tube itself.

For this approach consider an infinite sequence of maps of the
circle S! into itself:

thamhatah |
S S S S

where h;:z — z4 for j = 0, 1, 2, ..., and S! is taken to be the unit
circle in the complex number plane. Then the inverse (or projective)
limit of this mapping system is the solenoid

£, = lim_ {S', &,}.

More explicitly, the solenoid I, is the subset of the denumerable topo-
logical product S' X §! X §! X ... consisting of all sequences
(29, 2y, 23, ...) for which z; = h;(z;4 ) for j = 0, 1,2, 3, .... Itis
well known [4 p. 109, 5] that each such solenoid £, is a compact metric
space which is connected and 1-dimensional (so £, is a Klosed Kurve
in the sense of Menger). However, L, is not locally connected and hence
L, cannot be a topological manifold.

Since each of the maps 4; is a group homomorphism of S!, the
projective limit X, is also a compact abelian topological group. The
solenoids X, for a = (ag, a, ay, ...) and L, for b = (by, by, by, ...)
are topologically isomorphic groups provided [S p. 114, 404, 417]:

p’ divides some product (agaa; - - - ay) if and only if
p’ divides some product (byb b, - - b;),
for every choice of the positive prime power p”.
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While there exist uncountably many topological types of such solenoids,
the above criterion shows that we have considerable leeway in the se-
lection of the integer sequence a = (ay, a;, a,, ...) during the con-
struction of any specified solenoid.

From the viewpoint of the theory of topological groups we can
characterize these solenoids as the most general compact, connected,
1-dimensional, torsionless abelian groups [S p. 418]. The significance
of this group-theoretic description, within the framework of dynamical
systems theory, is that a minimal set on which the flow is Bohr almost
periodic is necessarily the space of a compact, connected, abelian group
[13 p. 394]. The solenoids arising in our analysis of generic Hamiltonian
systems carry Bohr almost periodic flows, after some possible modifi-
cations in the trajectory speed. In fact, these minimal flows can be
described in terms of the geometric definition of solenoids, as inter-
sections of encircling nested solid tori in R3, with constant longitudinal
angular trajectory speed, see [13, p. 392].

For greater precision we now define such a standard minimal flow
¢, on a solenoid X, by means of rotations on each of the circular com-
ponents S! = {z € C:|z| = 1}. Namely, for ¢ € R let

&,:(zg, 21, 23, ...) — (efizg, etz |, etiz, . ).

This flow is easily seen to be minimal on Z,,.

Each solenoidal minimal flow, which we find for a generic Hamil-
tonian C*-vector field dH* on M, is conjugate to one of the above flows
on some L, after multiplication of dH* by a positive C*¥-function on M
in order to modify the time-parametrization of the trajectories.

We are now able to state our Principal Theorem as proved in
Section 4 below. The clarification of the related concepts, especially
concerning the generic subsets of the Baire space $* of all Hamiltonian
dynamical systems (of class Ck for k = 4) on the compact symplectic
manifold M (of dimension 2n = 4), will be given in Section 2.

PrINCIPAL THEOREM. Let H* be the space of Hamiltonian dynami-
cal systems on the compact symplectic manifold M. Then there exists a
generic set My C 9k such that:

for each Hamiltonian system dH* € My, and for each solenoid T,
there exists a minimal set for the flow of dH" that is homeomorphic
toL,.
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The generic set My will be defined as an intersection My = R N
Sy N & N &, N &; of five explicit generic sets in Section 3 below.
Roughly speaking these generic sets consist of Hamiltonian systems with
the following properties:

Jt ~ almost all (excepting countably many) periodic orbits are
nondegenerate, and have distinct characteristic multipliers.
&y ~ all critical points are generic; that is, each has eigenvalues

(A1, ..., N\,) that are rationally independent.
©; ~ all periodic orbits have at most one characteristic multiplier
(g2, ..., pp) that is a root of unity.

©, ~ almost all periodic orbits have characteristic multipliers that
change (non-constant) with the energy level # within the
corresponding local 2-cylinder.

&3 ~ almost all elliptic periodic orbits have a strictly nonlinear
Poincaré map; that is, elliptic orbits have a nonzero “‘twist
coefficient.”

Condition % was studied by Robinson [14, 15]; &, is essentially
contained in an earlier Memoir of the authors [9]; and &,, &,, &; are
now analyzed by a method due to Takens [16].

Physical motivations. A few remarks on familiar physical models
might be useful as a guide in the subsequent mathematical analysis.

Within dynamical astronomy the rotation of the Earth is determined
by Hamiltonian differential equations like those for a spinning top.
The Earth rotates on its axis in inertial space once every 24 (sidereal)
hours. However, this axis through the Earth is not precisely fixed in
direction but itself turns around a small circle, with a radius of a few
meters at the North Pole, once every 14 months, thus causing the
Chandler Wobble. Even the mean axis is not stationary but rotates
around a larger circle once every 25,000 years, thus accounting for the

Precession of the Equinoxes.
From the viewpoint of physics and astronomy this sequence of

higher order nutational and precessional oscillations is caused by the
nonhomogeneity and asymmetry of the Earth under the gravitational
forces of the Solar System. Thus the lack of symmetry of this Hamil-
tonian dynamical problem leads to the existence of higher order period-
icities that may accumulate in a complicated type of recurrent motion.
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Our theory shows that such behavior of Hamiltonian dynamical systems
is typical or generic.

In order to appreciate the method of proof of our Principal Theo-
rem, we briefly consider here another physical example described by a
particle sliding near the bottom of a smooth frictionless paraboloidal-
like surface, under the downward force of gravity. The surface is (locally)
the 2-dimensional position manifold, and the usual momentum phase-
space is a symplectic 4-manifold. The Hamiltonian function is the total
mechanical energy of any particle as it slides around inside this cup-like
surface.

The bottom point of this cup, for zero velocity, is an elliptic critical
point for this Hamiltonian system, and is a generic elliptic point in case
the two principal radii of curvature of the cup are suitably incommen-
surable. By the Theorem of Liapunov there are families of periodic oscil-
lations for the particle sliding along each of the principle-curvature
sections, and these oscillations are parametrized by the energy, or equiva-
lently by the amplitude. Take one such oscillation from one of these
families, and then perturb the motion of the particle by a slight trans-
verse velocity so that it vibrates slightly back and forth across the chosen
principal-curvature section. If the original oscillation has a ‘“‘nonzero
twist coefficient,” then the period of the transverse vibration can be
controlled by the magnitude of the transverse nudge. In this case the
two periods can be interrelated so as to produce a new long-period
oscillation. In the 4-manifold this long-period oscillation winds several
times around a tubular neighborhood of the original oscillation.

With a further sequence of carefully controlled perturbations we
obtain long-period orbits that accumulate towards a solenoidal minimal
set in the symplectic manifold.

In concluding this introduction we observe that it might seem
strange that such a pathological ‘“Klosed Kurve” as a solenoid can be
of importance in the theory of smooth conservative flows. Yet examples
of such solenoids were discovered decades ago by Morse [11] in his
studies of the geometry of geodesic flows, even for analytic systems.
Also Birkhoff [2 pp. 218-220] indicated that solenoidal minimal sets’
are likely structures near an elliptic periodic orbits of any Hamiltonian
system of two degrees of freedom.

2. Generic Hamiltonian Systems on Symplectic Manifolds. In this
section we present the concepts of generic Hamiltonian differential
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systems, and exhibit a method of specifying generic classes of Hamil-
tonian systems by imposing conditions on their periodic orbits. For these
purposes we shall first topologize the set $* of Hamiltonian systems as
a Baire space, and then we discuss questions related to perturbation
and transversality theory. Our main objective in this section will be the
explanation of a proposition due to Takens, slightly modified for our
usage, and the development of two corollaries that bring this result
directly into the domain of our application.

Let G%*! be the set of all real functions of class Ckt!, for some
k =1, 2, ..., o, on the symplectic C*-manifold M of dimension
2n = 4. Each H € §%*! is a Hamiltonian function on M, and the cor-
responding Hamiltonian vector field dH* is of class C*. Let $* be the
set of all such Hamiltonian C*-vector fields on M, each obtained from
a single-valued global Hamiltonian function in €% *!,

There is a surjective projection onto H*

m:QCktl — ©k:H — dH*.

The inverse image m ~!(dH*) of a Hamiltonian vector field is a class of
Hamiltonians {H + c}, differing from H by an additive constant. Such
an equivalence class { H + c} is often called a ‘“normalized Hamiltonian”
since it can be defined by a représentative function H — H(Q,)
“normalized to zero” at a specified point Q, € M. Each vector field
dH? € 9k corresponds to exactly one normalized Hamiltonian class
{H + c} in €k*1 by virtue of the bijection induced by the projection .
Thus we occasionally treat elements of $* as such normalized Hamil-
tonians.

We impose the Whitney Ck*!-topology (stronger than the corre-
sponding compact-open topology) on the space €**!. We define a
neighborhood U of H € €%*! by means of a choice of any finite number
of real continuous functions ey(x), €,(x), ..., ¢.(&), forr < k + 1,
positive everywhere on M. Then F € €k*! lies in U provided the point-
wise inequalities hold on M,

|F — G| < e, |IDF — H)| < €y, ...,|D'(F — H)| <e,.
Here D¢ is any covariant derivative of total order s, and these deriva-

tives and their norms are computed relative to some fixed Riemann
C*-metric on M. With this neighborhood base €**! becomes a Haus-
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dorff topological space, and the topology is independent of the choice
of the auxilliary Riemann metric. Moreover, G4*! is a Baire space
having the Baire category property, namely, every residual set (a count-
able intersection of open and dense subsets) is dense in C* 1,

The only subsets of %! that we shall encounter will be unions
of normalized Hamiltonians, that is, they will be saturated under the
equivalence relation of ‘“having the same projection image by w.” We
note that the saturation 7~ !(w(D)) of an open subset O C C**! is
still open. These considerations motivate us to endow $* with the
weakest topology so that w:E**! — ©* is an open map. In this case
a set of Hamiltonian vector fields is open in $* if and only if the cor-
responding collection of normalized Hamiltonians constitutes an open
set of G%t1, We easily conclude that there exists a natural homeo-
morphism

Cktl =~ 9k X R:H ~ (dH*, H(Q,)),

and furthermore $* is also a Baire space.

In the important special case where M is compact, both €¥*! and
9% are complete separable metric spaces. In this case we can metrize
H* according to the distance formula:

k+1
d,(dF*, dH*) = L max |DS(F — H)|, fork <
r=1 s=r,
and
@ 9-rd
d.,(dF*, dH#) = - —
( )= by fork=e

(Here we take advantage of the fact that: given ey(x) > 0, then
|H(Q()| and some estimate |DH(x)| < €;(x), imply that |H(x)| <
€o(x) on M).

Whether or not M is compact, open-dense subsets of €**! project
onto open-dense subsets of $*. In fact, generic subsets of €¥*! project
onto generic subsets of ¥, as defined next.

Definition. Let M be a symplectic manifold with Hamiltonian
systems ©* for fixed k = 1, 2, ..., . A subset B C H¥, or the de-
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fining property logically specifying the subset B, is generic in case P
contains a residual subset of H*.

Note that, while a set of Hamiltonian systems may be generic,
no individual system is generic—although we sometimes make such an
assertion in an informal discussion, e.g. see the title of this paper. As
‘an example, we next proceed to define a generic subset &, of H* by
requiring generic behavior at each critical point.

Definition. A critical point Q, of a Hamiltonian system dH* ¢ §*
on the symplectic manifold M is generic in case: the eigenvalues
N Ay s Ny =N, A, L —\,) at Qg are distinct and (A, A,,
-++» N,) are linearly independent over the rational number field. (Note:
the replacement of \; by —\; does not affect the condition.)

THEOREM 1. Let HF, for fixed k = 1, 2, ..., o, be the Hamil-
tonian systems on a symplectic manifold M. Then the subset S,k is
generic in %, where we define:

@k = {dH" € 9| every critical point of dH" is generic}.

Proof. By the techniques developed in Theorem 2 of the Memoir
[9], the space €**! of Hamiltonian C**1-functions on M has a dense
subset consisting of C *-Hamiltonians having only generic critical points.
Using the projection w:C**! — $k we obtain a dense set $ C $* con-
sisting of C ®-Hamiltonian systems having only generic critical points.

Fix an integer N > 2 and call a critical point of H € $* N-generic
in case: the eigenvalues (\;, Ay, ..., \,, —Aq, —Nyy oovy, —N,)Of H
there are distinct and satisfy the condition, L'« N # 0 for all sets
of integers {«; } with 0 < L|a;| < N. Then, since perturbations within
the Whitney topology can be localized on M, there exists an open neigh-
borhood $*(N) of the set $ in H* such that each Hamiltonian system
in $*(N) has only N-generic critical points. Clearly ©y* contains the
residual set M ., H¥(N), and so &,k is generic in Hk. [

In the next section we shall introduce other generic subsets & i,
©,*, @3k of D, as specified by conditions imposed on their periodic
orbits. For example Robinson [14] has defined a generic subset % C H*,
for each k = 2, consisting of Hamiltonian systems almost all of whose
periodic orbits are nondegenerate (that is, all excepting a possible count-
able number of degenerate periodic orbits) with distinct characteristic
multipliers.
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We shall generalize this result, following a procedure of Takens
[16], by imposing generic conditions on the Poincaré maps around the
periodic orbits of Hamiltonian dynamical systems. Recall that for any
periodic orbit ¥ of a Hamiltonian system dH* € ©*, on a symplectic
2n-manifold M, the behavior of the solutions in a tubular neighborhood
about y can be analyzed by means of the Poincaré section map P of a
transversal (2 — 1)-section X into itself, upon following the trajectories
for dH* for a single encirclement of the tube. It is always possible to
introduce local canonical coordinates (x!, x2, ..., X", y(, Y2, «.., V)
with origin at £ N +y so that H = y, and also £ is specified by x! = 0,
see [1]. Then appropriate local coordinates on L are given by y; = h
(the energy level) and (x2, ..., x", y3, ..., y,). Thus T can be
parametrized by 4 as a union of slices X (k) each of which is an open set
in the linear symplectic space R"~! @ R”~!, Takens defines the
parameter-symplectic space to be the product R X (R"~! @ R 1),
bearing the canonical 2-form Z"j=2 dx/ A dy;, and we recognize the
section L as a neighborhood of the origin in this linear space (often
abbreviated as R~ 1),

Then the Poincaré map P maps an open neighborhood W of the
origin in R X (R"~! @ R”~!) into this same parameter-symplectic
space by

Yyi—=yi1=h
and then a symplectic map on each energy level 4 in W,
Py:(x/,y;)— X/, Y;) for j=2,...,n

In the terminology of Takens, which is clarified below, P is a parameter-
symplectic map of W, and the geometry of H near v in M determines P,
at least up to a parameter-symplectic automorphism of W C R X
(Rn—l @ Rn—l)_

The map P and its /-jet extension P (the I-th order truncation of
the Taylor series of P about each point in W, as indicated below), are
thus geometric invariants of the Hamiltonian system dH* near y. For
instance PV at v is given by the Jacobian matrix

X, Y)

dP0= < a(x,y) >0 ESP(Zn—Z,R)
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with eigenvalues (x5, ..., w,, w271, ..., p, 1), together with the vector

0X/0h
aY/on)
Of course, each parameter-symplectic automorphism of R X (R*~! @
R”~1), with origin fixed, induces an inner automorphism of Sp 2n — 2, R)
and replaces dP, by a similar symplectic matrix.
We next present a brief exposition and summary of Takens’ ap-

proach, leading to his Theorem A [16] reformulated in our proposition
below.

