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COUNTER-EXAMPLES IN DYNAMICAL SYSTEMS
VIA NORMAL FORM THEORY*

K. R. MEYER'

Abstract. The theory of normal forms is used to construct examples and counter - examplesin the theory
of ordinary differential equations. Selected examples from linearization theory, stability theory, bifurcation
theory and theory of integrability are given.
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1. Introduction. A fully developed mathematical theory contains not only defini-
tions, lemmas and theorems but also a good store of examples and counter-examples.
In general the construction of a new example requires considerable ingenuity on the
part of the researcher, but once constructed it can often be modified to create other
examples which illustrate other points. Thus, examples often fall into groups.

In the theory of ordinary differential equations one such group of examples arises
as a natural consequence of the theory of normal forms. These examples are easy to
analyze, since usually equations in normal form can be explicitly integrated. By the
nature of the theory of normal forms these examples illustrate the effect of higher order
terms on the flow.

In §2 a brief survey of the main results about normal forms is given. In the
sections that follow, examples from various areas of differential equations are given. In
each section it is shown how the theory of normal forms is used to select the example. I
hope that by the end the reader will be able to construct a variety of examples for
himself. I have selected examples from linearization theory, stability theory, bifurcation
theory and the theory of nonintegrability. None of the examples are new, but I believe
that there is something new in each presentation.

I would like to thank Mr. Dan Mack for the fine drawings of the phase portraits.

2. Background on normal forms. The theory of normal forms arises from perturba-
tion analysis and thus is usually presented for equations which contain a small parame-
ter. In many cases, the small parameter is introduced by scaling and therefore is simply
an aid in the analysis. Thus, one considers an equation of the form

(1) :=Z4(z,¢)

where Z, has a series expansion in ¢ of the form
® N
(2) Zy(z,e)= ) ¢/Z/(z).
j=0

When £=0, (1) reduces to
(3) 2=ZO(Z),
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42 ‘ K.R. MEYER

so (1) is to be considered as a perturbation of (3). In general (3) is simple (i.e.,
integrable or linear) and one wants to know what properties of (3) are preserved when
¢ # 0. The method of attack is to construct a near-identity change of variables z =z({, ¢)
={+ --- which reduces (1) to

(4) §=2*(8.e)

where

(5) Z4(%.0)= ¥ £Z/(5).

Jj=0

The series for the change of variables is constructed order by order so as to make (4) as
simple as possible. Since z={ for e=0, (4) is a perturbation of (3) also, i.e., Z°=Z,,.

The basic philosophy is to try to eliminate as many terms as possible in (5) so the
terms which remain in Z* are those which cannot be transformed away. Therefore, the
terms in Z* must have an important effect on the flow generated by (4). So, if you wish
to construct an example which shows that a perturbation of (3) destroys some property
of the flow defined by (3) then a logical first choice is a perturbation which is already in
normal form.

A great deal of the theory of normal forms is formal. That is, the questions of
convergence remain unanswered. That will not affect the questions addressed here
because only examples are sought. What is important is the nature of the terms in Z*,
or what is the form of the normal form. One of the standard theorems which answers
this question is

THEOREM. Let { P}, i=0,1,--- be a sequence of vector spaces of smooth vector
fields defined on a common domain such that

(i) Z,€P; fori=0,
) [P, Pj]CPi+j fori,j20,
(iii) the operator L,=[-,Z°]: P,>P: A—[A,Z°] is split surjective, i.e., P,=
(kernel L,)®(range L;) for i=0.
Then there is a formal change of variables z={+ - - - which transforms (1) to (4) where
[Z},Z°]=0 fori>0.
In the above [ -, -] is the Lie bracket operator defined by

W, v
[U.V]=3_V-7-U

where U and V' are smooth vector fields depending on x. A simple calculation shows
that [U, V] is a vector field also. A classical theorem states that [U, V']=0 if and only if
the flows defined by U and ¥ commute. That is, let ¢,(£)=¢(¢,§) (respectively ¢,(§)=
Y(2,§)) be the solution of x=U(x) (resp. x= V(x)) which satisfies ¢(0,£)=§ (resp.
Y(0,£)=¢). Then [U, V]=0 if and only if ¢, o y,=y,° ¢, for all values of ¢ and s for
which this formula is defined.

