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HOMOCLINIC POINTS OF AREA PRESERVING
DIFFEOMORFPHISMS.

By RicHARD McGEHEE* and KENNETH MEYER'.

Since their introduction by Poincaré, homoclinic points of diffeomorphisms
have been the subject of considerable research. Homoclinic points naturally
arise in the study of section maps defined by ordinary differential equations.
Indeed Poincaré encountered them in his studies of various section maps
defined by the equations of the restricted three body problem. The works of
Poincaré [8], Birkhoff [2], Smale [9] and Alekseev [1] have shown that the
existence of homoclinic points implies considerable complexity in the orbit
structure of the diffeomorphism. However there have been very few concrete
examples of diffeomorphisms which can be shown to have homoclinic points.

Cherry [3] gave an example of an analytic diffeomorphism obtained as the
section map of a modified pendulum equation which has a nondegenerate
homoclinic point. In Cherry’s introduction he states that Poincaré’s analysis of
an earlier example was not complete and therefore Poincaré did not actually
give an example of a homoclinic point. Thus Cherry’s is the first published
example of an analytic diffeomorphism with a non-degenerate homoclinic point.
Smale [9] gave a simple geometric construction for C* examples. Smale first
constructs the diffeomorphism and then the differential equation which gives
this diffeomorphism as a section map. McGehee [6] gave an example of the
related concept of an orbit homoclinic to a periodic orbit in the restricted
three-body problem. The work of Sitnikov [10] gives rise to another example of
a homoclinic point in the three body problem. One can view Sitnikov’s work as
giving an example of an orbit homoclinic to a periodic orbit at infinity in the
three body problem (see [7] for details).

The most important examples are those homoclinic points that can be
shown to be nondegenerate (i.e., the stable and unstable manifolds intersect
transversally). The construction of examples can be divided into two steps in
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410 RICHARD MCGEHEE AND KENNETH MEYER.

general. First one shows that a homoclinic point exists and then one shows that
the homoclinic point is nondegenerate. In many cases the first step is a
geometric problem whereas the second is an analytic problem. In this paper we
shall discuss the first step of establishing the existence of homoclinic points by
geometric methods.

The main theorem of this paper (theorem 1) states that under some minor
hypotheses homoclinic points are stable under small perturbations when the
diffeomorphism is area preserving. This theorem is used in conjunction with the
method of averaging to show that two variations of Duffing’s equation have
homoclinic orbits.

2. Notation and Main Theorem. Let (M,Q) be a C’, r>1, two-
dimensional symplectic manifold, i.e., M is a two-dimensional differentiable
manifold and @ is closed, nondegenerate two form on M. Since M is two
dimensional §2 is simply an area form on M. Assume that M has

Property A: Every simple closed curve in M separates M into two regions
one of which has finite area.

Let % denote the class of C” diffeomorphisms f: M—M, such that df*(Q)
={. An fEFis called a symplectic or area preserving diffeomorphism. Give &
the C' compact open topology.

If fEFthen pEM is said to be a homoclinic point of f if there exists a
fixed point g of f, such that p#q and lim,_,  f*(p)=lim,_ f~"(p)=g. In
this case we say that p is homoclinic to q under the action of f. A fixed point g
of f is said to be a hyperbolic fixed point if Df(q): T,M—T,M has no
eigenvalue of modulus 1. Since M is two dimensional and f is area preserving
the eigenvalues of Df(q) at a hyperbolic fixed point ¢ must be of the form A,
AL where A is a real number #0, 1.

Let JC CFbe the set of all f € Fsuch that some p €M is homoclinic to a
hyperbolic fixed point q of f.

Our main theorem is:

TueoreM 1. If M has property A then IC is open ind.

Thus under the above assumptions homoclinic points (degenerate or non-
degenerate) are stable under small perturbations. In fact we shall prove the
stronger statement that if p is homoclinic to the hyperbolic fixed point ¢ under
the action of f then there exists a neighborhood N of ¢ and a neighborhood U
of f such that for each g€ U the map g has a unique hyperbolic fixed point
g=4q(g) in N and some p € M is homoclinic to § under the action of g. In the
next section several modifications of the above theorem will be given along with
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two concrete applications. The idea behind the proof of theorem 1 is found in
Poincaré’s discussion of homoclinic points [8].