Parameter-symplectic jet spaces J/(2z — 1). The product R X
R"~! @ R"71), with the 2-form L";—, dx/ A dy; in the coordinates
(h, x2, ...,x", y5, ..., ¥,), is called the standard parameter-symplectic
space of dimension 2n — 1. A diffeomorphism between open subsets of
R X (R"~! @ R”~1) which maps constant energy levels (2 = const.)
into the same energy levels, and which preserves the given symplectic
2-form on each such energy level, is called a parameter-symplectic map.
In the case of the transversal section L to the periodic orbit v of dH*,
we note that any two parameter-symplectic charts on I are related by
a parameter-symplectic map. It is in this sense that the Poincaré map
PonX C R X (R"! ® R” 1) is a parameter-symplectic map, deter-
mined to within a parameter-symplectic conjugation.

Let JO = JO(W, R2~1) be the space of all zero-jets of parameter-
symplectic maps of W C R?"~!into R?*~!, without any special reference
to the origin. That is, take point pairs

JO={(p1,p2)p1 €W, ppe R" Land y,(p;) = yi(p2)}.
Naturally the topology and manifold structure of JO are defined by con-
sidering JO as a subset of the product W X R%*~! (and similar state-

ments hold for the higher order jet spaces). An important subset of
JO is the manifold called FIX defined by

FIX = {(p1, p2)|p1 € W, pp e R¥land p; = p,}.
The codimension of FIX in JO is just

dimJO—dimFIX=[2n — 1)+ 2rn —1)— 1] — [2r — 1)] = 2n — 2.
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For the Poincaré map P around the periodic orbit vy, the zero-jet

at each point (h, z) € Wis (h, z; h, Z) where z = (x2, ..., x", y,,
.o yand Z = (X%, ..., X", Y,, ..., Y,). The zero-jet extension
is the map

PO:W — JO:(h, z) — (h, z; h, Z).

Note that P is nonsingular on W and so the image of W is a 2n — 1)-
manifold in JO. If P© is transversal to FIX C J°, then the inverse
image of FIX, namely (P©)~!(FIX), has components in W that are
1-dimensional submanifolds. This follows from general transversality
theory (see [7 p. 23, 44 and 17 p. 270] and the clarifying comments
below), and the facts concerning dimensions:

codim FIX =2n — 2 and dim W = 2n — 1.

Of course, the set (P®)~1(FIX) describes the fixed points of P in W
and hence it designates the periodic orbits of dH* meeting W and en-
circling the tubular neighborhood of + just once.

Next consider the /-jet extension of P,

PO:W — JOX J'2n — 1),each 1 <[ < k,

where J/(2n — 1) is the Lie group of /-jets of parameter-symplectic
maps a:(RZ~1/0) — (RZ"~!, 0) with the origin fixed.

For instance J1(2n — 1) = Sp(2n — 2, R) X R2»~2 and J'(2n — 1)
is also a real analytic manifold, see lemma below. Furthermore, just as
for P©, the map P® is a nonsingular Ckx—/-map of W, and so defines
a topological embedding of W as a Ck~!-submanifold P¥(W) in the
real analytic manifold JO X J/(2n — 1).

For any prescribed suitable closed subset (e.g. submanifold) Q C
J!(2n — 1) we look for the transversality of PO(W) with (FIX) X Q C
JO X Ji(2n — 1), a condition we abbreviate as: P is Q-transversal. If
P is Q-transversal, then the subset (PY)~1((FIX) X Q) in W corre-
sponds to the periodic orbits of dH* whose Poincaré maps satisfy the
I-jet condition specified by Q.

Q-transversality. In order to make precise the conceptual basis
for our applications of transversality theory, we consider the space
Gk(W, R>~1) of all C*k-maps, for fixed k = 1, 2, ..., o, of the open
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set W C R2~ 1 into this same real number space. We use the Whitney
Ck-topology on G%(W, R2?~1), but mention that this reduces to the
metric uniform C*-topology if we should replace W by some compact
subset W, C W.

Next let Q be a given closed subset of J/(2n — 1), for some chosen
positive integer / < k. Usually Q is a topologically embedded C*-sub-
manifold, although we can allow Q to a real analytic variety, or even
a semi-analytic set or any other W-object satisfying the axioms of
Whitney [17 p. 264, 271 and 19, 20]. We assume furthermore that

codim Q = dim J/(2n — 1) — dim Q = 1.
Take a map ¢ € Gk(W, R~ 1) and consider the /-jet extension
oW W — JO X Ji2n — 1).

We define ¢ to be Q-transversal on W in case the image o)(W) is
transversal to the given set (FIX) X Q C JO X J/(2n — 1) at every
point of intersection. In this case the inverse image (¢®) ~I((FIX) X Q)
consists of countably many components, each isolated in W within an
open neighborhood meeting no other components. Furthermore each
such component is a topologically embedded C!-submanifold, and only
a finite number of these meet any prescribed compact subset W, C W.

If we require ¢ € Gk(W, R>~!1) to be Q-transversal only on the
compact set W, then classical transversality theory [17 p. 270, 271]
asserts: there exists an open and dense set of maps in GkK(W, R¥»~1)
each of which is Q-transversal on W_.

In our geometric analysis of Hamiltonian systems dH* € $* on M,
the set Q C J/(2n — 1) must be specified as an intrinsic geometric
locus without regard to the particular parametric-symplectic coordinates
on the transverse section W to the periodic orbit y. This means that
Q must be invariant under every inner automorphism of the group
J'(2n — 1).

We combine these two types of demands on Q, namely regularity
and invariance, under the definition of a normal set. Thus a closed set
Q C J!(2n — 1) will be called a normal set in case:

i) Q is a C”-submanifold topologically embedded as a closed set
inJ!/(2n — 1); or else Q is a real analytic variety (zeros of some
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real analytic function), or a closed semi-analytic set (locally de-
fined by a finite number of conditions f; = 0, f; = 0 for real
analytic functions f; and fi»as discussed later), and

ii) «~!1Qa = Q, as a set, for each group element « € J/(2n — 1).

If Q is a normal set in J/(2z — 1), then we can define the periodic orbit
v of dH* € ©* to be Q-transversal in case there exists a transverse sec-
tion W to v in M for which the Poincaré map P is Q-transversal.

In these terms we now state a proposition, a slightly modified ver-
sion of Takens’ Theorem A [16], concerning the space ¥, for fixed
1 = k =< oo, of Hamiltonian vector fields on a symplectic manifold M
of dimension 2n = 4.

ProposITION. Let Q be a normal subset of J'2n — 1). Then
there exists a generic set g% C O (for each fixed 1 < | < k < )
such that: each periodic orbit y of every dH" € 7ok is Q-transversal.

Remark 1. The periodic orbit v of dH* € $* is Q-transversal just
in case the corresponding Poincaré map P of some transverse section W
to v is Q-transversal. This is the terminology used by Takens, but he
phrases his Theorem A with reference to the Baire space €% *1 of Hamil-
tonian functions on M, and with reference to the differentiability classes
I + 1 = k < oo (although his proof also allows any finite / and k = oo,
as asserted in private discussions).

The usage of ¥ in place of €¥*! is possible since Takens utilizes
only subsets of € *1 that are specified by demands on the corresponding
Hamiltonian vector fields. But generic subsets of ©€4*! which are
unions of normalized Hamiltonians, determine generic subsets of $*, in
accord with our earlier topological considerations.

The differentiability restrictions can also be relaxed to/ < £k < o
by an easy argument. If Q is normal in J/(2n — 1), then it is also nor-
mal as a subset of J/'(2n — 1) for I’ = k — 1 < oo (referring to the
standard embedding of J/(2n — 1) in J''(2n — 1)). Then there exists a
generic class 7ok C ©* for which each Poincaré map P has an /’-jet
extension that is Q-transversal, and so the /-jet extension P® is trans-
versal to (FIX) X Q € JO X J/(2n — 1), on some section W as required.

Remark 2. Usually Q is prescribed as a normal set in some
J!(2n — 1) for given positive integer /, and then attention is focused on
9* for appropriate / + 1 < k < oo in order to find a generic set 7ok C
k. Since the particular value of k is often not important, we use the
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notation 7¢ for the required generic set in any suitable $* of interest.
By Theorem 1 above, we can further assume that each Hamiltonian
system dH* € 7¢ has only isolated critical points, and henceforth we
shall impose this demand whenever convenient.

Remark 3. Usually the normal set Q will be specified by certain
polynomial identities involving the components of J/(2n — 1). That is,
we consider J/(2n — 1) to be a subset of the real linear space My'2rn — 1)
consisting of all /-jets of maps of the (2n — 1)-vector space into itself,
while holding the origin fixed. In the lemma below we prove that
J!(2n — 1) is a real analytic manifold, which is a closed subset in the
linear space My'(2n — 1). Then we can consider Q as an analytic variety
in J/(2n — 1), with the same local properties as an analytic variety in
some real linear space. That is, locally Q has the form f = 0 for some
real analytic function f on J/2rn — 1).

In more detail let Q be a real polynomial in the cartesian coordi-
nates of My/(2n — 1), with a corresponding zero-set [O] that consti-
tutes a real algebraic variety in the number space M,/(2n — 1). Whitney
[19] has proved that [Q] consists of a finite disjoint collection of real
analytic submanifolds of My/(2n — 1), each topologically embedded.
Since J/(2n — 1) is also a real analytic manifold, the intersection Q =
[Q] N J!2n — 1) is a real analytic variety. Thus Q is a (Whitney)
W-object, whether regarded as a closed subset of My/(2n — 1) or in
J!i(2n — 1), and is an appropriate target set in general transversality
theory. Such a set Q C J/(2r — 1) is normal provided it remains in-
variant under all inner automorphisms of the Lie group J/(2n — 1).

LEMMA. The parameter-symplectic jet space J'(2n — 1) is a closed
subgroup of the Lie group L'(2n — 1) of all invertible I-jets on (R*~1, 0).
Thus each component of J!(2n — 1) is a real analytic submanifold,
topologically embedded as a closed set in My'(2n — 1).

Proof. Let €y'(2n — 1), for fixed positive integer /, denote the
group of germs of invertible C/-maps of the real (2n — 1)-number space
into itself with the origin fixed. Then L/(2n — 1) is the group of /-jets
of the maps of €y/(2n — 1), and so L!/(2n — 1) is an open subset of
My'(2n — 1). In fact, L'(2n — 1) is a Lie group analytically diffeo-
morphic with the manifold GL(2» — 1, R) X R, where

/ <2n—2+r>
o= L -2n—1)
r=1 r
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is the appropriate number of independent coefficients among the non-
linear terms, see [7 p. 6].

Clearly J/(2n — 1) is a subgroup of the Lie group L'2n — 1);
moreover, it lies within the closed set corresponding to SL(2n — 1, R)
X R?. When we show that J/(2n — 1) is a closed subgroup of L/(2n — 1),
then the conclusions of the lemma will follow by general Lie theory. For
this purpose consider any sequence fy, f5, ..., fx, ... of germs of
parameter-symplectic maps in €y/(2n — 1), say of the form

(h, z) = (b, f(h, 2))

in terms of parametric-symplectic coordinates (h, z) = (h, x, y) on
R X (R"~1 @ R"71). Let the corresponding /-jets be denoted by (1, f,/)
€ J!I(2n — 1) and we assume convergence, limy_o, fi/ = f..! within
L'(2n — 1). We wish to construct a parameter-symplectic germ
(B, fo(h, 2)) yielding the required /-jet f,,/. Using the group properties
of J/(2n — 1) we can assume that the limiting jet f../ is very near the
identity of L/(2n — 1). Also, by composing maps with a translation
z — z + t(h) on each slice h = constant, we can assume that the jet
fo! corresponds to some map of the form (4, z) — (h, fo(h, z)) with
folh, z) = B(h)z + ---. In fact, after modifying the members of
the approximating sequence, we can assume that each fi(h, z) =
Byh)z + ---.

The basic symplectic condition, 7'JT = J or equally well TJT' = J
in terms of the Jacobian matrix T = 3f/3z, is nonlinear and moreover
it mixes the components of the /-jet f/ into confusing nonhomogeneous
identities. For this reason it is difficult to extend a given /-jet such as
f«! to a parameter-symplectic map on a neighborhood of the origin.
To bypass these difficulties we ‘“linearize the problem” by means of a
generating function that transforms germs of Hamiltonian vector fields
into germs of symplectic maps.

The motivation for our choice of generating function is the study of
the matricial linear fractional transformation

B=U+A){I—A)"!,
with the inverse relation (noting AB = BA),

A=B-DB +I1).
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Here each square matrix A (with no eigenvalue +1) is transformed to
a matrix B (with no eigenvalue — 1), and vice versa. Moreover A is
Hamiltonian if and only if B is symplectic. For instance, assume B
symplectic so B’'J = JB~1, (B')2J = JB~2, etc. and compute

AJ=®B" +D7 B —DJI=®B" +DH"UB'—1I

=JB '+ N"YB1—1I)

=JBB '+ D'BB'—1)=JU +B)"'d— B)= —JA
Similarly, A’J + JA = 0 implies that B'JB = J, see [10] for this cal-
culation and further discussions of the generating function.

Now we generalize this formula to nonlinear vector fields and maps.

In the space R>~!, in which we fix the coordinates (h, z) as above,
consider any germ of a ‘“‘horizontal” C’-vector field with origin as criti-
cal point, say having the components (0, g) where

gh,z) =Ah)z + ---.

We use this vector field to generate the germ of a C’-diffeomorphism
(h, z) — (h, f(h, z)), where

f@=0+g-0— g (.
Here i denotes the identity map on R?*~2, and we suppress any explicit
mention of the parameter 4 for the time being. In order to clarify this

functional equation define x(z) implicitly by (( — g) " 1z) = x(z) or
z=(@G— g)x = x — g(). Then we compute

f@) =0+ gx(i) =x@ + gx(z) = 2x() — z
and we note that f(z) = B(h)z + --- where
B=(0+A){I—A)"L.

Furthermore, it is not difficult to show that each such germ of a map
f(h, z) = B(h)z + --- determines g (h, z) by the inverse relation
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1
g@) =5 (f =i e (f+i)712),

provided the matrices A and B have no eigenvalues +1 and —1, re-
spectively.

The chain rule of differentiation replaces functional composition by
the multiplication of Jacobian matrices (now written dg = dg/dz) and
SO we compute

af(z) = U + 9g)d — dg)~'(2),

for all z near the origin. Thus dg is everywhere Hamiltonian if and only
if af is everywhere symplectic, near z = 0.

Next let us consider the l-jets g/ and f/. By the usual calculus of
power series, the components of f/ are each real analytic functions (in
fact, rational functions over the real rationals) of the components of
g', and vice versa. Thus the transformations g/ — f! and f! — g/ are
continuous.

