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ENERGY FUNCTIONS FOR MORSE SMALE SYSTEMS.

By K. R. MEYER.*

1. Introduction. In [1] Smale introduced a class of vector fields on
a manifold that are similar to gradient fields generated by Morse functions
and have since been called Morse-Smale systems. Morse-Smale systems are
allowed to have a finite number of closed orbits and singular points but they
share with gradient fields the property that the a and o limit sets of every
trajectory can only be a singular point or a closed orbit. Hence there is no
complicated recurrent motion. A Morse-Smale system without closed orbits
is called gradient like. In [2] it is shown that for every gradient like system
there exists a Morse function that is decreasing along trajectories. In this
paper a larger class of functions is considered, called &-functions, and it is
shown in Theorem 1 that for every Morse-Smale system there exists an &-
function that is decreasing along the trajectories of the system. This reminds
one of the energy function associated to a dissipative system in mechanics and
hence the name é-function.

The construction of the &-function requires little more effort but the
added generality has suggested new questions that are discussed here. It is
natural to ask if the association of an &-function to a Morse-Smale field is
unique in some sense. Theorem 2 establishes that the functions corresponding
to a particular field are topologically equivalent.

Several interesting special results are also obtained when the manifold
is compact and two dimensional. In this case one has a necessary and sufficient
condition for structural stability in terms of &functions and moreover there
is a one-to-one correspondence between topological equivalence classes of
structurally stable fields and é-functions.

2. Definitions and preliminaries. In this paper smooth will always
mean C*. Let M be a closed smooth manifold of dimension m with a distance
function d inherited from some Riemannian metric. R» will be Euclidean
n-space, S" the unit sphere in B*** and B» the open unit ball in R», If X is
a smooth vector field on M then ¢; will denote the 1-parameter group of diffeo-
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1032 K. R. MEYER.

morphisms generated by X. If p€ M then y(p) will denote the trajectory
of X through p, i.e. y(p) = U ¢:(p). If p€ M then the a and o limit sets
12

of y(p) are defined in the usual manner by a(p) =) U ¢:(p) and o(p)
TE0t=T
= U (y).

T=0 t=7T
If A is a subset of M then A° will denote the topological interior of A
and A- the topological closure of A.

Definition. A smooth vector field X will be called a Morse-Smale system
(or field) provided

1) X has a finite number of singular points, say B, * -, Bk each of
generic type. A generic singular point is a singular point such that in local
coordinates the matrix of partial derivatives of X has eigenvalues with non-
zero real parts.

2) X has a finite number of closed orbits (i.e. periodic solutions), say
Brs,* * *,Ba, each of generic type. A generic orbit is a closed orbit such
that all the characteristic multipliers, except the one corresponding to the
orbit itself, have modulus different from one.

3) For any p€ M, a(p) = B; and o(p) = B; for some ¢ and j.

4) If B;is a closed orbit then there is no p € M — B; such that «(p) =B
and o(p) =B

5) The stable and unstable manifolds associated with the g; have trans-
versal intersection.

The sets By, * -, Bn Will be called the singular elements of the field X.

Let W; and W,* denote the unstable and stable manifold associated to ;.
See [1] and [2] for a discussion of condition 5) and definition of W; and W;*.
Note that in [1] transversal intersection is called a normal intersection. A
large number of the lemmas in [1] can be summarized by the following:

LemMMmA. Let X be a Morse-Smale system on M. Let By > B mean that
there is a trajectory not equal to B; or B; whose a-limit set is B; and whose
o-limit set is B;. Then > salisfies:

1) it is never true that B; > B

2) if Bi>B; and B; > B then B; >Pi (thus > is a partial ordering
of U Bi)

8) if Bi >Bj then dim W;= dim W; and equality can only occur if B;
is a closed orbit.
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Let E be a smooth function from M into B and let A denote the set of
critical points of E. Let A; denote the set of points in A where the Hessian
of E has nullity 4. It is well known (see [3]) that A, is a finite union of
points, say 8, - -, 8, and there exists a coordinate system (N, ;) such that

Boazr =E(&) +Q(2)

where @ is a nonsingular quadratic form in z whose index is the same as
the index of the Hessian of F at §;. For discussion and definitions relevant
for these functions see [3].

