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BIFURCATIONS OF RELATIVE EQUILIBRIA IN THE N-BODY
AND KIRCHHOFF PROBLEMS*

KENNETH R. MEYERY AND DIETER S. SCHMIDT#}

Abstract. The bifurcations of a one-parameter family of relative equilibria in the N-body problem are
studied using normal form theory, Lie transforms, and an algebraic processor. The one-parameter family
consists of N —1 bodies of mass 1 at the vertices of a regular polygon and one body of mass m at the
centroid. As N increases there are more and more values of the mass parameter m where the relative
equilibrium is degenerate. For N =13 each of these degenerates gives rise to a bifurcation and a new relative
equilibrium. This is established using a computer-aided proof. A similar analysis is carried out for the
N-vortex problem of Kirchhoff.
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1. Introduction. The study of relative equilibria (r.e.) of the N-body problem has
had a long history starting with the famous collinear configuration of the 3-body
problem found by Euler (1767). Over the intervening years many different technologies
have been applied to the study of r.e. In the older papers of Euler (1767), Lagrange
(1772), Hoppe (1879), Lehmann-Filhes (1891), and Moulton (1910), special co-
ordinates, symmetries, and analytic techniques were used. In their investigations,
Dziobek (1900) used the theory of determinants; Smale (1970) used Morse theory;
Palmore (1975) used homology theory; Simo (1977) used a computer; and Moeckel
(1985) used real algebraic geometry. Thus, the study of r.e. has been a testing ground
for many different methodologies of mathematics.

In Meyer and Schmidt (1987) the methods of bifurcation analysis and the use of
the automated algebraic processor were brought to bear on this subject and the present
paper continues the attack. Specifically we study the bifurcations of the relative
equilibrium which consists of N —1 particles of mass 1 at the vertices of a regular
polygon and one particle of mass m at the centroid. We call this the regular polygon
relative equilibrium (r.p.r.e.). Our first paper considers the 4- and 5-body problems
and uses the special coordinates of Dziobek (1900). These coordinates make the 4-body
problem relatively easy to handle and the 5-body problem accessible, but beyond 5,
Dziobek’s coordinates become very cumbersome. The 4- and 5-body problems in these
special coordinates are sufficiently simple that the general purpose algebraic processor
MACSYMA could handle the tedious calculations. For larger N the special purpose
algebraic processor POLYPAK written by the second author was needed because the
computations increased rapidly with N. In the analysis of the 4- and 5-body problems
the classical power series methods of bifurcation analysis handles the problems nicely,
but for larger n a systematic use of Lie transforms by Deprit (1969) was mandated in
order to bring the equations into a normal form. Thus this paper uses substantially
different techniques than our previous paper.
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The problem of finding an r.e. can be reduced to finding a critical point of the
potential energy function on the manifold of constant moment of inertia. Thus the
problem falls within the domain of catastrophe theory and so the general theory is
well understood. However, this specific problem has a high degree of symmetry, many
variables, and a constraint, so the computations must be performed with care. We
consider this paper as a case study in bifurcation analysis in the face of these com-
plexities.

Indeed we analyze the problem at three different computational levels. First, for
small N, we perform the normalization to high order to determine the existence,
uniqueness, and exact shape of the bifurcating equilibria. For medium ranges of N
we exploit the symmetry so that fewer computations need be carried out in order to
establish existence, but now the uniqueness is only within the class of symmetric
equilibria. Last, for large N, we carry out some calculations to establish existence of
bifurcations with no uniqueness information. We can see that for a fixed amount of
computing power the precision of the information obtained decreases as N increases.

For the planar problem that we consider, a relative equilibrium is also a central
configuration and vice versa, that is, a homothetic solution which begins or ends in
total collapse or tends to infinity. Even though as solutions of the N-body problem
r.e. are quite rare and rather special, they are of central importance in the analysis of
the asymptotic behavior of the universe. In general, solutions which expand beyond
bounds or collapse in a collision do so asymptotically to a central configuration.
A survey and entrance to this literature can be found in Saari (1980).

Interestingly this problem in celestial mechanics is formally similar to the problem
in fluid dynamics of describing the evolution of finitely many interacting point vortices
in the plane. Kirchhoff (1897) shows that this problem is specified by a Hamiltonian
which is similar to the Hamiltonian of an N-body problem with a logarithmic potential.
The constants that correspond to the masses are now the circulations, which may be
positive or negative, and so a richer store of bifurcations are to be expected. We develop
the theory and evolution of the bifurcations of the problem in parallel with that of the
N-body problem.