In order to prove theorem 1 precise knowledge about the local structure of
f near a hyperbolic fixed point is needed. The local structure of a map near a
hyperbolic fixed point has been studied extensively and a summary of the
known results is given below.

Let g be a hyperbolic fixed point of f EFand N a neighborhood of g. Then
define

W*(q.f)={pEM:f"(p)>qasn>o},

W (q.f)={pEM:f"(p)>qasn>c0},

Wy (q.f)={pEM:f"(p)EN forn>0and f*(p)—>q as n—>c0},
Wy (9.f)={pEM:f~"(p)ENforn>0and f"(p)—>q as n>co},

as the stable, unstable, local stable and local unstable manifold (respectively) of
q under the action of f. Clearly

W)= O F (W (0.)
and

W-(a.f)= U (W ().

n=0

TueorREM 2. Let qEM be a hyperbolic fixed point of f € Fand let the
eigenvalues of Df(q) be N\, A\™! where 0<|\|<1. Then there exists a C!
coordinate chart ¢:N—R? N open in M, o(N)=(—2,2)%, ¢(q)=(0,0), such
that

pofop:(—2,2) X (—2AL2A)—(—2,2): (x,y)>(Ax, A "Yy).

Moreover there exists a neighborhood A of f in Fsuch that for all g€ A
the map g has a unique hyperbolic fixed point G=G(g) EN and there exist C!
functions u™ =u*(g) and u~ =u"(g) such that

u”:(—2,2)—>(-2,2)
ut:(-2,2)>(-2,2)
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and
P(Wy (7.8))={(x.u™(x): 121 <2}
and
o(Wy (3.8)={(u"(y).y):1yl<2}.
Also for any € >0 the neighborhood QL may be chosen so that
du*
|u+(x)|+| (x)| < € for |x| <2
dx
and
- u_
™ (y)l+ | =g (9)| << for |yl <2

The first paragraph of the above is a theorem of Hartman [4]. The second
and third paragraphs are a rewording of the classical stable manifold theorem.
A complete proof including the estimates of the third paragraph can be found
in Hartman’s book [5].

Let p;,p, € W *(q.f) then for some k >0 one has f*(p,) € Wy (g.f). Let 1
be the closed line segment on the x axis in @(N) which joins p e f*(p,) and
@ ° f*(py). Then define [p;,p,]* to be the closed arc in W *(q,f) with end-
points p, and p, given by [p,,p,]* =f ¥ o ¢ ~!(l). We make a similar definition
for [p1,p.]™ if p,€ W™ (q.f). Note that both definitions are independent of k.

Proof of Theorem 1. Let p € M be homoclinic to the hyperbolic fixed point q
under the action of f € . By considering f? if necessary we may assume that the
eigenvalues of Df(q) are A, A ™!, where 0<A<1<A~'. Let N, ¢, U be as given
in theorem 2 with € to be chosen below. Then

?(Wy (q.f))=X={(x,0):]x| <2}
and

o(Wy (¢.f)=Y={(0,y):]y|<2}.

Since p is homoclinic to q, p€E W*(q,f)Nn W (q.f)—{q}. Thus there
exist non negative integers k;, and ky, such that f*i(p)€ Wy (¢,f) and f ~*(p)
€ Wy (q,f). Then ¢(f*(p))=2€X and q)(f_kz(p))=w€ Y. Moreover we
may choose k, and k, so that if z=(x,,0) and w=(0,y,) then 0<|x,| <1 and
0<]yo| <1. For simplicity we shall take x, and y, positive. Define k=k, + k,
and F=g@e°f *o¢p ™50 F(z)=w (see Figure 1).
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Figure 1
There are two cases to consider.