Definition. A smooth function E from M into R will be called on &-
function for M provided

1) A=A U A,

2) A, is the disjoint union of a finite number of circles, i.e. closed
connected one dimensional submanifolds of M, such that the index of F
is constant on each circle. Denote these circles by 8x1,° © *, 8n.

38) For 4=Fk-+1,- - -,n there exists a neighborhood N; of § and a
diffeomorphism a; such that «; maps N; into the product of Bm* and S§* if
N, is orientable or into the twisted product of Bm* and §* if N; is non-
orientable with the property that Foz;*=F(§;) 4 Q(z) where @ is a
nonsingular quadratic form in @;,* - -, %, the coordinates in B™?, and is
periodic of period 1 in @, the coordinate in S*. Moreover, for each point
in §8* the quadratic form has index equal to the index of E on §;.

In this paper the connection between Morse-Smale systems and &-func-
tions is investigated. In this respect the ¢-function is closely related to the
field when ¢ is decreasing along trajectories. To formalize this we need:

Definition. Let X be a smooth vector field on M. Then an ¢-function,
E, for M will be called an &function for X provided

1) XE(p) <0 for all p€ M—A, i.e. F is decreasing along the trajec-
tories of X or the trajectories of X are transversal to the level lines of F

) if p is a singular point of X then p¢ A;
3) there exists a constant « > 0 such that on each N,

—XE (p) = «d(p,8;)* for pe N,.

3. Existence of %-functions. The first result is that Morse-Smale
systems admit &functions, that is
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TuroREM 1. If X is a Morse-Smale system then there exists an &-
function for X.

Proof. The first step is to define the é&-function on the B; and since EF
must be decreasing along trajectories this must be done in a consistent way.
The lemma shows that this can be done, that is, one can find n real numbers
a; such that if 8; > B; then @; > ;. Thus we define F on the 8; by E(8;) —
and then construct Z globally so that 8= 8; and F is decreasing along tra-
jectories. Next F must be extended to a neighborhood of the 8; in such a
way that the nondegenerating conditions are satisfied. If B; is a singular
point then in local coordinates X has the form &= Az - f(z) where £(0)
=df(0) =0 and the eigenvalues of A have nonzero real parts. By Liapunov
theory there exists symmetric matrices @ and C, C positive definite and @
nonsingular such that A’Q 4 Q4 ——C. Moreover, the index of @ is equal
to the number of eigenvalues of A with positive real part. If we define
E(2) = @+ 2’Qz then by standard Liapunov arguments there exists a neigh-
borhood sufficiently small and a constant x; > 0 such that — XE(p) = xid(z, p)?
in this neighborhood. Take the N; sufficiently small that the above holds and
so that they do not overlap.

Now around a closed orbit B; one can choose a neighborhood Ny and a
diffeomorphism @i mapping Ny into B»*X8* (or Bm* twisted product with
S8* if N is non orientable) such that if y is the coordinates B»-* and ¢ is
the coordinate in S* then X takes the form

é=w+®(0)?/)
g=A4(0)y+Y(8,y)

where 4 is an (m—1) X (m—1) periodic matrix of period 1 i.e. 4 is a
function on S*. © and Y are periodic of period 1 in ¢, ®(6,0) =0 and
Y=o(|yl). By Floquet theory the fundamental matrix solution of
u'=—uA can be written in the form ¢SP(§) where § is constant and P is
either periodic or skew periodic of period 1 i.e. either P(§) =P (0+4+1) or
P(0) =—P(6+1). By assumption S has no eigenvalue with zero real
part and so by Liapunov theory there exists symmetric matrices ¢ and q,
@ nonsingular and C positive definite such that S7Q 4+ QS —C. Define
Eoz* —a;++yTP(9)TQP (6)y by direct computation then

XE——yT"P7(0)CPT(9)y +<(6,9) where e=o (] y [*).

We again restrict the neighborhood N; so that they do not overlap and so
that — XE (p) = «xd(8;, p)? for p€ N,
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Thus the &function is now defined in neighborhoods of the singular
points and closed orbits of X. The extension of this function can now be
accomplished by the same procedure as in [2].