Roughly speaking, the idea behind the proof of the above theorem is as follows.
First the change of variables is constructed order by order. Let W be the kth term in
the expansion of z, i.e., z(§,e)=¢+ - - - +e“W(¢)+ - - - . Then

[W,z2°]=K-Z*
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where k contains term which are given or have been previously calculated. Conditions
(i) and (ii) are used to prove that the right side of the above is in P, and condition (iii)
gives a solution pair W and Z*.

For a proof of this theorem see [3] or for a slightly more general theorem see [7].
For more background on Lie brackets see any advanced book on differential geometry,
for example [14].

Henceforth, I shall say that an equation of the form (4) is in normal form if
[Z!,Z°])=0 for i > 0. This means that the flows generated by Z° and Z’ commute.

3. Sternberg’s example. In a series of papers, Sternberg [11], [12], [13] considered
the problem of constructing a C* linearization of a differential equation about a
critical point or of a diffeomorphism about a fixed point. That is, he asked when does
there exist a C* change of coordinates x — y, valid in a neighborhood of the origin in
R", which transforms the nonlinear equation

(1) x=Ax+f(x)
into the linear equation

(2) y=Ay

where f is C* and f(0)=0, 3f(0)/9x=0. This is just the C*¥ version of the same
question as Poincaré asked a half century before. If A =diag(A,,-- -, A,), then from the
work of Poincaré¢ [8], it follows that [Ax,f(x)]=0 (i.e., (1) is in normal form) if and
only if f is a sum of terms of the form e;x{'x3?---x," where A;=a;A;+a,A,
+ - +a,\, and e; is the vector which has a 1 in position ;j and zeros elsewhere.
Thus, the normal form is nontrivial if there is an integer relation between the eigenval-
ues.

To obtain this result from the theorem of the previous section, first scale the
equation (1) by x > ex. Let P, denote the vector fields on R" which are homogeneous
polynomials of degree i + 1. A basis for P, consists of all vectors of the form e x{ - - - x2n,
j=1,---,n and a;+ --- +a,=i+1. The operator L, has these vectors as eigenvectors
with eigenvalues A ;— (e;A; + - - - +a,A,) as can be shown by a simple computation.

The simplest such relation occurs when there are just 2 eigenvalues, n=2, andone
eigenvalue is just double the other. Thus, the simplest example with a nontrivial normal
form is

(3) £=2(+an?, q=n.

This is the example that Sternberg gives as an equation for which there does not exist a
C? linearization. (Actually, he gives the analogous example for diffeomorphisms.)
There is a C! linearization for this equation [4].

When a=0, the equations are linear and the general solution is £(7)=e?%,,
n(t)=e'n,. Note that if n,#0, then £(¢)=(&,/13)n(¢)?* so all solutions off the £&-axis
lie on parabolas. Thus, as — — oo, the solutions approach the origin along analytic
curves. Contrast this with the case when a #0, say a=1. As is typical of an equation in
normal form one can still integrate these equations. First solve the n equation and
substitute the answer into the £ equation to get the general solution £(¢)=§,e% +n3te?,
n(t)=mnpe’. Now, if n,#0, £(r)=n(¢)? { a+1log|n|} where a=£,/13— In|n,|. This family
of curves are C', but not C? near the origin. Since the property of lying on C? curves
must be preserved by a C? change of coordinates, it is clear that there is no C2
transformation which linearizes (3) when a=1.
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Hartman [5] gives the example

E=af, i=(a—»)n+eff, {=-v§

where a>y>0 and & +#0 as an equation for which there does not exist a C! lineariza-
tion. Note that this equation is in normal form and solvable!

4. Cherry’s example. In the second edition of Whittaker’s book on dynamics [14],
he asserts that the equilateral equilibrium points in the restricted three body problem
are stable for small values of the mass ratio parameter. His assertion is based purely on
the analysis of the linearized equations. In the third edition this assertion is dropped
and an example due to Cherry [2] is included. The restricted three body problem is a
conservative dynamical system of two degrees of freedom which depends on a parame-
ter u, known as the mass ratio parameter. Mathematically, it is defined by a particular
Hamiltonian which need not be given here. The system has five equilibrium point for
all values of u. There is a range of values for u where the linearized equations of motion
about one pair of equilibria are similar to two harmonic oscillators. Also, there is one
value of p for which the ratio of the frequencies is 1:2.