Finally assume that g(k, z) = J(0H/dz) is a Hamiltonian vector
field for some given Hamiltonian function H(k, z), while treating & as a
parameter. Then dg = J(32H/0z2) is a Hamiltonian matrix at each
point near the origin, and conversely g = J(dH/dz) holds provided

(ag)'J + J(ag) = 0.

In such a case df is everywhere symplectic, and so (k, f(h, z)) is a
parameter-symplectic map on R~ 1,

Moreover the linear Hamiltonian condition, ignoring 4, on dg im-
poses a finite number of linear constraints on the components of the
corresponding /-jet g/. Moreover, each of these linear constraints in-
volves only a single order of the partial derivatives of g at z = 0. Further-
more any such assignment of data compatible with these finite number
of linear constraints does yield a jet g/ that can be realized by a global
Hamiltonian that is merely a polynomial of degree (! + 1). In this way
we conclude that the set of all components of /-jets for Hamiltonian
vector fields g(z) = Az + --- on R"™! @ R”~!, constitutes a closed
set in the corresponding number space.

Because of the continuity of the transformations g/ « f, we con-
clude that the /-jet space J,/(2n — 2) of symplectomorphism germs is
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also a closed set in L/(2n — 2). The same argument, applied to the
derivatives of dg with respect to A, shows that J/(2n — 1) is a closed
subset of L/(2n — 1), as required. [

Remark. Since J!(2n — 1) is a closed Lie subgroup of L'2n — 1)
only finitely many components can meet any prescribed compact sub-
set of My'(2n — 1). It seems likely that J/(2n — 1) is even a connected
algebraic variety, as is the case of J!(2n — 1) = Sp(2n — 1) X R>~2,

We now are able to interpret the above general proposition con-
cerning periodic orbits of generic Hamiltonian systems, in terms of two
corollaries that will be immediately applicable to our subsequent theory.
The first corollary deals with topological conditions, and the second with
algebraic conditions relevant in transversality analysis.

CoroLLARY 1. Let Q be normal in J'(2n — 1) with corresponding
generic set g C Ok for 1 <1 < k < o as in the above proposition.

Let codim Q = 1. Then, for every dH" € 74, each periodic orbit y
with Poincaré l-jet extension P") on W, is isolated in the sense:

A = (PV)~(FIX) X Q)

consists of isolated points in some transversal W. Thus for each dH" € TQ
there are only a countable number of ‘‘exceptional periodic orbits”
in M, with Poincaré l-jet satisfying the condition Q.

Let codim Q > 1. Then, for each dH" € 79 no periodic orbit in M
has a Poincaré l-jet with the condition Q.

Proof. Consider a transversal section W through a periodic orbit v
of dH* € 7. We have an easy computation

dim W + dim((FIX) X Q) = dim(J? X J/(2n — 1)) + dim A.
Take codim Q = dim J/(2n — 1) — dim Q, and note that
dim A = dim W — [dim J? — dim(FIX)] — codim Q@ = 1 — codim Q.
If codim Q = 1, then each component of A is a 0-dimensional
manifold, and so A consists of isolated points in a suitably small W.

Let V be any compact subset of M whereon dH* is noncritical, and
let L = [1/N, N] be a compact time duration, as specified by a positive
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integer N. Define S(V, L) to be the set of all periodic orbits of dH*,
each of which meets the set V, has least period in L, and which has the
property Q for its corresponding Poincaré return map.

Suppose the set of orbits S(V, L) were un-countable. Then there
would exist an accumulation orbit ¥ of dH*, such that every tubular
neighborhood of ¥ contains an un-countable number of periodic orbits
of S(V, L). Of course the periodic orbit ¥ meets V, and its least period
of return to a transversal Wl is some 7 < N; but nothing is said con-
cerning its Poincaré map P. Restrict W, so that the time of first return
for any of its points is greater than 7/2, and take a positive integer k
such that k£ - (7/2) = N. Then choose a still smaller transversal for 7,
namely W, C W, so that P and its first k iterates P2, P3, ..., Pk all
map W, into W,.

With this geometric situation we see that each orbit y* of S(V, L)
meeting W,, must have W, as a transversal section and must have a
Poincaré first-return map of either P, or else one of the iterates P2,
..., Pk Thus we can classify the orbits of S(V, L) meeting W, into k
disjoint classes, depending on the iterate of P corresponding to the first-
return to W,.

By the first part of the above proof the periodic orbits of dH* € 74,
having property Q for the Poincaré map P on a suitably small trans-
versal section in W, must describe a set of isolated points in W5, and
hence constitute a finite or denumerable infinite set, at most. Similar
assertions hold for those orbits of dH* corresponding to the Poincaré
map P2 on W,, and for each of the classes corresponding to P3, ..., Pk.
Hence only a countable number of orbits of S(V, L) meet Wz; but this
contradicts the choice of the accumulation orbit 4. Thus we conclude
that S(V, L) is countable (finite or denumerable infinity, at most).

The countable set of “‘exceptional periodic orbits” of dH* (those
whose Poincaré /-jet meets Q) is merely the union of all S(V, L), as
V and L run through denumerable sequences of compact subsets ex-
hausting the manifold (M-critical points of dH*) and the half-line
(0, o), respectively.

Finally assume codim Q > 1. Then dim A < —1 and in this case
A must be empty. [

COROLLARY 2. Let Q, and Q, be normal subsets of J'2n — 1),
each a non-empty proper subset defined by the zero-set of a real poly-
nomial, as above. Then codim Q; = 1.
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Further assume that the difference set Q, — Q, is dense in Q.
Then Q; N Q,is normal in J'2n — 1), and codim (Q; N Q,) = 2.

Proof. By the geometric analysis of Whitney [19, 20] the W-object
Q, is the intersection of a finite disjoint collection of analytic submani-
folds (each connected but not necessarily closed) in J/(2n — 1). Since
Q, # J!(2n — 1), the analyticity property requires that each of these
submanifolds has codimension =1. Hence codim Q; = 1in J/(2n — 1).

Next consider the normal set Q; N Q, in J/(2n — 1). Suppose
Q, and Q, each contains a submanifold of codimension 1, and further
suppose that these two hypersurfaces intersect in a nonempty piece of
hypersurface in J/(2n — 1). But in such a case Q; — Q, is not dense
in Q,, contradicting the hypothesis. Hence we conclude that no such
hypersurface lies in Q; N @5, so codim (Q; N Q;) = 2. [J

Remarks. 1) These intersection and density criteria are especially
easy to apply in J1(2n — 1) = Sp(2n — 2, R) X R?"~2 wherein we can
usually diagonalize the matrices in Sp(2n — 2, R).

2) Also the conclusion of Corollary 2, namely codim Q = 1, with
the resulting applications of Corollary 1, is valid in the case where Q is
a real analytic variety. For instance we could take Q as in the inter-
section of J/(2n — 1) with the zero-set [Q] of a real analytic function o)
inM,/(2n — 1).

A further technical extension of these ideas allows Q to be any
closed subset of J/(2n — 1) defined by [Q] N A/, where A! is a closed
semi-analytic set in J/(2n — 1) and Q is a real analytic function in
some open neighborhood N! of A/, see [17 p. 270, 271 and 20]. The
most general case we shall encounter assumes that A’ is defined in
J'(2n — 1) by the locus f = 0 where f is a real analytic function on
the open set N/ C J/(2n — 1) and f < 0 near the boundary of N’.

In the application of these corollaries and remarks, we shall always
assume that Q is a nonempty proper subset of J/(2n — 1), and that
Q is invariant under all inner automorphisms of J/(2n — 1). We now
apply these ideas to the concept of a generic periodic orbit, as defined
in terms of the corresponding Poincaré map and the related charac-
teristic polynomial.

Each symplectic matrix 7" € Sp(2r — 2, R) has a characteristic
polynomial

detI/l,I - Tl = #2"—2 + C2,I_3[,LG_3 + Czn_4;l,2"_4 + ..+ C1U + Co-
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where the characteristic coefficients ¢, ¢y, ..., ¢;,—3 are known to be
elementary symmetric polynomials in the eigenvalues u,, w3, ..., p,,
pa Y w1, ..., w1 Forinstance, det T = popy -+ pypy ! oo p, !
=co,and Trace T = py + py+ -+« + p, + puy7t+ puy7 4+ -0 +
pn ' = —cy,—3. Note that ¢y = 1, or that the polynomial X, — 1 is

annihilated by every set of characteristic coefficients for every symplectic
matrix, and thus this polynomial X, — 1 is useless for making distinc-
tions among the matrices of Sp(2n — 2, R).

Definition. A symplectic polynomial Q(Xy, X, ..., Xp,—3) is
a polynomial in the (2r — 2) indeterminants (X,, X, ..., X,_3),
with rational coefficients, such that Q(cy, ¢y, ..., c3,—3) # 0 as evalu-
ated on the characteristic coefficients of some matrix 7 € Sp(2n — 2, R).

Of course each symplectic polynomial can also be interpreted as a
polynomial in the components of J1(2n — 1) C M,'(2n — 1), and thus
its zero-set defines an algebraic variety that is a normal subset of
J1(2n — 1).

Definition. A periodic orbit y of a Hamiltonian system dH* € $*
on a symplectic manifold M is generic in case:

The characteristic coefficients (cy, ¢y, ..., ¢y,—3) of the corre-
sponding Poincaré matrix dP satisfy no symplectic polynomial.

THEOREM 2. Let H, for fixed k = 2, 3, ..., o, be the Hamil-
tonian systems on a symplectic manifold M. Then the subset R is
generic in %, where we define

Ro = {dH* € ©*|all but a countable number of the periodic
orbits of dH" are generic}.

Proof. Take one symplectic polynomial Q;(X,, X, ..., Xp,—3)
which thereby defines an algebraic subvariety Q, of J!(2n — 1) =
Sp(2n — 2, R) X R>72, Since Q, is specified by the matrices T ¢
Sp(2n — 2, R) whose characteristic coefficients annihilate Q(X,, X,
..., X,,—3) we note that Q, is a normal subset of J1(2n — 1).

By the Corollary 2 above, codim Q; = 1. Hence by Corollary 1,
there is a generic set 7o C $* such that: for each dH* € 7, there are
only a countable number of “‘exceptional periodic orbits” in M having
Poincaré matrix dP, whose characteristic coefficients ¢y, ¢y, ..., ¢33
annihilate Q.
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Next observe that there are only a countable number of symplectic
polynomials. Thus the generic set ), will include the countable inter-
section N 75, over the countable set of symplectic polynomials. The
“exceptional periodic orbits” for any dH" € (N 74) will be the totality
of the “‘exceptional periodic orbits” that dH* has in connection with
each-symplectic polynomial Q. [

Remark. Consider the discriminant A of the polynomial
p 72+ X au? 3t e+ Xp + X,
namely, in terms of the roots here denoted puy, ..., py—2,

A= II (=)

1=si<j<2n—2

By the fundamental theorem of symmetric functions, A is a rational
polynomial; we write A(Xq, X, ..., X,,—3) in the 2n — 2) indeter-
minants (Xy, Xy, ..., X5,-3).

Clearly A(Xg, X, ..., Xp,—3) is a symplectic polynomial since it
vanishes for the characteristic coefficients ¢y, ¢y, ..., ¢y,—3 of some
matrix 7 € Sp(2rn — 2, R) if and only if 7' has repeated eigenvalues.
We then define the generic set 7, corresponding to the single symplectic
polynomial A. Thus we obtain the generic set it in H* (for k& = 2) found
by Robinson [14]:

R = {dH* € ©*|all but a countable number of periodic orbits
of dH* have distinct characteristic multipliers}.

Note that ® D R, so each dH” € R, has almost all of its periodic orbits
of nondegenerate type.

3. Basic generic properties of periodic orbits of Hamiltonian systems.
In this section we shall define precisely the sets &,, ©,, and &; of
Hamiltonian vector fields in terms of conditions on the periodic orbits.
Then we shall establish that these classes are generic in $*, for suitable
k =1,2, 3, ..., o, on any symplectic manifold M of dimension
2n = 4.

For &, we shall consider the arithmetic nature of the characteristic
multipliers p,, p3, ..., 71, w3~ ..., p,”! of a periodic orbit v.
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For @, we examine how these characteristic multipliers change with
the energy level 4 throughout the band of periodic orbits y (k) passing
through y(0) = . For &; we describe how the Poincaré map P, devi-
ates from linearity with radial displacements out from the periodic
orbit , within the energy level 2 = 0.

Definition. Let * be the Baire space of all Hamiltonian C*-vector
fields on a symplectic manifold M. Define the subsets, within $* for
each fixedk = 1,

&, = {dH" € 9*|all periodic orbits of dH* have at most one
of the characteristic multipliers B, (and ;g,»_') that is
a root of unity}.

and

&, = {dH" € ©*|all but a countable number of periodic orbits
of dH* have distinct characteristic multipliers, some
one of which satisfies (d/dh)u;(h) # 0 on the periodic
orbit}.

THEOREM 3. Let 9k be the space of Hamiltonian vector fields on
a symplectic manifold M. Then &, is generic in *, for each k = 2.

Proof. Let v be a periodic orbit for any Hamiltonian system dH*
in §%, for k = 2. Let the Poincaré matrix dP, have the characteristic
polynomial

F(p)

det|pul — dPy| = p¥ 72+ cp3u® 3+ - + ey + e,

with the characteristic coefficients ¢,,—3, ..., ¢{, ¢y = 1. Similarly
write the characteristic polynomial of (dP,)”, for each integral power
v =2,3,4, ..., in the format (not indicating any derivative)

FO ()

det|ul — (dPy)"|

— M2n—2 + 6(2‘;,)_3;1,2"_3 + o+ cl(v)u + CO(y)'

Note that dP, has a »-th root of unity among its eigenvalues (u,, ...,
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Pns 21, ..., u,~1) if and only if the polynomial F®)(u) = det|ul —
(dPy)” | vanishes at p = 1. This condition is just

FO) =1+ c§ 4 - + ¢, + ¢ = 0.

We observe that each of the coefficients ¢$)_,, ..., ¢;®, ¢o® is
a symmetric polynomial in the roots u,*, ..., u,”, w2 %, ..., u, * of
F®(u), and hence must be expressed as a rational polynomial in the
elementary symmetric functions of the roots uy, ..., s p2 Ly ooy py !
of F(u). That is, there exist polynomials over the rational field c,*(X,,
Xy, ey Xo3), 19X, Xqy ovvy Xgue3)y ooe, 9 (X0, Xy,
..., X5,—3) in the indeterminants (Xo, X, ..., X,,—3) such that these
yield the values ¢y, ¢, ..., c(Zn")_g, when evaluated at ¢g, ¢y, ...,
¢,—3. In this way we define the rational polynomial

Q(V)(Xo,Xl, ..,.,Xz,,_‘;) =1+ C(z’;)_‘}(Xo,X], ...,Xz,,__;)

d

+ ...+ cO(")(XO,Xl, ...,X2,1_3)~

Then the periodic orbit y has a characteristic multiplier that is a v-th
root of unity if and only if Q“(X,, X, ..., X,,—3) vanishes at the
characteristic coefficients (cg, ¢y, ..., c3,—3) of v.