Case 1. DF(z)(T,X)#T,Y (the nondegenerate homoclinic point). Even
though this case is said to follow from the general transversality theorem a proof
will be presented for completeness. The above condition states that the image
of X under F is not tangent to Y at the point of intersection w. Thus there exists
a 8 >0 such that 0<x,— 8 <x,+8<1 and the image of {(x,0):|x— x,| <8} is
an arc in (—1,1)? joining v, =(x,,y,) to v, = (%,,¢j) With x,>0 and %5 <0. Let
a>0and U be so small that if gE U and G=¢p°g %o ™! then G maps the
segments {(xy—&,y):|y|<a} and {(xy+8,y):|y|<a} into two arcs one of
which lies in {(x,y) €(—1,1)®:x < 4x,} and the other lies in {(x,y)€(—1,1)%:x
> ix, ).

Now let U be chosen so small that for all g€ QU the € of theorem 2 is less
than 3 min(a,x,, —x,) and the x coordinate of @(g) is less than x,— 8. Thus the
segment y of ¢(Wy (G,g)) above [x,—8,xo+ 8] (ie. y={(x,u*(x)):|x— x|
<8} does not contain ¢(g) and is mapped by G onto an arc in (—1,1)* joining
two points v3=(x3,93) and v,=(x,,y,) with x> {x, >0 and x,< {x,<0. But
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®(Wy (§,g)) is an arc in (4x,,4x,)X(—2,2) which meets the segments
(325, 4x,]X {1} and [§x,, $x,]X {—1}. Thus G(y) meets two opposite sides of
(3%, §x,] X[—1,1] and ¢(Wy (g,g)) meets the other two opposite sides and so
there is a point @(h) in common. Since ¢(§)Zy we know that h#g. Since
e(h)E@(Wy (7,g)) we have h€ W ~(g,g) and since ¢(h)E G(y)
=geg oo (v)CogT"(Wy (§.g) we have hEg™ (W (7.8)C W™ (3.g)).
Thus h is a homoclinic point of g. A more careful analysis will show that h is a
nondegenerate homoclinic point also.

Case I1. DF(z)(T,X)=T,Y (the degenerate homoclinic point).

Let n={(x0,y):| y| <8} and F(n)=§. So n and £ are closed arcs in (—1,1)?
and z€intn, w Eint£ for 8 small. It is clear that p°fop~!(n)Nn=g. Since 7
intersects X transversally at z and DF(z)(T,X)=T,Y it follows that £ intersects
Y transversally at w. Let S(a)={(x,y)ER2:|x|< a|y|}. Then by choosing &
small we may assume that T,.£N S(a)= {0} for some a >0 and all rE£. That is £
is the graph of a function of x for small x and the derivative of this function is
bounded above and below by +a ™2,

Now choose A so small that for all g€ U :

1. g has a hyperbolic fixed point §EN,

2. ¥=¢(g)=G(n)C(—1,1)% where, as before, G=gog *oqp~!,

3. TENS(a/2)={0} for all re&,

4. 9(Wy (g,g)) intersects intn in one point § (i.e. € <§),

5. @(Wy (g,g)) intersects int{’ in one point £ and |du ™ /dy(y)| < a/2 for
| y| <2 where u ™ is the function whose graph is (Wy (3,g)) (i.e., €< a/2), and

6. geo i(mNn=0.

Now let [= g Mg i (m)=glog ' (¢) and s=g RopT(5), ¢
=g*o@~!(#). Thus s,¢, €I. Now assume that g has no homoclinic points so
s#t. Let | be the closed segment in [ whose endpoints are ¢ and s. (See Figure
2).By6g(l)nl=g.

Then C,=[g,t]” UlU[g,s]" is a simple closed curve and hence bounds
two regions one of which, say R, has finite area. Also g(C,)= C,
=[q.g(t)]"ug(l)ulg,g(s)]™ is a simple closed curve bounding g(R).

Either I — {s,t} lies in g(R) or in M—g(R).