Cherry’s example is given by the Hamiltonian

1 1
1) H=3N(xi+y7)=N(x3+p7)+5a{x(xi-»}) - 2x1., }.
The system of differential equations defined by the Hamiltonian (1) is

oH

5c1=—871=)\y1—a{x2y1+x1y2},
x2=g—y}-12~= =2y, —ax,yy,

h=- g—fl= —Axy—a{x;x, =1y},
Jy=- gTHZ=2)\x2—(a/2){x12—y12}.

When a =0, these are the equations of two harmonic oscillators with frequencies A and
2. As is well known, a small nonconservative nonlinearity can make a linear oscillator
unstable, but this example shows that even a conservative nonlinearity can make the
oscillators unstable.

Whittaker gives the solution to the equations whose Hamiltonian is (1). The referee
pointed out there are typographical errors in Whittaker’s solution and the correct
solution is:

2 V2
x1=a(t+£)s1n(}\t+v), y1=a(t+£)cos(}\t+v),
)
1 . 1
xz—msm2(}\t+v), yz_—a(t+s) COS2(>\I+V)

where € and » are integration constants. If we take a >0 and e¢=0, then these solutions
are near the origin for ¢ near minus infinity and arbitrarily large as ¢ approaches 0.
Thus the origin is unstable.
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Where did this example come from? Since the example is given in rectangular
coordinates, it is hard to see that these equations are actually in normal form. When
considering a Hamiltonian system associated with harmonic oscillators, it is judicious
to use action-angle coordinates. Let I,=3(x?+y?) and ¢,=arctan(y,/x,), so that
Hamiltonian (1) becomes

(3) H=A =2\, + V2 al, I}/ *cos( ¢, + 26, ).

Action-angle variables are canonical or symplectic coordinates. This means that the
equations of motion are derived from (3) by the same prescription as used to derive the
equations of motion from (1). Thus, the equations of motion in these coordinates are

1

12 8¢ \/_01111/25111(4’2"'24’1)’

. OH

1=~ g1 = A= V2al;2cos(4,+2¢y),
dH

b=~ 81 =2\— (/_/2) al; ' % cos(¢,+2¢,).

There is an exact analogue of the theorem in §2 for Hamiltonian systems. One simply
replaces the Lie bracket operator [-, -] with the Poisson bracket operator {-,-} of
Hamiltonian mechanics. The Poisson bracket operator {-, -} in these coordinates is
defined by

oF G OF 3G
{F,G}= z{a—lg—gﬁ}

If we set Hy=AI,—2AI, and H,=H—H,, then it is a simple computation to
verify that { Hy, H; } =0 and therefore the Hamiltonian (1) or (3) is in normal form. The
normal form for a Hamiltonian that starts with two harmonic oscillators with frequen-
cies w; and w, contains only terms in I; and I, when w,/w, is irrational. Such a
Hamiltonian will be stable. Therefore Cherry, like Sternberg in the previous example,
chose the simplest case where the normal form was nontrivial, i.e., when the ratio of the
two frequencies is 2. The equations resulting from (3) can be explicitly solved by
introducing 6= ¢, +2¢, just as in the previous example.

There is another way to see that the origin is unstable. Let A=1, a=1/y2 and
consider the Lyapunov function

(4) V=11"sin(¢,+2¢,)
whose derivative along the trajectories is

(5) V=2L1+ 113,

I,=0 is a plane filled with periodic solutions, but if 7;>0 then V is positive. By
Chetaev’s theorem [6] the origin is unstable. This simple Lyapunov argument can be
extended to include the case when H contains higher order terms. In this case explicit
solutions cannot be found in general.
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A closely related example is found in Siegal and Moser’s book on celestial mecha-
nics [10, pp. 222-224]. There they give an example of an area preserving mapping of
the plane that has an unstable fixed point. The eigenvalues of the linearization of the
map at the fixed point are gth roots of unity. Again the example is in the appropriate
normal form for area preserving maps.

5. Annihilation of invariant tori. This example and the next illustrate how in-
variant tori behave after perturbations. In both cases an autonomous system is per-
turbed by a small periodic forcing term which is chosen so that the equations are in
normal form.