As a partial converse of the above theorem we have

ProposITION. Let X be a smooth vector field on M. If there ewists an
&function for X then X satisfies the conditions 1), 2), 3) and 4) in the
definition of a Morse-Smale system. Moreover, the field X can be approwi-
mated arbitrarily closely in the Cr-topology for fields on M by a More-Smale
system.

The first part follows by standard Liapunov arguments and the second
part is established essentially the same way as Proposition 2 in [4].

If M is compact and 2-dimensional the above result can be sharpened.
In this case Morse-Smale systems are the same as structurally stable systems
by a theorem of Peixoto [5]. If E is an &function for X such that all the
sources of X lie in E-*(1) ; all saddle points of X lie in E-*(0) and all sinks
of X lie in E-*(—1) then E will be called a special &function for X. It is
clear from the above that if M is compact and two-dimensional then the
construction of Theorem 2 could be made to yield a special ¢{-function for X.

If E is a special é&-function for X then there can be no trajectory joining
saddle points of X since E is decreasing along trajectories. Thus the stable
and unstable manifolds have transversal intersection. Hence

CoroLLARY. If M is compact and two dimensional then a necessary and
sufficient condition for X to be structurally stable is the existence of a special
&-function for X.

4. Uniqueness of &-functions. Clearly the &-function constructed in
Theorem 1 is not unique but if one introduces the concept of topological
equivalence a form of uniqueness can be established.

Recall (see [6]) that two functions £ and E’ from M to R are said to
be topologically equivalent if there exists homeomorphisms f and g, f: M —> M
and g: R— R such that the following diagram commutes
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Recall that two vector fields X and X’ on M are said to be topologically
equivalent if there exists a homeomorphism %: M — M which sends the tra-
jectories of X into the trajectories of X.

In general two &-functions for two topologically equivalent fields are not
topologically equivalent since the ¢-functions are defined quite arbitrarily on
the singular points and closed orbits. To obtain uniqueness some regularity
on the way the &functions are defined on the B/’s is necessary. This could
be done by uniquely specifying the way the functions are defined on the B/s
as was done in the definition of the special é-functions for two-dimensional
fields. Instead of this we assume that the ¢-functions are defined correctly
on the critical elements.

Since hence forth we shall be considering two fields and two functions
we shall use the same symbols as before and all unprimed symbols will refer
to one system and all primed to the other.

TaEOREM 2. Let X and X’ be two Morse-Smale systems on M that are
topologically equivalent under the homeomorphism h. Let K and E’ be
&functions for X and X respectively. Then if the two é&-functions are equi-
valent on the singular elements, i.e. on the singular points and closed orbits,
then they are topologically equivalent. That is to say if there exists a homeo-
morphism g: R— B such that the diagram

. B
UB——>R
1
n B

Upg/——>R
1
commutes then E and E’ are topologically equivalent.

Proof. Let B; and B/ be so numbered that h(8;) =pB/. Observe that
g is by assumption a homeomorphism of R into B that must satisfy a finite
number of other requirements, namely g o B (8;) = E’(8/). If such a g exists
then a smooth § exists satisfying the same conditions. Hence we can assume
that £ and E” agree the singular elements since otherwise we would consider
E and Go E'.

We first define a special neighborhood of one singular element. Let g8
represent any one of the 3; or 8/ and NV ,z and F the corresponding N;, N/,
2, @, B or E'. Then a P-neighborhood, P, of B is defined as a closed
neighborhood of 8 contained in IV such that the boundary of P is the union
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of three sets: I a m—1 closed sumanifold of M that lies in the level line
E-(E(B) +¢) for some ¢ >0 or I =¢, 0 a m—1 closed submanifold of M
that lies in the level line E-*(E(B) —e) for some ¢ >0 or 0—=¢ and U the
union of trajectories that join the boundary of I to the boundary of 0.

Such a neighborhood always exists as can be seen by the following. If
B is a source take P to be the set of points in N where E is greater than
E(B) —e with « small and positive. If B is a sink P is defined similarly.
Let 8 be a saddle point. Then E(z) =FE(B) + Q(z) in N where @ is a
nonsingular quadratic form. Let 7" be the quadratic form that is equal to @
on the subspace of R* where ) is negative definite and zero on the complement.
For « and § sufficiently small the set I of points p where p € E-*(E(B) +¢)
and — T'(p) =3 is contained in the interior of N.