The polynomial (X, X4, ..., X,,—3) is a symplectic polynomial,
as defined earlier, since not every symplectic matrix in Sp(2n — 2, R)
has an eigenvalue that is a v-th root of unity. Thus the algebraic con-
dition Q@ = 0, as evaluated for the characteristic coefficients of any
periodic orbit +y, defines an algebraic variety, still called Q) when
denoting a normal subset in J'(2n — 1). Moreover codim Q) = 1, by
Corollary 2 of the previous section.

Next we shall obtain a condition specifying that v has a multiple
v-th root of unity among its characteristic multipliers u,, p;, ...,
Uy oY, w37, o.., w, b Of course F(u) must have two »-th roots of
unity, say p; and u;~1, if F®)(1) = 0. Hence we seek a condition that
F® has +1 as a root of multiplicity of at least 3. That is, we demand
that dF®"/dy and d2F®)/du? both vanish at u = 1.

In order to express this demand in general terms, we define cor-
responding rational polynomials in the indeterminants (Xo, Xq, ...,
X,,—3) given by the formal derivatives
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Q,VXg, ..., Xpu—3)=Q2n —2) + 2n — 3)c¥_(Xo, ..., Xou—3)
+ oo 4 330 4 26,0 + ¢,
and
Q,"Xy, - .., Xgu—3) = 20 — 2)(2n — 3)
+ Q2n — 3)2n — D) Xoy .oy Xou—3)
+ oo+ 603 + 20,0,
Now define the rational polynomial
Q.M(Xp, ..., Xpue3) = (Q,™)2 + (Q,M)2.

Then Q,¥(X,, ..., Xy,—3) is a symplectic polynomial whose vanishing
on any characteristic coefficients (cy, ¢y, ..., €5,—3) guarantees that
v has a 4-multiple »-th root of unity among its characteristic multipliers,
provided Q(X,, ..., X,,—3) also vanishes for 7.

But now we can apply the conclusions of Corollary 2 above that
the algebraic variety Q) N Q,*) designates a normal set in J'2rn — 1)
and furthermore codim (Q® N Q,®) = 2. This follows from the fact
that every symplectic matrix T € Sp(2n — 2, R) that has u = 2™/
as an eigenvalue (with u* = e2™" = 1) can be approximated by a sym-
plectic matrix 7 having only two eigenvalues (e2™* and e ~27r/*) that
are roots of unity. Such an approximation can be made in two steps;
first approximate 7 by a symplectic matrix 7' ‘“‘diagonalized within
Sp(2n — 2), R),” and then construct the required approximation
T from T.

Now, following Taken’s theorem above, we obtain a residual set
&, C 9k corresponding to the normal subset Q¥ N Q," of
J1'(2n — 1). Clearly, by Corollary 1, each Hamiltonian system dH* € &,
has no periodic orbits having more than one characteristic multiplier u;
(and also p; 1) that is a v-th root of unity.

Finally we define a residual set in $* by the countable intersection
N & Wforv =2,3,4,5,6, .... Suppose some Hamiltonian system
dH" in N &, had a periodic orbit y with characteristic multipliers
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pj as a vy-th root of unity, and also u;, as a v,-th root of unity, for
vy # v;. Then both x; and u; can be considered to be (v, - v3)-th roots
of unity. In this case ¥ would have a multiple (v - »;)-th root of unity
among its characteristic multipliers, which contradicts the definition
of &, "), Hence y can have at most one characteristic multiplier among
(ua, ..., u,) that is a root of unity.

Thus we conclude that &,, as defined above, must contain the
residual set N &, ), and so &, is generic in $, foreach k = 2. [J

THEOREM 4. Let $k be the space of Hamiltonian vector fields on
a symplectic manifold M. Then &, is generic in 9%, for each k = 3.

Proof. Take any Hamiltonian system dH* € ©, for fixed k = 3,
on the symplectic manifold M. Assume dH # lies in the Robinson generic
set R so that almost all periodic orbits of dH* have distinct characteristic
multipliers. Let vy be a periodic orbit of dH*, and assume that y has
distinct characteristic multipliers so that v lies in a band of periodic
orbits (k) of dH*, where the energy level 4 is taken to be zero at
v(0) = 7. The Poincaré map P around v has the restriction P, on each
energy level 4, and the corresponding Poincaré matrix dP, yields the
characteristic polynomial

Fu(p) = dety|ul — dPy|=p?" 2+ cpgp? 3 + - T cip t co.

Here we consider the characteristic coefficients ¢,,—3(h), ..., c((h) =1
as Ck-functions of the energy level A, and the roots u,(k), ..., w,(h),
wy " Yh), ..., w, (k) are also distinct (complex) Ck-functions for h

near zero. Note that the trace of dP,, is just the sum of the eigenvalues, so
Tr (dP,) = py(h) + -+ + p,(h) + uy"YR) + -+ + p,”1(R)
= —cyu—3h)
Consider the 2-jet P@ in J2(2n — 1) which is embedded in M(2(2n — 1),
the real linear space of all 2-jets of maps of (R2~!, 0) into itself. We
shall find a polynomial in M,2(2n — 1) whose vanishing expresses the

condition dc,,—3(h)/dh = 0 at h = 0.
Take any linear transformation § = (s;) of R27—2 into itself. Then

Tr S =S +S22 + .-+ Sp—2n—2
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is a polynomial on the matrix space My!(2n — 2). If S(h) depends
differentiably on 4, then

d ds i ds 3, —2,n—2
_ h = —— e —_— =
T [Tr S(M)]p=0 ah + + ah

is a polynomial Q defining an algebraic variety [Q] in M,22n — 1).
Since the most general parameter-symplectic automorphism of R X
(R"~! @ R77 1) is derived from a symplectic map on each energy level A,
preserving the values of %, the intersection Q = [0] N J22n — 1) de-
fines a normal subset of J2(2n — 1), according to the notations and
discussions leading to Corollary 2 of the previous section. Also codim

Q=1.

Take the corresponding residual set 7o C $* following Taken’s
theorem. Then for dH" € 7o N R only a countable collection of excep-

tional periodic orbits of dH* will have their 2-jets P(® annihilating the
polynomial Q. This means that

d
h [Tr (dPy)]y=0 = O

obtains only for the countable collection of exceptional periodic orbits
of dH" € 79 N N. Hence, excluding the exceptional periodic orbits
of dH*,

d
e [Tr @Py)ly=g = % o) + -+ up(h) + uy= (k)

+ ot T W= # 0.

But this implies that some characteristic multiplier u; (k) of dP), satisfies
d
T [ (W)]p=o # 0.

Hence &, contains 7o N R, and so &, is generic in H, for each
k=3 0O

Remark. From its definition &, C R, but we often explicitly
indicate the generic set SR even when this notation is redundant. To
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illustrate the significance of the generic properties ©; and &, let us
consider the generic set ® N &; N &, C H*, for any k = 3, of
Hamiltonian systems on a symplectic manifold M. Let v be a periodic
orbit of any dH” € # N &; N &, and assume that v is an elliptic orbit
with distinct characteristic multipliers p,, ..., u,, 2”1, .., u, L
In this case v lies in a band of elliptic periodic orbits (k) of dH*, say
v(0) = v, and each has distinct characteristic niultipliers p,(%), ...,
M,,(h), ﬂl_l(h), R} #u_l(h)~

Then v(0), or else some close approximation (k) for 2, near
zero, has some du;/dh # 0. But this means that some close approxi-
mation vy(k,), for k, near i, must have a characteristic multiplier y,
that is a root of unity. Moreover y(k,) does not have any other root of
unity (excepting u; and p; ~!) among its characteristic multipliers.

Thus allowing some possible arbitrarily close approximation, we
can assume that vy has distinct characteristic frequencies w,, ..., w,
(mod 1) with just one of these a rational number and all the others
irrational. That is, after a suitable small shift in the energy level, we
can assume that any elliptic orbit v with distinct characteristic fre-
quencies w,, ..., w, has precisely one rational characteristic frequency.

Finally we turn to the definition of the generic set ©; C 9, for
each £k = 4, on the symplectic 2r-manifold M. In order to obtain an
intrinsic geometric condition that the Poincaré map P, around an
elliptic orbit y of dH" € ©* is suitably nonlinear, we must give a precise
description of the Birkhoff normal form for the symplectic map P,.

Let EQ2n — 2) C Sp(2n — 2, R) be the set of all elliptic symplectic
matrices having distinct eigenvalues p; = e>™ and u,~' = e~ >™ for
Jj =2,3, ..., n. Note that E2n — 2) is an open subset of Sp(2n —
2, R), and its boundary is contained as part of the set A where the
discriminant symplectic polynomial A(X,, X, ..., X,,—3) vanishes
on Sp(2n — 2, R). The linear diagonalization of any such matrix
T € EQ2n — 2) is a classical result [12], namely there exists F €
Sp(2r — 2, R) such that

cos 2mw;  —sin 27w,
FTF ! = diag . ) | forj =2,...,n
sin 21rwj cos 27w,

Moreover this symplectic canonical form for T can be made unique by
ordering the 2 X 2 rotation factors according to the frequencies 0 < w;,
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< 1. Also the diagonalizing matrix F is then unique, up to multiplication
by a diagonalized rotation, say of the form

cos 2mf; —sin 2xf;
F, = diag F.
sin 27f; cos 27f;
This follows from the fact that the centralizer of any fixed nontrivial
rotation of the plane R2, within the group Sp(2, R), is just the rotation
group SO (2, R).
The Birkhoff normal form concerns the ‘‘nonlinear diagonalization”
of any nonlinear symplectic map @ within the group Sp*(2n — 2) of

germs of symplectic C%-maps of (R"~1 @ R”~!, 0) into itself, for fixed
k = 4. Hence, we seek a diagonalized canonical form for a map

<x <X(x, ¥)
é = in Spk(2n — 2)
y Y(x, y)

under an inner automorphism of Sp%(2n — 2), that is, under the simi-
larity relation ¥&¥ ~! for some map

x ¢
‘I/< > = < > in Spk(2n — 2).
Yy Uj

The [-jets of maps of Sp¥(2n — 2) form the symplectic jet space
J/2n — 2), for 1 =1 < k. We can consider J,!(2n — 2) as a Lie sub-
group of J/(2n — 1), in fact a normal subgroup. Moreover, just as in
the lemma of the preceding section, J/(2n — 2) is a closed analytic
submanifold in J/(2n — 1). Each lower order jet space, for instance
J'2n — 2) = Sp(2n — 2, R), has an invariant natural embedding in
J!{2n — 2) and hence in J/(2r — 1). In particular the set EQ2n — 2)
can also determine an open subset of J/(2n — 1), when consider as a
restriction on 1-jets only.

The Jacobian matrix or 1-jet & of & is required to be an elliptic
symplectic matrix with distinct eigenvalues, that is, ®(V € EQ2n — 2).
But further, we shall require (D have characteristic frequencies w5, ...,
w,, that are ‘“linearly independent over the small integers,” as indicated
below.
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Definition. Let E,2n — 2) C E(2n — 2) consist of all elliptic

symplectic matrices T with eigenvalues u, = e2™®:, ..., u, = e™en,
w2~ Y, ..., u, " such that:
w%p3® oo pu,® = 1, or equivalently,
Qywy + Q3Ww3 + ...+ o,w, = 0 (mod 1)

is impossible for any choice of integers «;, ..., «, satisfying

Remarks. Note that the condition of independence forces the
eigenvalues uj, ..., t,, 271, ..., u, ! to be distinct, and in particular
none of these is +1 or —1. In fact, by a correct choice of u; or u; !, we
can demand that 0 < w; < 1/2 for j = 2, ..., n be distinct fre-
quencies.

Also E,(2n — 2) is an open and dense subset of £(2n — 2). In
fact, E,(2n — 2) is obtained by deleting a finite collection of real
analytic subvarieties from E(2n — 2). This can be verified by noting
that each Re Bis Imy;, and also w;, are real analytic functions of the
entries of any matrix 7 € E(2n — 2). In addition there are only a
finite number of independence conditions imposed. Thus the boundary
of E,(2n — 2) in E(2n — 2) consists of a real analytic set with empty
interior in £(2n — 2). Of course this real analytic set may not be closed
in the closure EQn — 2) C Sp(2n — 2, R), and special attention must
be paid to the boundary of E(2n — 2).

Finally note that £,(2n — 2) is an invariant subset of £E(2n — 2),
which is itself invariant under every inner automorphism of Sp(2rn —
2, R). In this way E,(2n — 2) can determine an open invariant sub-
set of J,/(2n — 2), and even in J/(2n — 1), for every jet space with
[ =1.

THEOREM (BIRKHOFF). Let ® € Sp*(2n — 2) for fixed k = 4 have
the 1-jet () € E,(2n — 2) which can be diagonalized to the symplectic
canonical form
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cos 2mw; —sin 27w;
M ~ diag ’ " .
sin 27w, cos 2mw;

Then there exists a map ¥ € Sp*(2n — 2)

()-(0) - (1))

such that Y®¥ ~! has the Birkhoff normal form, written in terms of
the symplectic polar coordinates

£°2+n? ;
wp=—t———, ¢ =arctann/E;  j=2,...m

YoV ~1:(u, 6) — (U, 6)

where

Uy=u; +U;, and U, =0(|ul?

J

n

0; =0, +2mw; + L cjuy+ 6;, and 6; = 0(|u]]?).

Moreover the coefficient matrices (w;) and (cjr) are uniquely determined
by the 3-jet 3. Furthermore, if

cos 2mw, —sin 27w,
&) = diag ,
sin 27w, cos 2mw;
then we can require ¥V = Identity and in this case ¥'¥ is also uniquely
determined by &,

Remarks. The theorem of Birkhoff is not usually presented in the
generality asserted here. [3 p. 822] In the standard statement the map
& € Sp*(2n — 2) already has the diagonalized 1-jet
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_ cos 2mw,; —sin 27w,
$M = diag ‘ )
sin 27w cos 27w,
and the diagonalizing map ¥ € Spk(2n — 2) is normalized by

Vv =

In this case the Birkhoff reduction shows that (w;), (c;), and ¥ are
uniquely determined by the 3-jet .

Indeed, (w;) are the characteristic frequencies of &M and the
matrix (c;;) is obtained by the following procedure.

There exist certain universal polynomials B, called the Birkhoff
polynomials in o-indeterminants (where o is the number of components
of the nonlinear terms in the 3-jet space My3(2n — 2)), such that (c;)
are just B, evaluated on the coefficients of the nonlinear terms of 3,
The Birkhoff polyndmials B, have coefficients in the field of rational
functions of (2r — 2) indeterminants, over the base rational field, and
these coefficients are to be evaluated at the (2z — 2) values cos 27w,
and sin 27w, .

In the next lemma we demonstrate the uniqueness of the Birkhoff
coefficients (w;) and (c;) for any map ® € Sp*(2n — 2), with the 1-jet
&M ¢ E,(2n — 2) not necessarily in the symplectic canonical form.