Assume that [—{s,t} lies in g(R); in the other case proceed with the
following argument replacing g by g~'. The simple closed curve C,
=lU[s,g(s)]Tug(l)ulg(t),t]” is made up of four arcs the first two of which
have their interiors in g(R) and the last two are part of g(C,)= C,. Thus C,
bounds a region Q which lies in g(R) and not in R. Thus g(R)D R U Q but this
contradicts the fact that g is area preserving since Q has nonzero area.
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Figure 2

Remark. A review of the proof of the above theorem shows that not
every simple closed curve in M need separate M into two regions one of which
has finite area. One only needs that [q,p]* U[q,p]” is a simple closed curve
which separates M into two regions one of which has finite area.

3. Homoclinic Points in Averaged Systems. Degenerate homoclinic
points often occur in averaged Hamiltonian systems and so in this section we
shall show that these homoclinic points persist under small perturbations. This
extension of theorem 1 is then applied to Duffing’s equation.

Consider the Hamiltonian

H(t,%,6) = eH, 1,5) 1)
where H, is a C”, r>2, function for all tER, x€ R? and H, is T periodic in t.

Let the corresponding Hamiltonian equations -

. oH . oH
Bt T @)

have solutions ¢(t,y,€) where ¢(0,y,€)=1y.
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Let ¥(y,e)=¢(T,y,¢) be the period map defined by the solutions of (2). It
is clear that for any M >0 there exists an ¢ >0 such that y—>¥(y,e¢) is a
well-defined diffeomorphism of { y€ R?:|y| < M} into R? (for || <, and that
¥(y,€)=1y+0(¢) uniformly in y for | y| < M. Since ¥ is the period map defined
by a Hamiltonian system ¥ is area preserving. However since ¥ is a perturba-
tion of the identity one cannot hope to find a homoclinic point by theorem 1
directly. However:

CoroLLARY 1. Let the function Hy(x)=(1/T)[3H,(s,x)ds have a non-
degenerate saddle point at x, and assume that the level set {xE€ R%: H(x)
=Hy(x,)} contains a simple closed curve C such that x,€ C. Then there exists
an €, >0 and points p(e), q(€) € R? for 0< || <, such that p(e) is homoclinic
to the hyperbolic fixed point q(€) under the action of ¥ and q (€)= x,+ 0(e).

Proof. Define a symplectic change of variables x—u by

1_ 0§ 9_ 0§
=— = 3
T YT )
where
S(t,u',x% €)= ux+ef{H1sux — Hy(u,x?) }ds. (4)

Since H,, is the average of H, over a period S, defines a change of variables that
is T periodic in ¢. Moreover for any M >0 there is an €¢,>0 such that (3) is a
well-defined diffeomorphism for |x| < M or |u| < M when |€| < ¢, since the map
(3) is the identity map when €=0. In the new variables the Hamiltonian
becomes

H(t,u,€)=eH(u)+ O(€), (5)

where O(e?) is uniform in u for |u| < M.

Let M be so chosen that C={x:|x| <M}. In the differential equations
defined by the Hamiltonian (5) make the change of time 7= et so the equations
become

du' _ 9H, du® _  9H,

o MG AL e TR0} ©)
where these equations are now €T periodic in'7. Since H,, has a nondegenerate
saddle point at u = x,, the implicit function theorem gives that the equations (6)
have a hyperbolic periodic solution of period €T for € small and when 7=0 this
periodic solution has initial condition x,+0(¢). Let n=[1/¢], i.e., the greatest
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integer in 1/, for €#0. If £(t,7,¢) is the solution of (6) with £(0,n,€)=17 then
the periodic map f,:n—§(neT,n,¢), €70, has a hyperbolic fixed point at
xo+0(e). When € =0 define f,:n—§(T, & ¢).

Since equations (6) admit H, as an integral when e=0 and the level set
{u:Hy(u)=Hy(xo)} contains a simple closed curve C, x,€ C, the mapping f,
has a homoclinic point ¢ which is homoclinic to x,. Theorem 1 now applies
since f, is a small perturbation of f; in the C' compact open topology and
proves the corollary. We note that the statement of theorem 1 required that the
mappings be globally defined but a check of the proof only requires that the
mappings be defined in a neighborhood of the stable and unstable manifolds of
the unperturbed map. This is true in the present case since C C {u:|u|<M}.