Moreover, if « and § are sufficiently small one can also fulfill the require-
ment that the set of all points p that lie on a trajectory through I and satisfy
E(B) —e=E(p) = E(B) -+« is contained in N, let P be the closure of this
set. It is easy to see that P is a closed neighborhood of B contained in N
and that the boundary of P is composed of I as defined above, 0 and U where
0 and U satisfy the requirements of the definition of a 9P -neighborhood.
P-neighborhoods for closed orbits are constructed in a similar Way.

Let P; be a P-neighborhood for Bi, t=k+1,k42,- - -,n and PO its
mterlor We first construct fonM— U Bi— U PP Letpe M— U Bi— U PP

T+l

and define f p—> q where ¢ is deﬁned as the unique point on the X’-trajec-
tory through h(p) that satisfies E'(¢) = E(p). To make sure that this map
is well defined observe that E(¢:(p)) and E’'(¢: (R (p))) tend to the same
limit as ¢— 4 and the same limit as {—>-—oco and moreover both are
decreasing functions of ¢. Thus f is a homeomorphism taking level line into
level line where it is defined.

Now f can be extended to the singular points by f(B8:;) =g/ for
t=1,- - -, k. To see that f is still a homeomorphism note that f maps
P-neighborhood of B; onto P-neighborhoods of B/ and conversely. For closed
orbits the extension is more difficult since the B; no longer consist of single
points.

The homeomorphism f is defined on the boundary of P;, i =k 1, - -, n
and maps the boundary of P; into the boundary of a 9P-neighborhood, P/,
of B/. To see this observe that the image I/ of I; under f is contained in a
level line of E” and similarly for the image of 0. Moreover the image of U
is the union of X” trajectories joining the boundary of I’ to the boundary of 0’

P{ is defined once I’ or 0’ are defined as can be seen by our construction of
9 -neighborhoods.
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We now show how to extend the definition of f to the interiors of P,
i=k-+1,- - -,n. Since we shall be working locally we shall drop the
subscripts. For definiteness let us consider the case when the neighborhood
of 8 and the stable and unstable manifolds of B are orientable. The non-
orientable cases are similarly treated.

First let B be a source or a sink. Let N be a neighborhood of 8 con-
taining P and « a diffeomorphism z: N — Bm X §*, z = (y,6), y: N— B"3,
6: N — §8* such that in N, E(z) =E(B) + yTy. Let P’, N’, &/, ¢/, 6’ be simi-
larly defined. For simplicity let E be zero on B and 1 on the boundary of P.
f is defined on the boundary of P and let f="7 on 8. Let p= (y,0) € P°—B.
p is on the curve +(0,8) + (1 —=)| vy | y,0). Let £(0,9) = (0,6,") and
f(yl'y,0)) = (y,6,") and let ¢ be the unique point on the curve
m(y.,0,") + (1—7) (0,8,') that satisfies B(p) = E’(¢q). By defining f(p) =g
we see that f has been extended to the criterior of P as a homeomorphism
taking level line into level line.

Now let B be a saddle type closed orbit. Let N be a neighborhood of g
containing P and = (y,4) a diffeomorphism y: N— B*?* and ¢: N— §*
such that in these local coordinates E(z) — E(B) + yTQy where

Q —diag (1, - +,1,—1,- - -,—1).

Moreover, let N’, 2/, ¢/, ¢ be similarly defined. Let II be a P-neighborhood
of B completely interior to P. Define f on II by f: p—> ¢ where p€ II and
g€’ and p and ¢ have the same numerical coordinates in the unprimed
and primed coordinates respectively.

Thus f must be extended to P°—1II. This extension can be accomplished
by dividing P°—1I into several parts each of which has a simple geometric
type. Let @ and b be the real numbers such that the region of the boundary
of II that is a region or ingres resp. egress is in the level line Z-*(a) resp.
E-1(b). Consider K,=E-'(a) N (P—I°) and K,—E*(b) N (P—1I°).
f is defined on the boundary of K, and K, and topologically K, and K, are
just products of unit intervals and spheres. Let

Li=(P—1)N{peM: BE(I) = E(p) =0},
Ly=(P—T)N{peM: E(a) =E(p) =E(b)}
and Ly=(P—II°) N {pEM: E(b) =E(p) =E(0)}.
Topologically L,, L, and L are just the product of the unit interval and
spheres. f is defined on the boundary of K, and K, and so we first extend f

to K, and K,. Now f is defined on the boundary of L,, L, and L; and 50 f
is then extended to their interiors.
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Each extension is carried out in the same way as the extension was
carried out for the source because in each case there is a set that acts as the
center. That is if one of the sets is I )X I )X S* then (0,0) X 8* is the center.