LEmMMA. Fix &, € Sp*2n — 2) with ®,\V) € E,2n — 2). Then
there exists a neighborhood V3 of &,3 in J32n — 2) such that: for
each map ® € Sp*(2n — 2) with 3 ¢ V3

1) The Birkhoff coefficients (w_f) and (cj,) of ® are uniquely deter-
mined, and

2) The matrix entries of (w.,») and (cj,) are real analytic functions
on V3.

Proof. We first show that the Birkhoff coefficients (w;) and (c;)
are uniquely determined for ®,, or for any ® near ¢,, whether or not
the 1-jet is assumed to be in the symplectic canonical form as a diag-
onalized matrix of rotations.

Take any ® with @ near ;@ in J®Q2n — 2), so &) ¢
E,(2n — 2). Then there exists F € Sp(2n — 2) so
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cos 2ww; —sin 27w;
F®WF~1 = diag ‘ R
sin 27w, cos 27w,
with (w;) uniquely determined as the characteristic frequencies of (!,
as displayed in this symplectic canonical form. Any other diagonalizing

matrix F| € Sp(2n — 2) that places ®V) in symplectic canonical form,
must itself be related to F by

cos 2mf; —sin 2xf;
F, = diag ! ' F
sin 27f; cos 27f;
The map & = F®F ! can thus be transformed to its Birkhoff normal
form by a unique ¥ € Sp4(2n — 2) with the normalization ¥V = I.

That is, ¥&¥ ~! has the required diagonalized form in symplectic polar
coordinates (1, §) according to

—’9=0,+27rw,+2c,,u,+é, forj=2,...,n.

Also the Birkhoff matrix (c;;) can be computed by evaluating the Birkhoff
polynomials B ; on the data of .

To relate this Birkhoff normal form for ¢ to the given map &,
we write

VOV 1 = YFPF- 1V~ = ¥y 1,

with ¥ = V¥F ¢ Sp4(2n — 2). This shows that & can be placed in
Birkhoff normal form, by the diagonalizing map ¥, so as to display
precisely the same Birkhoff coefficient matrices (w;) and (c;) as for
é = FoF—!.

Next we show that (w;) and (c;) are uniquely determined by &«
in the sense that there is a unique Birkhoff normal form obtained from
® and this involves only the data of . Certainly (w,) are just the
characteristic frequencies of () and so these are intrinsically specified,
but we must show also that (c;) do not depend on the choice of the
matrix F € Sp(2n — 2) or the diagonalizing map ¥ € Sp*(2n — 2).
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Suppose ¥, € Sp¥(2n — 2) also diagonalizes ®, so ¥, ®¥, ! is in
Birkhoff normal form. Write & = F®F~! so &1 is in symplectic
canonical form, and further

VFIOFY 1 = ¥o¥ !
and
YV FTI@F¥," 1 = ¥, oV~ !

are both in some Birkhoff normal forms. Define the maps ¥ = WF~!
and ¥, = ¥,F~!, and then these two Birkhoff normal forms are given
by ¥&¥ ~! and ¥,$¥,~!. Now the 1-jets ¥ and ¥, commute with
the symplectic canonical matrix ®(V, so necessarily they are each diagonal
rotation matrices

Y =R and ¥, =R,

Then we can define ¥ = R~ W and ¥, =R, 1¥,s0 ¥() = ¥, =,
and moreover the two Birkhoff normal forms for & are represented by

RY®¥Y~1R~! and R,V¥,®¥, 'R, I

But any Birkhoff normal form is unchanged by any composition with a
linear rotation of the symplectic polar coordinates (u;, Q,), SO we con-
clude that the two Birkhoff normal forms for ® are also represented
by the maps

That is, these two maps display the two possible choices of the Birkhoff
coetficient matrix (c).

But here the classical uniqueness theorem of Birkhoff applies to
show that these two Birkhoff normal forms of & must be the same,
in that they display the same Birkhoff coefficient matrices (w;) and (c;).
In fact, (c;) can be calculated by evaluating the Birkhoff polynomials
Bj on the data of . Hence (w;) and (c;) are uniquely specified by
$©), even though there is a choice of matrix F € Sp(2n — 2) used in
diagonalizing 0.
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Now we permit & to vary near ®,, as long as ®® remains in a
suitable neighborhood V3 of &, in J3(2n — 2). Then the matrices
(w;) and (c;) are functions of ®©® in V3, say with values (»;(0)) and
(c;1(0)) at &,®.

Let Fy € Sp(2n — 2) place @, in symplectic canonical form

cos 27rwj(0) —sin 27w ;(0)
FOq’O(l)FO-l = diag .
sin 27w ;(0) cos 27w ;(0)
There exists a neighborhood V1 of ¢, in Sp(2n — 2), and a definite
choice of matrix F € Sp(2n — 2) for each &) € V! such that

cos 2mw; —sin 27w;
F®WF~1 = diag ‘ ,
sin 27w; cos 27w,

and furthermore F can be required to depend analytically on " in V1.
That is, F defines an analytic map

F: VI - 5Sp2n — 2):M — F with &, — F,.

This is a classical result on the diagonalization of matrices having dis-
tinct eigenvalues.

Now take V! suitably small in E,(22 — 2) and define the open
set V3 C J;3(2n — 2) as specified by the condition

& e V3 incase ®We V1,

Since the Birkhoff coefficients (c;;) are rational functions of F® OF-1
= §®), they are analytic functions of ®® once F has been specified
analytically on V1. Thus &® — (c;) is an analytic map for @ ¢ V3
and (c;) in the space of real (n — 1) X (» — 1) matrices. Of course,
w; = (1/270) In u; are also real analytic functions on V3 with values
in the interval (0, 1). [

CoroLLARY. The Birkhoff normal form provides an analytic map

B:E32n —2) = R I X Myl(n — 1)
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defined by

PO — (w;) X (cj).

Here E,3(2n — 2) is the open subset of J3(2n — 2) defined by the
condition ®V € E,(2n — 2), and My'(n — 1) is the linear space of all
real m — 1) X (n — 1) matrices.

In this sense det (c;) is a real analytic function on E3Q2n — 2).
Thus the locus

det (Cﬂ) =0

is a real analytic variety in J;3(2n — 2) which is invariant under all
inner automorphisms. Also another such invariant is given by the twist
coefficient.

Definition. Consider an elliptic periodic orbit iy of a Hamiltonian
system dH* € ©k, for k = 4, and let the Poincaré map P, of y have a
1-jet Py € E,(2n — 2). Then (w;) and (c;;) are defined as the Birkhoff
coefficients of v, and the twist coefficient of 7 is

n
Tw(c;) = .1_12 Cjj = €2C33 "t Cpy
J=

Definition. Let $* be the Baire space of all Hamiltonian Ck-vector
fields on a symplectic manifold M. Define the subset of $*, for each
fixed £ = 4,

©; = {dH" € ¥ | all but a countable number of the elliptic peri-
odic orbits of dH* have a twist coefficient Tw(c;) # 0}.

THEOREM 5. Let $k be the space of Hamiltonian vector fields on
a symplectic manifold M. Then ©; is generic in ¥, for each k = 4.

Proof. Take ©*, for fixed k = 4, and pick a generic subset, say
R C 9k, corresponding to the discriminant symplectic polynomial

A(Xy, Xy, ..., X3,—3). Then for dH* € % all but a countable number
of periodic orbits of dH* have distinct characteristic multipliers u,, ...,
Uy M2~ Y, ..., u,'. Hence among all degenerate and nondegenerate

elliptic orbits of dH” € % (all orbits with all |u;| = 1), excepting a
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countable set of orbits, each elliptic orbit has a 1-jet P,V in EQ2rn — 2)
C J,'(2rn — 2). Thus we need only consider elliptic orbits of dH* € R
that have Py € EQ2n — 2).

Next we wish to restrict the study to elliptic orbits of dH* with P,
in the open subset £,(2n — 2) C E(2n — 2). For this purpose we must
try to make Py avoid a finite set of analytic varieties of the form

Ay, ooy o) ipa®ps™ ooe p, =1,

for a set of integers (ay, ..., ,) satisfying 0 < L"—; |o;| < 5. In
the open set E(2n — 2) each of A(ay, ..., «,) describes an analytic
variety, but its behavior in the closure E(2n — 2) is unclear. Hence we
proceed by a method of exhausting the open set E(2n — 2) by a se-
quence of closed subdomains.

For each fixed integer N = 1, 2, 3, ... consider the open subset
EM™(2n — 2) of E(2n — 2) where the discriminant polynomial A > 1/N.
Consider the closure EM(2n — 2) in EQn — 2). Define &;,™ C
R C H* by

S, = {dH* € $*| all but a countable number of the el-
liptic periodic orbits of dH*, which have 1-jet
Py € EM(2n — 2) must, in fact, have Py) €
E,n — 2)}.

By the remarks following Corollary 2 of the preceding section, &3, ™ is
generic in . Now define the generic set ©;, = M y=; S3, N for
N = 1. Then for each dH* € S, there are only a countable number of
periodic orbits that have a 1-jet P, € EQ2n — 2) — E,2n — 2).
That is, upon discarding a countable number of exceptional elliptic
periodic orbits of dH* € ©3,, every other elliptic periodic orbit has a
1-jet PyD in the open set E,(2n — 2).

For each periodic orbit y of dH* € &3, having 1l-jet P,V €
E,2n — 2), there is a well-defined twist coefficient T° w(cj,). Further-
more the locus Tw(c;;) = 0 is a real analytic variety in E,°2n — 2) C
J3(2n — 2), as asserted in the above corollary. We now define &;,
within ® C H* by

&3 = {dH" € ©*| all but a countable number of the elliptic
periodic orbits of dH*, which have P,V € E,(2n — 2),
must have Tw(c;;) # 0}.
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Using the method of exhausting E,3(2n — 2) by closed subdomains
(say, defined by complements of neighborhoods of the analytic sets
A(ay, ..., a,) in EQn — 2), and by the condition A = 1/N), we
conclude that ©;, is generic in H* for each k = 4.

Finally note that &3 contains the generic set R N &3, N S;,
and so &; is generic in * foreach k = 4. [

4. Existence of periodic orbits and solenoids for Hamiltonian
systems. In the preceding two sections we have considered generic
subsets of the Baire space ©* of all Hamiltonian C*-vector fields, for
4 < k < o, on any symplectic 2n-manifold M, for 2» = 4. In par-
ticular, we proved that

9]22:9?0@00@10@20@3

is a generic subset of each such space $*. Using the generic condition
&y, that all critical points are generic, we shall prove the existence of
elliptic orbits in the vicinity of an elliptic critical point, as in Theorem 6
below. As remarked earlier, the generic conditions & N &; N &,
guarantee that near any elliptic orbit there is another elliptic orbit
which will have distinct characteristic frequencies w;, ..., w, (mod 1),
precisely one of which is rational. The twist condition &; will prove
crucial in our main existence Theorem 7 where we construct a sequence
of long period elliptic orbits.

In this section we demonstrate the existence of elliptic periodic
orbits for each Hamiltonian system dH* € M. Furthermore, we show
that a suitably selected sequence of elliptic orbits converges to a pre-
selected solenoid X,, which occurs as a minimal set of the Hamiltonian
dynamical system dH*. In our method we first produce an iniiial elliptic
periodic orbit v, near an elliptic critical point of dH* (note: for this
step alone we need dH* € &, with M compact). Then we produce
another elliptic orbit v, of dH* encircling a tubular neighborhood of .
We then proceed by an inductive argument to obtain the required
sequence of elliptic orbits converging to L. The details of the proof are
given in our Principal Theorem.

We now proceed to locate the initial elliptic orbit v, near an elliptic
critical point Q, of dH” € &, in accord with the classic theorem of
Liapunov as modified slightly for our theory.
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THEOREM 6. Let the Hamiltonian system dH* € ©2 have a generic
elliptic critical point Q. Then in each neighborhood N of Qg in M, there
exists an elliptic periodic orbit v, of dH" with distinct characteristic fre-
quencies 0 < wy, ..., w, < 1/2.

Proof. We consider the Hamiltonian system dH* in local canonical

coordinates
X
Z =
y

centered about Q in M, wherein

H=%f&+fm

with §’ = § and f(z) of higher order than quadratic at z = 0. Then the
Hamiltonian differential system has the form

dH*": z=Az + g(2),

where A = JS is a Hamiltonian matrix and g(z) = J(3f/dz)’ in C? satis-
fies g(0) = 0, dg/dz(0) = 0.

For convenience we introduce new local coordinates w = z/e¢ in terms
of a “small scale factor’” ¢ > 0. Then the differential system in coordi-
nates (w) becomes

*) w=Aw + h(w, €)
where A(w, €) = (1/¢)g(ew). It is easy to check that A (w, €) is of class

Clin (w, €) in a full neighborhood of (0, 0), and there 4 (w, €) is uni-
formly of order €. Also since

dg
0z

O Aw+ hw 0] =4+ 28 ()
ow

is everywhere a Hamiltonian matrix, the differential system (*) is
Hamiltonian for each fixed ¢ near 0.
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Since dH* has a generic elliptic critical point at Q, the eigenvalues
of A are the pure imaginaries A\, ..., A, (and —A{, ..., —A,) and
are linearly independent over the rationals. In particular write \| = iw
with real frequency w # 0. Thus, for ¢ = 0, the differential system (*)
is linear with a 2m/w-periodic solution w = ¢(t) = eAw,, for some
numerical unit vector w,. Because (*) is linear, for ¢ = 0, the vari-
ational equation about w = ¢(¢) is just the same differential system.
Thus the characteristic multipliers of ¢(¢) are the eigenvalues of
exp [2n/w)A], namely; 1, 1, exp (£27\,/w), ..., exp (X 27\, /w).

Because \;/N\y = \;/iw for j = 2, ..., n is never an integer, the
standard perturbation theory for Hamiltonian systems guarantees the
existence of a parametrized family w = ¢(¢, €) of periodic solutions of
the nonlinear differential system (*) for all small |¢|, with ¢(z, 0) =
©(t). Furthermore ¢(¢, €¢) has period T(e) = (2w/w) + Of(e), and its
characteristic multipliers are 1, 1, and exp (£27\;/w) + Of(e) for
j=2,...,n

Recalling the substitution z = ew, we conclude that for each small
e > 0 there is a T'(e)-periodic orbit z = ep(¢, €) of the original Hamil-
tonian system dH*. Moreover, for all sufficiently small ¢ > 0, the initial
point z(0) = ep(0, €) is very near to ep(0) = ew, and the period T'(e)
is very near to 27/w. Thus z = €p(¢, €) must lie in the prescribed neigh-
borhood N of the critical point Q. Finally, the characteristic multipliers
of the periodic orbit z = ep(¢, €) must approximate exp (£27\;/w)
as ¢ — 0, and thus the characteristic frequencies must approximate the
distinct irrational numbers (£A\;/iw) for j = 2, ..., n. Upon re-
arranging the list of the characteristic frequencies of ep(z, €), we can
declare these to be 0 < w,, ..., w, < 1/2 (mod 1) for an appropriate
choice of e > 0. [

Theorem 6 asserts the existence of an initial elliptic orbit y, of the
Hamiltonian system dH*. The next existence Theorem 7 produces
another elliptic orbit v, that encircles b,-times around a tubular neigh-
borhood II centered on vy,. To clarify this geometric description we
remark that the tubular neighborhood II around vy, is a topological
product of an open ball B~1  and a circle S! (note that II is an ori-
entable 2r-manifold since it is symplectic). Moreover we demand that
the compact closure II is topologically B2*~! X §! and that it forms a
collar around <y, in the standard manner. The closed curve vy, re-
stricted to a single least-period, is a generator of the fundamental group



PERIODIC ORBITS. 69

of this tube II. We say that a periodic orbit v, in II encircles IT b,-times,
for some integer b, = 1, in case the closed curve v, during a single
period, is freely homotopic in II to by-multiples of the curve v,.