In Meyer and Schmidt (1987) we studied the 4- and 5-body problem and found
that there was a unique value of the mass of the central particle where the potential
was degenerate. This agrees with the findings in Palmore (1973). However, for larger
N there are more and more values of this mass at which the potential is degenerate,
which disagrees with Palmore (1976). In fact, for large N many bifurcations occur.
We developed the general theory of the bifurcations for these two problems for all N
and completely analyze the bifurcations for 4= N =13. Figures 1 and 2 illustrate the
bifurcations which occur at the unique critical mass when N =4, 5 and Fig. 3 illustrates
the multitude of bifurcations that occurs in the 13-body problem.

Also we found that the self-potential for the N-body problem with the central
mass removed was not always a nondegenerate minimum. In fact it is a saddle for
N > 6. This disagrees with one of the findings in Palmore (1975). There were other
surprises in our investigations, which will be explained below when we have developed
the necessary definitions and notation.

2. Relative equilibria for the N-body and Kirchhoff problems. The N-body problem
is the system of differential equations that describes the motion of N particles moving
under the influence of their mutual gravitational attraction. Let g; € R? be the position
vector, p; € R? the momentum vector, and m; >0 the mass of the jth particle, 1=j= N;
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then the equations of motion are

s L,
T op; T m "
2.1) s j=1,-+-,N
5o _2H_aU
! aq] aqj’
where H is the Hamiltonian
Npl?
(2.2) H=7Y Y U(q)
j=1 &My
and U is the (self) potential
(2.3) U= _mam;

1=i5=n g _‘Ij" ’
These equations reduce to the Newtonian formulation

oU
2.4 mg;=—, i=1,---,N.
(2.4) 44 j ag; J

To change to rotating coordinates let g; = exp (»Jt)u; where » > 0 is the frequency
of the rotating frame and
01
J=
(1)

so (2.4) becomes
oU
(2.5) m{u;+2vJi; — v'u;} =£(u), j=1,--+,N.
i

An equilibrium in these rotating coordinates is a solution of the system of algebraic
equations

oU
(2.6) _Amjuj =, ] =

1,...,N
ou;

where A =»>>0.

The Kirchhoff problem is the system of differential equations describing the motion
of N vortices moving in the plane under their mutual interaction. Let g; be the position
vector and m; # 0 the circulation of the jth vortex for j=1,-- -, N. Then Kirchhoff
(1897) gives the equations of motion as

aU(q)
2.7 g, =J—= j=1,---,N
(2.7) 4, 54, J
where now U is the Hamiltonian
(2.8) U=- Y mmlog|q—g;l.
1=si<j=N



1298 K. R. MEYER AND D. S. SCHMIDT

Introducing rotating coordinates as before by setting g; = exp (vJt)u; transforms (7)
to the system

dU(u
(2.9) m;{u;+ v]u,-}=]——5u—(—-)-, j=1,---

J

N.

b

An equilibrium in these rotating coordinates is a solution of the system of algebraic
equations

oU
(2.10) —Amju; = al(lu), j=1,---,N

J

where A = —w.

It is classical and easy to verify that if @ = (i, - - -, ily) and A is a solution of (6)
(or (10), respectively), then the center of mass of i is at the origin (¥ m;ii; =0) and
A=U(a1)/(1+8)I(ii) (>0 for (6)) where I is the moment of inertia

(2.11) I(u) =53 ml|u]?

and 8 =0 for the Kirchhoff problem or § =1 for the N-body problem. For either
problem we will set

M ={ueR*:Y mu;=0},
(2.12) A={ue R*: u;=u; for some i#j},
S={ueM: I(u)=1}.

The variable A can be considered a Lagrange multiplier and so an equivalent
definition of a relative equilibrium is a critical point of U restricted to S\A. If u is an
r.e. then so is Au=(Au,, -, Auy) where A€ SO(2, R) is a rotation matrix. We can
define an equivalence relation by u~ Au when Ae€SO(2, R), and since U, I, are
constant on equivalence classes we can define the quotient spaces ¥ = (S\A)/~ and
the function % :% - R by U([u]) = U(u), where [ ] denotes an equivalence class. ¥
and U are smooth. Thus a similarity class of r.e. is a critical point of 2.

Arelative equilibrium is called nondegenerate if its equivalence class is a nondegen-
erate critical point of % in the sense of Morse theory, i.e., the Hessian is nonsingular
at the critical point. It follows from the implicit function theorem that bifurcations
can occur only at degenerate critical points, so first we must find degenerate r.e.

3. Palmore coordinates. Our first step is to introduce the local coordinate system
on the quotient space ¥ which was given in Palmore (1976). Let n=N—1 and
® = exp (i277/n) be a primitive nth root of unity. Consider complex numbers as vectors
in the plane, so w’, 0=j<n are the vertices of a regular polygon with n sides. By the
regular polygon relative equilibrium (r.p.r.e.) we shall mean the r.e. which consists of
n particles of unit mass, m; = 1, situated at @’ for j=0, - - -, n—1, and one particle of
arbitrary mass, m, = m, situated at the origin.