The center is mapped homeomorphically on the center by fiat and then
the extension is carried out by joining the center to the boundary by lines
and carrying points proportionally. '

Of course for special &-functions the homeomorphism g may always be
taken as the identity. In the case where M is compact and two dimensional
the converse of Theorem 4 holds also. Namely

ProrosiTioN. Let M be a compact and two dimensional smooth manifold.
Let X and X’ be smooth vector field on M and let E and E’ be special -
functions for X and X’ respectively. If E and E’ are topologically equivalent
then X and X are topologically equivalent.

Proof. Let f be the homeomorphism of M that takes level lines of E
into level lines of B’ i.e. E—FE’of. f sets up a correspondence between the
critical elements of E and E’ let them be so numbered that f(8;) =98/ and
let the B; and B/ be numbered so that B;=29; and B/ =3/ as sets. Let
T'—E*(0) and I¥= E”*(0). Then f is a homeomorphism of T' onto I".
Define & to be equal to f on T.

The first thing to be established is that if p€T and «(p) =p: and
o(p) =B then «(f(p)) =B/ and o’(f(p)) =pB/. Let p€T and p not a
saddle point and let p* =f(p). Consider the X’-trajectory through p* and
let it be reparametrized so that it is a map u from (—1,1) into M where the
new parameter is the value of E’, this can be done since E’(¢;/ (p*)) is a
decreasing function of ¢. To be precise u:(—1,1) = M such that u(a),
@€ (—1,1), is the unique point on the X” trajectory through p* such that
E'(u(e)) =a. In a similar manner let v:(—1,1) —> M be the repara-
meterization of f(¢:(p)) by values of E. To be precise v(a), «€ (—1,1), is
the unique point on f(¢:(p)) such that B/ (v(a)) =a«. We want to show
that « and v are isotopic with an isotopy that moves points in a level line.
That is we want to show that there exists a map V: (—1,1) [0,1]— M such
that V(:,0) =« and V(-,1) =v and moreover E'(V (e, %)) =a for all
t€[0,1]. Clearly this will establish the fact that « and o limit sets of
trajectories correspond as described above.

Let 4 be a small disk about p’ such that 4 contains no singular points
of X’. For a different from zero the level lines E’*(«) is a smooth one
manifold and so there is a unique arc ¢ in A joining u(a) to v(«) of arc
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length s(«). Let V(a,t) be the unique point on the arc a such that the
arc length from u(a) to V(a,t) is és(«). Thus the isotopy V is defined so
long as « is small but the extension is now obvious and so our claim is
established.

The sets {p€ M: E'(p) =34} and {p€ M: B'=—13} are the disjoint
union of P-neighborhoods of all the sources and sinks respectively.

The homeomorphism % is now extended in the following way. Let p be
a point of M not on a separatrix of X and such that —31=FE(p) =3. The
X trajectory through p meets at p* let ¢ be the unique point on the X’-
trajectory through h(p*) =f(p*) that satisfies F(p) =E’(¢q). Now extend
this map to all of {p€ F: —3=FE(p) =42} so that separatrix goes to
separatrix and level line of E to level line of E'.

Thus the map f is defined on all but the interiors of P-neighborhoods
of the sources and sinks. The map f is defined on the boundaries of these
P-neighborhoods and takes the boundary of one particular 9-neighborhood
of an X critical element into the boundary of a 9-neighborhood of an X’
critical element of the same type.

But it is shown in [7] that if one is given two critical elements of the
same type and an arbitrary homeomorphism of the boundaries of P-neighbor-
hoods for these two critical elements then the homeomorphism can be extended

to the interior of the neighborhoods taking trajeétories into trajectories.
Thus f can be defined globally.
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