The basic existence argument will then be repeated in an inductive
proof to show that dH* has an infinite sequence of elliptic orbits v, v,
Y25 ¥3» --., €ach encircling a tubular neighborhood of the preceding
orbit, with corresponding encircling multiplicities by, b,, b,, ... for
b; = 2. Following this construction we shall then show that the sequence
Yo» Y1s Y2» Y3, ... converges to a solenoidal minimal set £, defined
topologically by the parameter b = (by, by, b,, b3, ...).

As a further complication we shall require the existence of a pre-
scribed minimal solenoid X, with a = (ay, ay, a,, a3, ...) fora; = 2.
Thus we must investigate the number-theoretic inter-relations of @ and b
corresponding to homeomorphic solenoids £, and I,. Hence we are
led to an arithmetic-topologic degression on solenoids before advancing
to the analysis of the basic existence Theorem 7.

We recall that I, is topologically homeomorphic to L, under
the following condition: each prime-power that divides any product
(agaa, - - - ay) also divides some product (byb b, - - - b;), and vice versa.
In our algorithm for constructing Lj, given E,, we shall choose b to be
a product of a prime factor g, of ay, and a second factor Q that is
composed of further primes found in some product (1/g¢)aq-a; -
a, +-- ag). In this way we force any prime-power factor of b, to divide
(ap-ay-a; --- ay). Later choices of by, b,, ... incorporate the prime
factors arising in the integers of @ = (ag, a, a,, ...) in such a way to
meet the criterion: each prime-power that divides any (b -b,-b, --- b,)
also divides some (ag-a;-a, --- a;). But we must further take care in
our process to pick-up all the primes, and their powers, that do arise
in any such product (ag-a;-a, --- a;).

In order to describe our algorithm for constructing Z,, as a topo-
logical image of L,, we begin by analyzing the prime factors =2 of
the integers ay, a;, a,, ....

Case 1. Only finitely many distinct primes occur among the fac-
torsof ag, a, ay, . ...

In this case some prime s, = 2 has arbitrarily high powers s, that
divide some finite products (ag-a;-a, -+ a;). For definiteness take
so = 2 as the smallest such prime. Then s, must divide infinitely many
of the integers of the sequence ay, a;, a;, ....
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We next list the prime factors, with repetitions, for a,, say by
increasing magnitude. Thereafter list the prime factors, with repetitions,
of a;. Continue in this way to make an ordered list of the prime factors
arising in the sequence ag, a;, a,, .... From this ordered list delete
the prime sy and all its repetitions. Designate the remaining ordered
list as the usable prime list of a = (ag, ay, a,, ...).

Case 2. There are infinitely many distinct primes among the
factors of ag, ay, a,, ....

In this case make the same ordered list of all primes, with repeti-
tions, arising in the sequence ay, a, a,, .... Designate the total list
here as the usable prime list of a = (ay, a;, a,, ...).

Algorithm. Let there be given a sequence of integers a = (ag, a,,
a,, ...) with each a; = 2. We shall describe a rule of choosing integers

b., = 2, as limited by the usable prime list of a.

Case 1. Take by = ggs¢° where g, is the first usable prime (so
qo # Sg; but if none such exists then take gy = sg). The integer ¢y = 1
can be selected arbitrarily, in particular so that s, = s for any pre-
assigned integer s. Now strike out g, (but not its repetitions) from the
list of usable primes.

Next take b| = gs(" where g, is the first remaining usable prime
(if none such exists then take g, = sg). Again the integer ¢; = 1 is
arbitrary. Now strike out g from the remaining list of usable primes.

At the (-th step, take b, = q,5,°" where g, is the first remaining
usable prime, and ¢, = 1 is arbitrary. This completes the description
of the algorithm for selecting b = (b, b, b,, ...) in Case 1.

Case 2. Take by = qys| where g is the first usable prime, and
s is any later prime on the list. We allow s; = g, but often we might
demand instead that s; = s for some pre-assigned large integer s. Now
strike out g4 and s (but not repetitions) from the list of usable primes.

Next take b, = g s, for g, the first remaining usable prime, and
s, a usable prime later on the list. Again the choice of s, from the list
is largely arbitrary. Now strike out ¢, and s, from the remaining list of
usable primes.

At the (-th step take b, = g;5,4, as before, with g, the first re-
maining usable prime and s, from later in the list of the remaining
usable primes. This completes the description of the algorithm in Case 2.
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LemMA 1. Consider a solenoid L, for the parameter a = (ag, a,
a,, ...)withalla; = 2. Let b = (b, b,, b,, ...) be any sequence of
integers selected in accord with the above algorithm. Then L, is homeo-
morphic to L, .

Proof. If we fix attention on a finite product (ag-a;-a, - ay),
then all of its prime factors with appropriate repetitions will eventually
enter into some finite product (by:-b,- b, --- b,). This follows since,
at each stage b, , we incorporate another prime leading the list of usable
primes of a—and also at least one power of s, in Case 1.

On the other hand, no prime-power enters (bo-b, --- b,) that
does not already arise in some finite product (ag-a; --- a;). This is
a consequence of the step in the algorithm referring to the striking-out
of used primes.

Thus each prime-power that divides any (a¢ - a; - -+ ay) also divides
some finite product (by-b, -+ b;), and vice versa. Hence L, and L,
are homeomorphic solenoids. [

In our construction of the elliptic orbit -y, which encircles a tubular
neighborhood II of the orbit 4, we shall require that vy, has a charac-
teristic frequency w, that is rational. Suppose we wish to assure that
v has a least period accounting for g-encirclings, for a prescribed in-
teger ¢ = 2. In this situation we shall require that w, = p/q, where
p and g are relatively prime so (p, g) = 1. But our geometric pertur-
bation methods in Theorem 7 will allow us to adjust the rational w, =
p/q only within a narrow real interval L. Accordingly the next number-
theoretic lemma will be useful.

LeEmMMA 2. Let L be a compact interval in (0, o), and let g, = 2
be a prime. Then there exists an integer s such that:

for each prime-power s, = s there exists a rational number
p/q € Lwith (p, q) = land g = g¢s,°.

Proof. Take s = max {2, 6/|L|-q,} where |L| is the positive
length of the interval L. Let s¢° = 5 50 ¢ = q¢5¢° = qos = 6/|L].
Then 1/q < |L|/6 so there exists a smallest odd integer p, = 1 for
which py/q € L.

Several cases give rise to various definitions of the integer p so
(p.q) = 1.

If g = 2 and 5y = 2, then g is a power of 2 and we take p = p,.
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Now assume g, = 2 and s, = 3. In this case take p = p, unless
so divides pg in which case take p = py + 2. The case g = 3 and
sy = 2 leads again to a choice between p, and py + 2.

Finally assume g, = 3 and sy = 3. Take p = pg if (pg, q9) =
(po, sp) = 1. Otherwise take p = py + 1 or p = p, + 2 whichever
yields the relatively prime demands (p, go) = 1 and (p, sy) = 1.

In every case we augment p, by at most 2 to obtain p. Since
(po — 2)/q is a lower bound for L, and since 1/q < |L|/6, we compute
(po + 2)/qg = (po/q) + (2/q) € L. Thus, in every case, we have de-
fined p so (p, g) = 1 with p/q € L. [J

Now we turn to the existence theorem that lies at the heart of our
technical analysis.

THEOREM 7. Let dH" be a Hamiltonian system in the generic set
S, N &, N &; C O, for 4 <= k = =, on a symplectic 2n-manifold
M, for 2n = 4. Let v, be an elliptic periodic orbit of dH", having dis-
tinct characteristic frequencies. Let I1 be a tubular neighborhood of v,
in M and let q, = 2 be a given prime.

Then there exists an integer s = 2 such that: for each prime-power
$0¢ = s there exists a periodic orbit v, of dH" in the tube 11, with the
two properties,

1) v, encircles the tube Il exactly g = q(s,¢ times before closing
after its least period,
and

ii) v, is an elliptic orbit with distinct characteristic frequencies.

Proof. The elliptic periodic orbit vy, of dH" has distinct charac-
teristic frequencies, say 0 < w,, ..., w, < 1/2. Thus v, is nondegen-
erate and it is embedded in a local 2-band of elliptic periodic orbits
v(h), as parameterized by the energy level & of the flow of dH*. More-
over, the corresponding characteristic frequencies 0 < w,(k), ..., w, (k)
< 1/2 are distinct for y(h), at least for small energy levels 2 where we
normalize the energy by v(0) = . Furthermore all these elliptic orbits
v (h) lie inside the tube II centered on v, provided we suitably restrict
the energy level of A.

We shall break the proof down into several steps. The first step
deals with the restriction of the energy levels of 4, and the reselection
of the initial orbit vy, in y(k) so that w, = p/gq, is rational with ¢ =
qo5¢¢. The remaining steps then exploit the rational frequency w, =
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p/q. through fixed-point methods, to produce the required elliptic
orbit -y, that encircles the tube IT g-times.

i) Adjustment of the initial elliptic orbit v,.

By the definition and generic property of the set &,, as established
in Theorem 4, we can assume that some w,;(k) is non-constant. For
definiteness assume that dw,/dh > 0 on some subinterval (k,, 4,),
within the 2-band of the periodic orbits (%) that lie within the tube II.
In addition, from the definition of the generic set &3, in accord with
Theorem S, we can assume that the twist coefficient Tw(c;(k)) vanishes
nowhere on some open subinterval (2", £,’) C (hgy, h}).

Next we seek a value £ € (ho', k') where wz(ﬁ) = p/q for g =
qoso¢ with (p, g) = 1, for the chosen prime-power sy¢ = s. The integer
s = 2 to be specified first.

Take a compact interval L in the range of w,(k), forhy’ < h < hy’
where dw,/dh > 0. By the above Lemma 2, given L and q there exists
the appropriate integer s = 2 and thereafter we take any prime-power
59¢ = s. Under these conditions there exists a rational number p/q € L
with (p, g) = 1 and ¢ = gq¢s,°. Hence there exists the energy value
he (hy', hy’) for which wz(};) = p/q.

Now we rename the energy levels, that is translate the energy range,
and reselect the initial orbit to be (%) which we call v, and thus re-
adjust the energy level so # = 0. That is, we keep the original notation
vo = 7v(0) and use v as the initial elliptic orbit lying within the 2-band
v(h) of elliptic orbits of dH*, all of which are inside the tube II for
—h < h < h. We mention that each v(h) encircles the tube II just
once, since the period of v (k) varies continuously with 4, and so II still
forms the standard collar around v,.

Therefore, after this re-selection of vy, upon an arbitrarily slight
shift within the given 2-band vy (%) of elliptic orbits, we can assume:

«) the characteristic frequencies are everywhere distinct,
0 < wyh),...,w,(h) < 1/2 on—h<h <h,
and

B) dw,/dh > 0 and Tw(c;(h)) # 0 on —h < h < h, and at the
level & = 0 where v(0) = v,,
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¥) w,(0) = p/q with (p, g) = 1 and ¢ = qs,° for some large
prime-power so¢ = s, (automatically ¢ = 6 since the Birkhoff
form is valid in ©3) and, by Theorem 3,

6) w3(0), w4(0), ..., w,(0) are all irrational.

ii) Conditions for fixed-points of the iterated Poincaré map around v, .

We shall proceed to find a g-periodic orbit v, of dH*, g-encircling
the tubular neighborhood II centered on y,. To accomplish this goal
we shall seek a fixed-point of the g-th iterated Pl4] of the Poincaré map
P defined by the flow of dH* around the given periodic orbit v,. That
is, take a transversal (22 — 1)-section I to the orbit v, at some point
Q = y¢ N I and define P as the map of first-return, along the trajec-
tories of dH*, of a neighborhood of Q in L back into L. Then Pl4! de-
scribes the g-th return to I, and we seek a nontrivial fixed-point of
the map Pldl,

Take a local chart of canonical coordinates (x!, x2, ..., x", y,,
Y2, ---, ¥n) centered at Q in M, wherein H = y, and X is the hyper-
plane x! = 0. Then (x2, ..., x", y,, ..., y,) are symplectic coordi-
nates for each slice of L defined by an energy level y; = h. Furthermore
we can require that the 2-band of orbits y(#) meets L in the locus
x/ =0,y; = 0forj =2, ..., n ash varies on L. In addition (x/, y;)
can be taken to be Birkhoff normal coordinates that display the Poincaré
map P,, depending smoothly on the energy level 4, in the Birkhoff
normal form in accord with the properties of ©; and the Birkhoff
Theorem in Section 3 above.

The Poincaré map P around v, is now displayed, on each energy
level & of L, by the symplectic map:

Py, y;) = (Xi(x, y. h), Y;(x, y, h)),

in terms of the parameter-symplectic coordinates (x2, ..., x", y5, ..., y,)
and A. In this format we can examine P, and its r-th iterate P,I"l. Here
we write

Ph[r]:(xja y,) - (X,[r](x’ yv h)9 Y/[r](xv y, h))
and we shall emphasize the linear terms which are rotations in these

Birkhoff normal coordinates (x/, i)
The search for periodic orbits of dH* that encircle v, r-times leads
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to the condition specified by the fixed-point equations P,"l = Id. We
can display these fixed-point equations as

x2 cos 2mrw, + y, sin 2wrw, + o0 = x2
—x2sin 27rw, + y, cos 2mrw, + - =y,
x3 cos 2mrwy + yysin 2wrw; + - = x3
—x3sin 2wrw; + y3cos 2wrwy + -0 = y3
(F.P.E.)
x" cos 2wrw, + y, sin 2@rw, + -0 = x"
—x" sin 27rw,, + y, cos 2mrw, + -+ = y,.

Here w; = w;(k) but w,(0) = p/q and furthermore w;3(0), ..., w,(0)
are distinct irrationals. The omitted remainder terms are of order
O(X"=, |x/|2 + |y;|?) near x/ = 0, y; = 0, uniformly in k.

These maps and fixed-point conditions can be analysed more easily
in symplectic polar coordinates

N2 + (v.)2
u; = _(_JC_)__E_QL)_, 0., = arc tan y,-/x_, forj =2, ...,n,

as are introduced for the Birkhoff normal form. In these coordinates
we can write the Poincaré map
Ppiuj = Uy =u; + oo

n

. — 0, = 0, + 27('(,0"' + 1§2 cj,u, + ... (mOd 27!').