Example 1. Consider Duffing’s equation

b+ ov+e{2av+4Pv°+ ycost} =0. (7)

Note that the natural frequency V1—2ae is close to the forcing frequency 1
when € is small. The equation (7) is equivalent to the Hamiltonian system

1 0K _ o
' et =
132=_—af<=vl—e{2avl+4,8(vl)3+ycost}, (8)
v
where
ORI n2 14 .
K=§{(v) +(v)}+e{a(v) +B(vh) +yv cost}. (9)

Now make the change of variables

(01)=( cost  sint )(xl) (10)
v? —sint  cost /\ x,

to get the new Hamiltonian system

i-l=a_H 2 = —OoH
9x2’ Ox!

where

H=e{a(x'cost+ x2sint)’ + B(x cost+ x2sint)* + v(x' cost+x?sint)cost}.

(12)
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The Hamiltonian (12) is of the form (1) and so one computes that the average of
H is eH, where

Ho(xl,x2)=(a/2){(x1)2+(x2)2}+(3,8/8){(x1)2+(x2)2}2+(y/2)x1. (13)

When a and f have the same sign H,, has only one critical point which is either
a maximum or a minimum and so corollary 1 does not apply. Assume « and 8
have opposite signs, say >0 and a <0. Then if |a[>/2>(9/8)|y| 8'/2>0 the
function H, has three critical points; two minimums and a non degenerate
saddle point. A plot of the level lines of H,, is shown in figure 3 and one sees
that the conditions of corollary 1 are satisfied. Thus if 8>0, a<0, and
|a[>2>(9/8)|a| B1/%>0, the period map defined by Duffing’s equation (7) has
a homoclinic point for € small.

The next example is slightly different. A ¢ € M is called a periodic point of
f € Fof least period 1 if f'(q)=¢q and [ is the least positive integer such that
f!(g)=g. In this case the orbit of q, O(q)={q.f(q),....f'"%(q)} consists of
distinic points. The periodic point q is called a hyperbolic periodic point if q is
a hyperbolic fixed point of f. A point pEM is called a homoclinic point
(homoclinic to 0O (q)) if pZ0(q) and lim,_ f*(!)=lim,_  f "(1)=0(q).

Figure 3
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With some minor technical changes in the proofs theorem 1 and corollary 1 can
be extended to cover this case also. With this in mind let us look at a different
form of Duffing’s equation.

Example 2. Consider
o+ 0+ e{2a0+4Pv®} +8ycos3t=0. (14)

When €=0 this equation has a unique 27 /3 periodic solution ycos3t. Let
v=u+ ycos3t then u satisfies the equation

ii+u+e{2a(u+ycosSt)+4B(u+ycosSt)3}=O. (15)

Equation (15) is equivalent to the Hamiltonian

2 b u 1 b
du du

al_ aK .2= _aK (16)

where
K=4{ (u!)’+ (u2)2} +e{a(u'+ ycos3t) + B(ul+ ycosSt)4}. (17)
Again make the change of variables
(ul)=( cost  sint )(xl) (18)
u® —sint  cost /\ x,

to get the new Hamiltonian system

.1=_§£ 2 _aH
9x2’ ox!

(19)

where

H=e{a(x'cost+x>sint+ ycosSt)2+ B(x'cost+ xsint + ycosSt)4}. (20)
One computes the average of this function to be
Hy(x',x%) = al + bI®+ cI*/%cos 3¢, (21)

where I=34{(x")?+ (x*?}, p=tan"®/x', a=a+3y?8, b=38/2, and
c=V3y.

If a, b, and ¢ are nonzero and 9c®>32ba then (21) has 7 critical points.
Three of these critical points are hyperbolic and they correspond to a periodic
point of period 3 of the period map defined by equation (14). One can plot the



420 RICHARD MCGEHEE AND KENNETH MEYER.

O

Figure 4

level lines of (21) (see figure 4) and see that the stable and unstable manifolds of
these periodic points coincide. Thus there are homoclinic points for the section
map defined by (17) which are homoclinic to a periodic point of least period 3
for € small when a,b, ¢ are nonzero and 9¢2>32ba.
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