This example considers perturbations of a two-dimensional autonomous system
which depends on a parameter g in such a way that u>p, the system has two limit
cycles (one stable and one unstable), a semi-stable limit cycle for p=p,, and no limit
cycle for p <p,. The simplest model for the unperturbed system is

(1) p=(p—po)—(p—py)’, =0

where w is a nonzero constant (the frequency). In the above (p,#) are polar coordinates
in an annular region around the circle p = p,. One readily sees that this equation admits
two limit cycles, p=py+/(p—po) for p>py; one limit cycle p=p, for p=p,; and no
limit cycle for p < p,. The periods of these limit cycles are 27 /w.

Now add a small nonautonomous, but 27-periodic, perturbation to equation (1). If
we artifically consider equation (1) as a 2w-periodic system, then the limit cycles
discussed above become invariant tori in space-time when one identifies the time
coordinate modulo 2. It is natural to suspect that even after the perturbation is added
there is a p* close to p, such that for p>p* there are two invariant tori, for p=p*
there is one torus and for p<p* there are none. The example given below shows that
this conjecture is false at least in the resonance case. Chenciner [1] has considered this
problem in much greater detail.

In the resonance case is when w=p/q where p and q are relative prime integers.
The theorem on normal forms in §2 is quoted for autonomous equations. However, the
nonautonomous case is included when one uses the standard trick of introducing a new
variable 7 and augmenting the equations with #=1. If one takes the unperturbed
equation (i.e., (2.3)) to be p=0, §=p/q, 7=1, then the perturbed equations are in
normal form if they are periodic functions of (gf— pt). That is, one can eliminate any
other type of perturbation by a normalizing transformation. Instead of considering the
most general case, consider only the perturbation given by

) p=(n—po)—(p—p,)’ +e%acos(qf—pt),
O=p/q+eBsin(qf—pt).
In the above a and B are positive constants and the system is 2« /p-periodic. Since we

wish to study these equations when p is near p, and p is near p,, so scale by er=p—p,
and let e?v=p—p,. Then

i=e{v—r’+acos(qd—pt)},
b=p/q+eBsin(qb—pt).

In the above equation only g — pt appears and so it is natural to introduce a new angle
Y equal to this combination but this would mix the time variable and the spatial
variables. In order to keep the geometry straight, introduce a new angular variable

(3)
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defined modulo 27, augment the equation (3) with the equation =1 and replace ¢ by
7 on the right-hand side of (3). The variables (7,8, 1) are now variables in R! X S1x S!
=R'X T2 Since p and c are relative prime integers, there are integers a and b such
that ap + bg=1. Make the change of variables

(4) Yy=q0—pr, o=al+br

so that the equations become

i‘=a{u—r2+ac08\]/},
(5) J=¢fsiny,
6=1/q+eaasiny.

Since the coefficients g, p,a,b in (4) are integers and the determinant of the coefficients
in (4) is +1, the transformation (4) and its inverse preserve the integer lattice Z2 in R2.
Thus (4) represents a valid change of variables on T2 or both ¢ and o are angular
coordinates defined mod 2.

Since the first two equations in (5) do not depend on o, they can be analyzed
separately. Also the first two equations in (5) are autonomous so the classical phase
plane analysis method can be used. However, (r,¢) are not polar coordinates in the
plane since r=0 does not correspond to a point. They should be considered as
coordinates on a annulus or a cylinder. In our figures one should identify points
mod 2 in .

These equations have critical points at =0, r= +Vr+a and y=u, r=+\r—a.
Linearizing about these critical points gives that the critical points are of the following
types:

Y=0, r=+yr+a is a saddle,
y=0, r=—yr+a is a source,
Y=m, r=+yVr—a is asink,

Yy=m, r=—yr—a is a saddle.

In the above » is assumed large enough that the square roots are real and nonzero. The
critical points along =0 undergo a saddle-node bifurcation when »= — a, whereas the
critical points along ¥ == undergo a saddle-node bifurcation when »= + a. Also note
that the lines ¢ =0 and « are invariant and that the flows along these lines are as
shown in Fig. 1a when »> +a. When referring to Figs. 1a, b, c, recall that r=0
corresponds to the circle p=p,.