J J

Then the fixed-point equations P,"] = Id become

(F.P.E.) u; — UJ.H =uj+ - =u

0_,' - 9,[’] = 0, + 27rrw_,~ +r 152 c_,-,u, + ... = 0, (mOd 27!').
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Here w;(h) are the characteristic frequencies of v(h) and cj(h) is the
twist matrix, depending smoothly on 4. The omitted terms are of order
O(||u||?) near u = 0, uniformly in 6 and A.

iii) Absence of short periodic orbits encircling v.

Fix any integer 1 < r < g and seek solutions of the fixed-point
equations P, = Id. Of course x/(h) = 0, y;(h) = 0 yields a trivial
solution corresponding to the periodic orbit y(k), which has an en-
circling multiplicity of just +1 around y,. We must show that there
are no other nontrivial solutions of (F.P.E.), provided the tube II is
suitably narrowed with restrictions on || < h whenever necessary. We
usually assume that such narrowing of II, and restrictions of / are done
without any special mention or notational change.

Examine (F.P.E.) in the symplectic cartesian coordinates (x/, y;),
especially with regard to the linear terms. Note that the (» — 1) X
(n — 1) determinant of the linearized equations, at # = 0, is just the
product of (# — 1) determinants of size 2 X 2, namely,

cos 27rp/q — 1 sin 27rp/q
det
—sin 2wrp/q  cos 2wrp/q — 1

and

cos 2mrw; — 1 sin 27rw;
det )

—sin 27rw;  cos 2@rws — 1
cos 2mrw, — 1 sin 27rw,
..., det
—sin 27rw,  cos 2wrw, — 1

Since w;(0), ..., w,(0) are all irrational, all of the last (n — 2) of these

determinants are different from zero. Also note that rp/q, with (p, gq)
= land r < g, is not an integer and so the first of these determinants
is different from zero. Therefore the determinant of the linear terms of
the (F.P.E.), P, — Id = 0, must be nonzero at # = 0 and also for
all small |4 .

Under these conditions the implicit function theorem guarantees
that only the trivial solution x/ = y; = 0 exists, provided |x/| + |y;|
+ |A| is suitably small. Hence, within a suitably restricted tubular
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neighborhood II about 7,, there are no periodic orbits of dH* with
r-encircling multiplicities for 1 < r < g; excepting the known orbits
v(h) of the standard 2-band.

iv) Existence of g-encircling orbits: reduction to 2-surface S (h).

If we set » = g then the first two equations of the system Pyldl = Id
reduce to

yat - =y,

Since the 2 X 2 determinant of the linear terms is zero, the implicit
function theorem is not directly applicable to the full system of (2n — 2)-
equations. However the last (2n — 4) of the equations of the system
P,lal = Id have a corresponding 2 X (n — 2) determinant that is the
product

cos 2mqw; — 1 sin 27rqw;
det
—sin 2rqw;  cos 2wquw; — 1
cos 2mqw, — 1 sin 27qw,
o« det #= 0.
—sin 2wqw,  cos 2wqw, — 1

This implies that we can solve the last (2n — 4)-equations of the
(F.P.E.) for (x3, ..., x", y3, ..., y,) in terms of the variables (x2, y,)

near (0, 0), with the parameter # also near 0. That is, there exist
x''=o'(x2, y,, h), y; = 7x2, y5,h) for 0=3,...,n

where the Ck-functions o/(x?, y,, k) and 7,(x%, y,, h) satisfy the
conditions

a'(0, 0, k) = 0, 70,0, k) =0
and

o' 3’ ore  or,

=, =0 =0 at (0,0,h).
w2 ay, a2 dy, at ( )
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Therefore, for each small |4 |, we can define a 2-surface S (h),
Sh):x' = o'(x2, y,, h), ye= 1x2%, y,, k) for (=3,..., n

For each & the 2-surface S(#) is tangent to the (x2, y,)-plane at the
origin, and lies within the A-energy slice of the section . On §(%) the
coordinates (x3, ..., x", y3, ..., y,) vary as (x2, y,) varies over a
neighborhood of the origin in the (x2, y,)-plane. In this sense we co-
ordinatize each S(&) by (x2, y,), and compute its position in the trans-
versal L by x' = o'(x2, y,, k), y, = 7,x2, y,, h), for each A.

The significance of the surface S(k) is that each point (x2, y,) on
S(h), whose remaining coordinates are (¢!, 7;) and 4 in L, is mapped
by P,!49! to an image point in £ whose coordinates x' = ¢!, y, = 7, and
h are unchanged. In other words, for each point (x2, o', y,, 7, 4) on
S(h), only the (x2, y,) coordinates are changed by the map P,!9!, and
the remaining coordinates (o', 7;, #) are unchanged. Thus the problem
of finding a fixed-point of P,!9!, within the transversal T of the tube II
around v, reduces to finding a point with fixed coordinates (£2, y,) on
the surface S (#).

v). Curve G (h) of angular invariance on S(h).

We use the coordinates (x2, y,) to specify points on the surface
S(h), and further simplify the calculations by introducing the symplectic
polar coordinates on this surface, according to:

_ )2+ ()

5 s 6 = arc tan y,/x,.

u

Then the g-th iterate of the Poincaré map P,4!, when restricted to
S(h), can be described by the first pair of the (F.P.E.),
u—.U[‘“:u+ cee =y

n

6 — Oldl = § + 2wqw,(h) + gepu + g 23 cuU,+ -+ =40.
(=

Here we have written (u, 6) for (u,, 6,), so that we can define the
surface S(4) by

Sth):uy = ulu, 6, h), 0,=04(u, 0,h) for (=3, ..., n.
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Since the functions

(62 + (10)?

uu, 0, h) = 5

=0(?[* + 219 = O@?),

we can write the pair of (F.P.E.) in the form

u:u+oo-
p duw)

0 =0+ 2nq —-J“——(O)h] + gcyp(Qu + - -+,
q dh

where the error is of order O (u?2 + h2).
Now write « = 2mg(dw,/dh)0) and 8 = —gc,,(0) and then we
have our basic equations for a fixed point of P, (4] on S (k):

u:u+ PEREY
=0+ och —Bu-+ .- (mod 2w).

We know that o # 0, from our selection of the initial elliptic orbit v, of
dH" € &,, as explained earlier. The condition 8 # 0 is a consequence
of the nonvanishing twist of the orbit v, of dH* € ©;. In fact, this calcu-
lation is the motivation of the twist coefficient 7w (i) =cyp-c33-cpp-

We assume, for convenience, that both « and § are positive con-
stants in order to compare the consequences of a positive shift in the
energy h versus a positive radial dilation in . If @ and 8 were of oppo-
site signs, we could shift 4 negatively while dilating « positively to obtain
similar conclusions. Thus we take « > 0 and 8 > 0.

Next define a curve € (%) on the surface S (h),

Ch):u = u(8, h), for0 < 6 < 2m,
by the solution of the angular (F.P.E.)
O0=ah —Bu+ ---.

Since the error term is O (u2 + h?), uniformly in 6, the implicit function
theorem enables us to solve for u according to
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u=u(0,h)=%h+

where the error is O(k2), uniformly in 6. Since u (6, k) is positive for
all small # > 0, this locus defines a smooth simple closed curve G (k)
encircling the origin in the surface S(k).

For each small # > 0 the closed curve €(k) has the important
property that each point (u(d, &), 6) € (k) has its angular coordinate
9 preserved under the map P,l9). In other words, such a point on (k)
would be the desired fixed point of P,l4) if its radial coordinate 2 =
u(f, h) satisfied the remaining radial (F.P.E.)

u@® h) =u@ h) + ---.

As is evident from the format of this last radial equation, the
process of solution for § must be rather delicate since the usual implicit
function theorem is not applicable here. In order to motivate our proof
we remark that in the special case where S(k) is an invariant symplectic
linear space, say x! = 0, y, = 0 for / = 3, ..., n, then the area-
preservation property of P,l4] would show that the closed curve G (k)
must meet its image in this plane. In such a situation any point of inter-
section of € (k) with its image would necessarily be a fixed point of the
map P,l4). But S(h) is not necessarily a linear plane, and so we must
use a more complicated argument based on other invariants of sym-
plectic geometry (see [3] for a similar argument).

vi) Existence of g-encircling orbits: fixed points on the curve G (h).

Consider the (F.P.E.) on the surface S (k)
u = u + PEREEY
0=0+ah —Bu+ --- (mod 2m)

for constants @ > 0, 8 > 0 with error O(u? + h2). For all suitably
small |2 | we obtain the unique solution of the angular equation

u=u h) = %h + 0(h?),

compatible with the restrictions on the magnitude of u imposed by the
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tube II. For & < O there are no such points on S(k) with # > 0; hence
no such geometric point exists. Thus for each # < 0 the only candi-
dates for g-encircling periodic orbits of dH* in the tube II about v, are
just the l-encircling orbits y(h) of the 2-band through v(0) = v,.
Hence we need only examine the locus for # > 0 which defines the
closed curve,

Cth):u = u(, h), for all small 2 > 0.

Of course, the tube II and the corresponding energy domain —h <
h < h are always assumed to be suitably restricted.

The map P, l4) is symplectic on each energy level Z(k) in the trans-
versal L to vy, across the tube II. Accordingly, P,!4) must preserve the
symplectic 2-form X";—; du; A df, in both sets of canonical coordinates

J g
(u;, 0;) and (U,19), ©,19)). That is, the identity in (x,, 6;) must hold,

=2 . J 4 "

Within the simply-connected manifold X (k) this closed 1-form is
the differential dW of some real function W(u,, ..., u,, 0,, ..., 6,),
that is,

n
=2 : I

We now restrict W and the corresponding equality of differential
forms to the submanifold consisting of the smooth curve €(h). Along
€ (h) find the equality

dW = (U, — u)db.

Here the functions U,9 and u, = u, 6, = 6 are evaluated along the
smooth curve €(#).

Since €(k) is a compact 1-manifold, so diffeomorphic to a circle,
there must exist critical points of W on §(k)—say at the minimum and
the maximum values of W on €(%). At each such critical point dW = 0
so U,9) = u, and hence this establishes the existence of at least two
fixed-points of the map P,4! on each curve G (&), for each small &4 > 0.
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vil) Index computations for elliptic orbits.

For each small # > 0 we obtain at least one nontrivial g-encircling
orbit of dH*, determined by a fixed-point of P,!9! on §(k), lying within
the tube II around v,. Earlier steps in the proof have shown that such
g-encircling orbits cannot reduce to r-encircling orbits forany 1 < r < gq.
We must now show that our construction yields a nondegenerate elliptic
orbit g-encircling II.

First delete from the energy interval —h < h < h the countable set
of values of A for which there exist periodic orbits of dH* having re-
peated characteristic multipliers. This energy set D is countable since
dH* € ©, C R, and therefore (—h, h) — D is dense in the real interval
(—h, h).

Consider any small A4 in the set (0, h) — D. Then each of the
g-encircling periodic-orbits is located by a fixed-point of P,l4! on the
compact set €(h). Since every periodic orbit at energy level £ is non-
degenerate, there are only a finite number e(k) of these g-encircling
orbits, and we denote these by v, !(h), v 2(h), ..., v¢®(h).

Next we compute the local topological degree of each of these
fixed-points of P,4], namely at the points v, (k) N E(k), ..., v;¢W(h)
N Z(h), within the invariant A-level L(k). This local degree, for each
such fixed-point y¢(k) N Z(h), is just the topological index of the
vector field produced in E(k) by joining each point (u;, 6;) to its image
(U;19}, ©;19}). Thus we compute

degree v,¢(h) N L(h) = sgn det |dP,l9l — I|,

where the Jacobian matrix dP,!9] is evaluated at the given fixed-point
v.¢(h) N E(h), fore = 1, 2, ..., e(h). Since the periodic orbit v ¢(h)
is nondegenerate, dP,!4] has no eigenvalue +1 so the degree depends
only on the sign of the indicated determinant.

As the parameter & increases through the dense set (0, h) — D,
the index of the corresponding vector field in Z(%#) can be computed
over a given sphere $~3 around the origin in the (x2, ..., x", y,,

.., yn)-space. The index over §2*73 will be independent of the param-
eter h, provided all of the points y(k) N Z(k), v,'(h) N (), ...,
v1¢®(h) N L(k) lie inside the sphere $2~3, This total index must be
the degree of the fixed-point vy N Z(0) corresponding to the unique
fixed-point of Pyl at energy level 2 = 0. Moreover the trivial 1-encircling
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periodic orbits (k) all contribute the same value as does y(0) = v, to
this total index, and hence the extra g-encircling orbits must contribute
a total of zero:

e(h)
Z_:l degree y,¢(h) N Z(h) = 0.

Let us examine these degrees as & — 0+ through the dense set
(0, A) — D. Note that the diameters of the closed curves C(k) in I (k)
tend towards zero, and so all the fixed-points y,¢(h) N Z(k) tend
towards v, N I(0). Hence the characteristic multipliers £,°, £;¢,
..., £,° (and their reciprocals) tend towards those of 7y, under the
g-iterated Poincaré map Pyl9). Consequently, as h — 0+,

£,2=1+0(1)

fle — e21riqw1 + o(1) forl =3, ..., n.

Now w3(0), ..., w,(0) are distinct irrational numbers, and so & are
distinct complex numbers of unit modulus with complex conjugates
£° = 1/£¢. Our goal is to show that £,¢ is also on the complex unit
circle, so that (k) would then be elliptic.

The product (¢,¢ — 1)(1/¢,¢ — 1), of two complex conjugates, is
positive. Thus the degree of P, 9 at v ¢(h) N Z(h) is

sgn det |dP, 9] — I| = sgn (§,¢ — 1)(1/§,¢ — 1).

Now each of the g-encircling periodic orbits v,¢(k), fore =1, ..., e(h),
is nondegenerate and thus the corresponding local degree is (+1) or
(—1). Because the sum of all these local degrees must total zero, there
exists at least one of these orbits with local degree (+1). For each small
h € (0, k) — D let v,!(h) yield a fixed-point of P,[4] with local degree
of (+1).

The two cases of interest are when £,! is real, and when £,! is
nonreal on the unit circle (since vy, !(%) is nondegenerate, £,! # +1). In
the first case write £;! = 1 + { for real { > 0, so sgn (§;! — 1)
1/, — 1) = sgn (H(—¢/1 + §) = —1. Hence the first case is ruled
out.
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In the second case &£;! = cos { + i sin {, so sgn (£,! — 1)
(E,‘ — 1) = sgn (2 — 2 cos {) = +1. Thus the second case must hold,
as so v (k) is a nondegenerate elliptic orbit.

For any suitable small & € (0, h) — D rename the nondegenerate
elliptic orbit v; = v,!(h). Then v, is a nondegenerate elliptic orbit of
dH* and it encircles within the tube IT exactly g-times before closing.
Moreover the characteristic frequencies of v, are very near to the dis-
tinct numbers 1, gw;3(0), ..., gw,(0), as required in the theorem. [J

We have finally assembled all the results needed for the demon-
stration of our Principal Theorem, as stated in Section 1 earlier. Here
we shall discuss Hamiltonian systems dH* of class C* in the Baire
space ¥, for any fixed 4 < k < oo, on any symplectic 2z-manifold M,
for 2n = 4. Our results apply to any dH” in the generic set &, N
&, N &; which is assumed to possess a nondegenerate elliptic periodic
orbit (. If we further assume that dH* € &, and that M is compact,
then Theorem 6 assures the existence of such an initial elliptic orbit
Yo near a generic é€lliptic critical point. For simplicity of exposition we
phrase our Principal Theorem in this latter case, and for emphasis we
name the generic set

Me=RNGS, NS NG, N S;.

PrINCIPAL THEOREM. Let * be the space of Hamiltonian dynamical
systems on the compact symplectic manifold M. Then there exists a
generic set My C OF such that:

for each Hamiltonian system dH* € My, and for each solenoid L,
there exists a minimal set for the flow of dH* that is homeomorphic
toX,.

Proof.

Remark. Take a Hamiltonian Ck-vector field dH*, for 4 < k < oo,
on any symplectic 2n-manifold M, for 2rn = 4. Assume dH" lies in the
generic set ©; N &, N &; and has a nondegenerate elliptic orbit
vo—as would be guaranteed by the hypotheses dH* € My and M com-
pact. Let II be a tubular neighborhood of v, and let E, for parameter
a = (ay, ay, ay, a3, ...) with a; = 2 be a given solenoid. Then our
proof will establish the existence of a minimal set for dH* in II, which
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is homeomorphic to £,. We break the proof of the theorem into several
steps.

i). EXxistence of the initial elliptic orbit v,.

The Hamiltonian function H for the vector field dH* must assume
its minimum value at some critical point Q, on the compact manifold
M. Since dH* € ©,, the critical point Q, must be a generic elliptic
critical point. By Theorem 6 there exists a nondegenerate elliptic orbit
vo of dH* near Q, and all the characteristic frequencies 0 < w,?, ...,
w,? < 1/2 of v, are distinct.

ii). Construction of the first encircling orbit v, .

Take a tubular neighborhood II, of y,. In the parameter a =
(ag, ay, a, a3, ...) let go = 2 be the first prime in the usable prime
list of a, in the sense of the arithmetic analysis and the algorithm pre-
ceding Theorem 7.

According to Theorem 7 there exists an integer s = 2 such that,
for each prime-power sy = s, there is a by-encircling periodic orbit
v of dH* in the tube I, where by = g5, (in Case 1 of the algorithm,
or by = qos,; in Case 2) and sy’ = s (or s; = s) is chosen in accord
with the above arithmetic algorithm. Moreover v, is a nondegenerate
elliptic orbit with distinct characteristic frequencies 0 < w,!, ...,
w,! < 1/2.

Finally take a narrow tubular neighborhood II; of v, with the
closure IT, lying inside II, and encircling it by-times. Now the procedure
can be repeated to determine a second elliptic orbit v, that encircles
IT, b,-times; and hence v, encircles I1y(byb)-times.

iii). Inductive definition for the sequence of orbits vo, Y1, Y2, ¥3» « - - -

Suppose that the periodic orbits vo, vy, v2, ..., v, of dH* have
already been determined in the fashion indicated in the preceding step.
In particular, each of vy, v{, ..., v, is a nondegenerate elliptic orbit
of dH*, with distinct characteristic frequencies 0 < wy8, ..., w,8 <
1/2for0 < g < /.

Moreover suppose that there are specified tubular neighborhoods
Iy of v, II; of v¢, ..., II, of v, with the obvious set inclusions

nciy,cll,_,cll_,c..-cll cl cII,.
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Also we can demand that each of these closed tubes ﬁg is compact,
and has a meridianal diameter less than 1/2¢, for 0 < g < {, in terms
of some convenient metric on M. Moreover we assume that v, and
hence II;, encircles Il exactly b,-times; vy,, and hence II,, encircles

I, exactly b,-times, and so forth. The integers by, by, by, ..., by,
have been selected, in accord with the usable prime list of ¢ = (ay, a,,
a,, aj, ...) following the procedure of the algorithm.

Now we shall find a nondegenerate elliptic orbit v,1, encircling
tube II, exactly b,-times, for an appropriate integer b, = 2. Again we

use the algorithm to define b, = ;50 (in Case 1, or b, = q,;8p+; in
Case 2), where g, is the first remaining usable prime in a = (aq, a,,
a,, ...) after the previous stages have been completed. As before,

g, = 2 and the tube II, give rise to an integer which is to be exceeded
by s¢°! (in Case 1, or by 5,4, in Case 2). Then Theorem 7 guarantees the
existence of the required elliptic orbit v, of dH* b -encircling the tube
II;, and possessing distinct characteristic frequencies 0 < w,'*!, ...,
w, T < 1/2.

The choice of the tube II,;,, with II,.; C II,, around v, is now
easy, so that the meridianal diameter is less than 1/2!+1,

In this way the sequence of nondegenerate elliptic orbits v,, v,
Y2, ¥3, ... is found within the corresponding tubular neighborhoods
I, oD II; D I, D II3 D ---. The completed induction argument
shows that v, encircles the tube II; exactly b,-times before closing
periodically. The integers b, = 2 are selected with reference to a =
(ag, ay, a;, a3, ...) in accord with the arithmetic algorithm leading
to Lemma 1 before Theorem 7.

iv) X, homeomorphic to L, .

The abstract topological solenoid L, with parameter a = (ay, a,,
a,, aj, ...) is prescribed in the theorem. In the preceding step we use
the arithmetic algorithm for determining a sequence of integers b =
(by, by, by, by, ...) that specify an abstract topological solenoid £, .
But by Lemma 1 above, X, is homeomorphic to Z,.

Noting that , and I, are merely different parametric descriptions
of the same topological solenoid, we caution that the proof has not yet
established that this solenoid lies embedded in M as a minimal set for
the flow dH*.

v.) Embedding of £, in M.
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Consider the sequence of nondegenerate elliptic orbits v,, v,
Y2, ¥3, ... for dH*, each lying within the corresponding compact tube
O, > I, D I, D ---, as constructed above in Step iii). Consider the
nonempty compact set N “,—, II,in M. We shall show that T, is homeo-
morphic with N *,—, II,, and accordingly we refer to this compact set
as a topological embedding of the solenoid L, in M.

To verify this assertion we shall define a topological map F from
the abstract solenoid T, onto the intersection M *,—, II, in M. Since
these techniques are routine in general topology, we shall omit some
of the details of our construction of F.

Recall that I, is defined as a subset of the countable self-product
of the unit circle S! of the complex plane. In detail £, consists of all
points

z2=(z9,2(,22,23, ---) €EL, CSI X SIXSFIX S X -+,

where each complex coordinate z, = e?™¥ for some frequency 0 <
¥, < 1 (mod 1), and
— b — b — b
zg=—zy " Zy T Zy Yy ey Z] T Zpg s e

We must specify the corresponding point F(z) in N %y II,.

In order to simplify the definition of the map F we first introduce
a longitude coordinate 0 < y < 1 around the tube II,, with the section
¥ corresponding to ¥ = 0. Next modify the “‘speed” along the trajec-
tories of dH" in II, so that along the modified flow dy/dt = 1. This
result can be obtained by multiplying the vector field dH* by an appro-
priate Ck-function that is positive in II;, and such modifications do
not affect the geometry of the periodic orbits of dH*. Henceforth we
assume dy/dt = 1 in Il,.

The transversal section I, crossing v, in II;, contains the initial
points for each of the elliptic orbits yqy, v, ¥2, v3, .... For instance,
v is located on a fixed-point of the b,-th iterate of the Poincaré map
around v,, and we select one of these fixed-points to mark a specific
initial point for y; in . Then the transversal to vy, across the corre-
sponding tube II; can be taken as a (2n — 1)-ball in E. Similarly this
transversal section across II; contains the initial point of v,, and its
corresponding transversal (22 — 1)-ball across II,. In this way each of
the elliptic orbits vy, vy, ¥2, ¥3, ... has a designated initial point
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on L, and the corresponding transversals form a nested sequence of
balls in L. Of course, v, meets the section T in exactly b-points while
completing its full orbit, and v, meets L in bb,-points, etc. Moreover
by using the modified trajectory speed for dH" wherein dy/dt = 1,
we can assert that y, has least period 1, v, has least period by, v, has
least period byb , etc.

With these geometric preliminaries out of the way we now return
to the definition of the image point F(z) in N % I1,. Take the first
coordinate zo = e>™% of the point z in the solenoid L. For simplicity
of exposition we take ¥, = 0, otherwise we would translate the section
L along the flow dH* by the longitude angle y,. Hence the initial point
of yo in Iy N L lies at the frequency ¥, = 0 of the coordinate z,.
Next take z; = e?™¥ and follow the orbit v, in its tube II, for a time
duration by, out from the initial point of v, in II, N L. Since ¥y =
boy, (mod 1), we note that our trajectory speed modifications have
forced boy; = 0, or 1, or 2, ..., or (by — 1). That is, we specify a
point on vy, in I, N I, and thereby we specify one of the b, compact
(2n — 1)-balls in L that is the corresponding component of mn .
Similarly we next specify the point on the orbit v, corresponding to
duration byb,;y, = 0, 0or 1, or 2, ..., or (bgb; — 1), and thus specify
a compact component of Im, N L.

Continue this selection of the nested sequence of compact balls
in I corresponding to components of II, N I. Since the diameters of
these balls tend to zero, there is a unique point within their intersection
and we designate this point as F(z). In this way the map

F:L, - N1,

{

IDs

is defined.

Clearly F is continuous from I, into the manifold M. This follows
because small changes in z, say small in the first components (zg, z;,
Zy, 23, + -+, Zy), can change the image point F(z) only within some short
arc of the tube II,. That is, the longitude of F(z) varies only slightly
within the tube II, which has a very small meridianal diameter if ¢ is
large enough.

Finally we shall show that F is surjective and bijective onto the
compact set N, II,. Take a point Q , in N *,—, II,, and for simplicity
assume that the longitude of Q. is ¥ = 0 so Q, € L (otherwise we
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translate the section L by the longitude of Q). Take the initial co-
ordinate z, = e?™¥, for some point z = (z¢, z;, z;, 23, ...), to be
determined by requiring ¥ = 0. Now Q , lies in IT N L and hence Q.,
lies within some component of this compact set, as determined by the
point on v, at duration byyy = 0, 0r 1, ..., or (by — 1). Take y; = 0,
1/by, 2/bgy, ..., or (by — 1)/by accordingly and then fix the next
coordinate z; = e2™¥:, Continue to locate Q, in II, N L by means of
the numbered components 0, 1, 2, ..., (bob; — 1) along the orbit v,,
and then define z, = e*™¥: where bob ¥, = 0,1, 2, ..., or (bob; — 1).
In this way we determine a point z in I, with F(z) = Q.. Hence F is
surjective onto N *—, II,.

In a similar fashion suppose z and z in the solenoid L, differ in
some coordinate place, say z, # %, in the /-th coordinate. Say z, =
e?™¢ with Y, = 0 and the corresponding frequency for 2, is 1/7( # 0. If
bo-by -+ by_; Yy = 0 (mod 1), then F(z) and F(2) have different
longitude coordinates in II,. But even if bob - -+ by, Y, = 0 (mod 1),
then F(z) and F(2) lie in a different components of the intersection
II, N . Hence F is injective.

Therefore

is a continuous bijective map of the compact metric space L, = L,
onto the compact subset N *,_ I in M. Thus F is a homeomorphism
of the solenoid I, with N ®,—, II,;in M. With this construction in mind,
we shall refer to the set N *,—, II, as the solenoid L, embedded in the
manifold M.

vi) L, is minimal for dH" in M.

We first characterize £, = N ~—, II, as the limit set of the se-
quence of elliptic orbits yq, ¥{, ¥2, ¥3, - - ., that is,

lim Yo = (JQ() ﬁ().

f— oo

Here we understand that a point P, € M lies in this limit set just in case
there exists a sequence of points P, — P, with P, € v,.
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In our construction of the solenoid N ®—, II, in Steps iii), iv),
and v), we showed that a point Q ,, € N ®;—, II, must lie in some nested
sequence of compact (2n — 1)-balls in a section ¥ (provided the longi-
tude of Q, is zero, otherwise we translate L around II, to the longitude
of Q). Furthermore each of these compact balls contains a point
P, € v,. Since P, — Q, we conclude that

lim vy, > N I,
(—oo =0

Conversely, take a sequence of points P, € v, with P, — P, in M.
Then, for sufficiently large f, the longitude coordinates of P, are nearly
that of P, say longitude zero for convenience. We next locate a point
P, ¢ ¥ with longitude zero, and so that P,/ — P,as { — oo. Then each
such point P,” lies in a compact component of I, N Z, and so the
sequence P,/ converges to some limit point in N *—, II,. Thus

limy, c N 1I,.
(— oo (=0

Therefore we have characterized £, = M % —, II, as the limit set of
the sequence of elliptic orbits v, v1, Y2, Y35 -+ --

It is now evident that I, is an invariant set of the flow dH?, as
follows easily by standard continuity arguments of topological dynamics.
In order to prove that I, is a minimal set for dH¥, we must show that
each point, say the point P, has a trajectory that is dense in Z,,.

Pick the point P, in Z,, and pick any open set O of M that meets
L,. Take a point Q € O N X, and note that Q lies within every tube 1,.
Then there must be some large integer {;, such that an open arc of II; is
contained in O. But the trajectory of dH* initiating at P, encircles
throughout the entire tube Hyl in a finite time duration, and hence this
trajectory must meet O.

Hence each trajectory of dH" initiating at a point of L, must be
dense in Z,. Thus I, is a minimal set for the flow of dH*.

These Steps i) through vi) conclude the proof of our Principal
Theorem. [J

Some unresolved questions. Is the flow of dH* on the solenoid
L, equicontinuous and almost periodic? Of course, the modified flow
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with dy/dt = 1 has this behavior, but the exact demand of the equality
casts doubt on the generic character of these properties.

In another direction of research we could discard the hypothesis
that the symplectic manifold M should be compact. As remarked above
Theorem 7, and its consequences for the Principal Theorem, are valid
for noncompact M. The necessity of starting from an elliptic critical
point, in the proof of the Principal Theorem, could be overcome by
considering only Hamiltonian functions H that tends towards infinity
near the boundary of M.

But more difficult questions arise if we consider a symplectic
2n-manifold M that is presented as the cotangent bundle 7#N of a
Riemannian r-manifold N. For each real function V on N we can form
a Hamiltonian function H = T + V on M, where T is the Riemann
metric tensor on N interpreted on M = T*N. This is the class of
Hamiltonians that arise in classical mechanics where N is the con-
figuration manifold of the dynamical problem and M is the momentum
phase space. If we fix 7 and allow perturbations of the potential func-
tion V only, then new types of problems arise in the theory of generic
Hamiltonians, see [9 p. 49]. In particular the theorems of Robinson
and of Birkhoff are uncertain under these severe limitations, and hence
the main body of our theory of generic Hamiltonians remains for future
investigation, within this framework.

Another similar question arises from considering geodesic flows on
a compact manifold. Klingenberg [6] has shown that a generic geodesic
flow on a compact manifold has infinitely many closed geodesics but
these geodesics might be all hyperbolic (for example if the manifold
has constant negative curvature). Thus the methods of this paper would
not really yield solenoidal minimal sets for generic geodesic flows.
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