When »> +a all four critical points exist, r is decreasing on r= +2y/r+a, and r
is increasing on r=0. Consider the half of the unstable manifold of the saddle point at
¥=0, r=+Vr+a which lies in the upper half plane. It is trapped in the region
0<r=<2Vv+a, 0<y <. There are no critical points in the interior of this region and
Y is increasing. Thus this unstable manifold must approach the sink at y==, r=
+Vvr—a as t— o0o. The same is true for the other half of the unstable manifold of the
critical point at ¢=0, r=+Vr+a. Thus the first two equations in (5) have an
invariant circle for »> +a which consists of the saddle point at =0, r= +»+a and
its unstable manifold plus the sink at y=m, r=+yvr—a. A similar analysis (by
reversing time) shows that when »> +a there is another invariant circle consisting of
the saddle ¢y =m, r=—yr—a and its stable manifold plus the source at =0, r=
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—Vr+a. See Fig. 1a. These invariant curves are smooth except possibly at the source
and sink where they may have a kink.

The same type of analysis can be carried out when »= +a to show that these first
two equations in (5a) have an invariant set which consists of two circles which meet at
Y=, r=0 as shown in Fig. 1b. A similar analysis yields Fig. 1c when a>v> —a.

I claim that Figs. 1a, b,c also represent a picture of the section map for the full set
of equations in (5) where the surface of a section is taken as 6=0. Let r(z,ry,¢,),
Y(2,15,%0), 0(t,ry,¢,) be the solution of equations (5) which pass through r=r,,
Yy=1,, 6=0 when ¢=0. Clearly o(¢,7y,y,)=1t/q+ O(¢) so we may apply the implicit
function theorem to the equation o(?,ry,y,)=27 to yield the existence of a smooth
function T(r,,{,)=2mq+O(e) which is the first return time to the o =0 section. The
section map is then the map (7,9 4) = (r(T(75,¥0):Fo, ¥0)s ¥ (T(79,¥0)s o5 ¥o))- Thus the
section map is obtained by following the flow of the first two equations in (5) by a time
T=2mq+ O(¢).

\
/
b
h
\

FIG. 1a FiG. 1b

sl I N

Fi1G. 1c

Going back to the full three-dimensional problem, one sees that the equation (5)
and hence equations (3) and (2) have two invariant tori when p> +a which contain
two periodic solutions per torus. As p approaches +« from above, these tori approach
each other along the circle Y=, r=0, o arbitrary and at p= +« the equations admit
an invariant set which consists of two tori which have this circle in common. When
+a>p> —a, the equations still have two periodic solutions but their unstable mani-
folds no longer form tori. As p— —a from above the two remaining periodic solutions
undergo a saddle-node bifurcation and disappear.



COUNTER-EXAMPLES IN DYNAMICAL SYSTEMS 49

Remark. Figures 1a, b, ¢ do not represent the period map for equations (2) or (3).
The surface 0 =0mod2# corresponds to af+br=0mod2x in the original variables.
The picture of the period map can be obtained from these pictures by linearly contract-
ing any of these figures in the  direction until it has width 27 /q. Now fill out the
figure by duplicating the drawing ¢ timesin j27<8<(j+1)27, j=0,---,g— 1.

6. Hopf bifurcation for invariant tori. This example was suggested by Professor
George Sell and should be considered as an example which proves the necessity of the
resonance condition in his paper [9]. His paper proves a theorem which is a natural
extension of Hopf’s bifurcation theorem to invariant tori. The precise statement of the
theorem is rather lengthy and is not needed for the discussion given below. The main
hypothesis is the existence of a one-parameter family of invariant n-tori with certain
conditions on the linear variational equations which are analogous to the derivative
conditions of Hopf’s original theorem. The main conclusion is that for a certain value
of the parameter an (n+ 1)-torus bifurcates from the n-torus. Sell found it necessary to
assume that at the point of bifurcation the flow on the n-torus is a linear ergodic
(irrational) flow.

The example is a perturbation of an autonomous three-dimensional system which
depends on a parameter . The unperturbed autonomous system has a limit cycle for
all values of the parameter u, but for u=0 it undergoes a Hopf bifurcation, i.e. an
invariant two torus bifurcates from the limit cycle as the limit cycle changes stability.
The unperturbed equation is

(1) F=pr—r3, =0, ¢=A.

Here (r,0,¢) are coordinates for a solid torus, i.e., (r,8) are polar coordinates in R?
and ¢ is a coordinate on S* (see Fig. 2c). When written in rectangular coordinates, the
first two equations in (1) are analytic at the origin. Both § and ¢ are angular variables
defined modulo 27 and r>0. The equations (1) admit a limit cycle »=0 for all values
of p which is asymptotically stable when p <0 and unstable when p>0. For p>0 this
limit cycle is encircled by a stable invariant torus r= ﬂ , 0 and ¢ arbitrary and the
flow on this invariant torus is the linear flow § =w, ¢=A.

Add to (1) a small nonautonomous, but periodic, perturbation which is in reso-
nance with one of the frequencies, say A. If (1) is artificially considered as a 2#-peri-
odic system, the limit cycle becomes an invariant three torus and the invariant two
torus becomes an invariant three torus in the space-time (7,6, ¢,¢) where ¢ is an angular
variable modulo 27. As in the previous examples, the perturbation terms are chosen as
the simplest nontrivial terms as predicted by the theory of normal forms.

Let the perturbed equations be

F=pr—r3+e*cos(qop—pt),
(2) 0=w+ef(q¢—pt),
$=p/q+¢*sin(qp—pt)

where f is an arbitrary, smooth, 27-periodic function whose precise form is unim-
portant. In order to investigate what happens when g and r are small, scale by r— er
and let p— £2u. As before introduce 7 and change coordinates by ¢ =q¢ —pr, 6 =a¢+
bt where gb+ ap =1. The equations become
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i‘=62{,ur—r3+rc08\]/},
(3) 9=+ ef(4)
6=1/g+¢%asiny.

For the moment ignore the 6 and o equations and call the remaining equations for r
and ¢ equations (3’). The coordinates (7,¢) are not polar coordinates in the plane since
r=20 does not correspond to a point. However, r>0. These equations have two critical
points: r=y/u+1, ¢y=0; and r=y/p—1, y=7. When p> —1 the critical point at r
=/u+1, y=0is a saddle and when p>1 the critical point at r=/u—1, y=7isa
sink. When p> +1 both critical points exist, r is decreasing for large r and r is
increasing for small r. Thus the unstable manifold of the saddle must approach the sink
at r=y/u—1, Y= as shown in Fig. 2a.

r r
1 ] ;
Y
/ -\' ‘ !
) 1
¥ ¥
FiG. 2a Fic. 2b

FIG. 2¢ F16.2d

As p— +1 from above, the sink approaches the point where r=0 and at p=1
only the saddle persist. For all p,r is decreasing for r large and so for 1 >pu> —1 the
unstable manifold of the saddle approaches a point where r=0 as shown in Fig. 2b. As
p— —1 from above the saddle approaches the set where r=0 and for p < —1 there are
not critical points.

Thus for p> +1 equations (3") have an important circle which is made up of the
unstable manifold of the saddle and the sink and which is smooth except possibly at
the sink. As p— +1 from above the invariant circle approaches the point r=0, y==
and for p= +1 the invariant circle attaches to the point where r=0, y=u. For
1>p> —1 the invariant circle is attached to the set r=0 but as p— —1 the invariant
circle approaches the set r=0.

Now return to the full set of equations in (3). If ¢ is sufficiently small § and o are
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always increasing since w>0, 1/¢>0. Recall that (r,8) are polar coordinates in R?
while ¢ and ¢ are angular variables in S*. Thus =0 corresponds to a two-dimensional
torus. Since r=0 is invariant, equations (3) always admit an invariant two torus. But
for > +1 the equations (3’) also admit an additional invariant circle and so equations
(3) admit an invariant three torus. As p— +1 from above the invariant three torus
approaches the invariant two torus along the Y == direction. For 1>pu> —1 the
invariant two torus remains, but now the other invariant set is a pinched three torus
(pinched along an S*). To see this, consider the unstable manifold of the saddle at
¢y=0, r=y/u+1 (see Fig. 2b) plus the saddle point itself. Above each point of this
curve there is a two torus, § and o arbitrary, but as you approach the critical point at
the right in Fig. 2b, r tends to zero. Thus above the point r=0 there is a single circle, o
arbitrary. The two torus and the pinched three torus have a circle in common, namely
r=0, y== and o arbitrary. As p— —1 the pinched three torus approaches the two
torus and disappears. For p < —1 the two torus remains as a sink.

In order to picture the above bifurcation, consider the o =0 section map. This map
will have the circle r=0 as invariant. For —1>p>1 this section map will have an
invariant set which is a pinched two torus as shown in Fig. 2d.

It is important to note that equations (2) are analytic in the rectangular coor-
dinates corresponding to the polar coordinates (7, ).
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