Let g=(qo, 41, "+, q,)" be the position vector of the N =n+1 particles in the
plane, Q= (0’ ', w? -+, ®" ", 0)7 be the position vector of the r.p.r.e., and change
coordinates by

3.1 q=0+%z
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where z=(z, z,," " -, z,) is the position vector in the new Palmore coordinates and
V" is the matrix

1 1 1 1
wl 0)2 wn—l 1
1 2 4 2(n—1) 1
(3.2) r=. < “
1 w;x—1 w2(.n—l) w(r;—l)z 1
0O o0 0 0 -n/m,

In these coordinates the center of mass is
n
3.3) Y. mq; = nz,
j=0

so setting z,= 0 fixes the center of mass at the origin. The moment of inertia is

1721 m
=25 g+ 2la.
j=0
(3.4)
1 _ o _ n s
=3 n+z,+zl+j§l zjzj+;||z,,||

so that the first approximation, the manifold I = I,=n/2,isgivenby z,+Z, =2 Re z; = 0.
Requiring z, to be real, Im z; =0, we select a representative from the rotational
equivalence class. Thus to the first approximation local coordinates on & near [{}] are
zo=2,=0 and z,, z3, - - -, z, arbitrary.

Henceforth, set z,=0 and Im z, =0 and let Re z; =x;. From (3.4) we see that
81/9x,(Q2) =1#0, so by the implicit function theorem we can solve I = I, for x,, as a
function of the remaining variables. Let x, = ¢(z,, z3, - - -, z,) be this solution. Chang-
ing variables by x1=x,—¢(z,, -, z,), 25=2,," -+, z,, = z,, brings the manifold I = I,
to the hyperplane x, =0 locally. Thus z5,- - -, z, are valid local coordinates on &
near [Q].

Computationally we effect this change of variables by using the method of Lie
transforms as given by Deprit (1969). We construct the change of variables from the
unprimed to the primed variables order by order using the standard normalization
procedure. That is, we eliminate the x; dependence in I order by order. Henceforth,
we will assume that this initial normalization has been carried out, we will ignore z,
and z,, and we will drop the primes on the variables.

The next step is to look at the Hessian of the function % at [Q2]. We can consider
(1) as a change to the (z, Z) coordinates or follow Palmore and use the real and
imaginary parts of z. We choose the latter for exposition purposes.

Let Zj=xj+iyj’ g::(xz, e sxn)T’ n =(y29 te ayn)T, u=(x2, te ’yn)Ta and A=
8> /9u*[Q]. Palmore (1976) shows that the Hessian, A, has the relatively simple form
B+C 0
. A=
63) (%5 52c)

where B and C are (n—1)x(n—1) matrices, B is a standard diagonal matrix, and C
has nonzero entries only on the cross diagonal running northeast. These nonzero entries
are given in Appendix A for reference. In Appendix A we give the general formulas
for all potentials which vary inversely with the distance of the 6 power, so the N-body
problem is when 8 =1, and the Kirchhoff problem is the limiting case when 6 =0.
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Let D(n, k) (respectively, D" (n, k)), 2=k =n/2 be the 2 x2 submatrix of B+ C
(respectively, B—C) formed by taking the (k, k), (k,n+2—k), (n+2—k, k), and
(n+2—k, n+2—k) entries. In the case that n is even the two diagonals B and C cross
in a single entry at the (n/2+1,n/2+1) position; let D(n, n/2+1) (respectively,
D™ (n,n/2+1)) be the corresponding 1x 1 matrix or number. This is a special case,
which requires special treatment, and we will typically discuss this case last.

The r.p.r.e. is degenerate when A is singular, which happens when one of the
submatrices D(n, k) is singular. Except for the last row of B+ C all the nonzero entries
of B+ C are linear in m and in fact the determinants of the D(n, k), 2<k=n/2+1,
are linear in m also. Referring to Appendix A shows that the last row is slightly more
complicated, the determinant D(n, 2) has an extraneous factor of (m+ n) and another
linear factor in m. Thus, there is a unique m = m(n, k), which makes the submatrices
D(n, k) and D™ (n, k) singular. In the special case when n is even and k=n/2+1 the
1X 1 matrix or number D (n, k) does not contain m, and so when m =m(n, k) we
have D(n, k) =0 but D™ (n, k) # 0. In this special case the dimension of the kernel of
Aisone. Letd(n, k) =det D(n, k) form=0,2<k=n/2+1. Appendix A also contains
the general formulas for m(n, k) and Appendix B contains a table of m(n, k) and
d(n, k) for all 3=n=12 for both the N-body problem and the Kirchhoff problem.
Recall that d(n, 2) is not defined. The tables in Appendix B are easily generated from
the formulas in Appendix A.

Palmore (1973) considered this one-parameter family of r.e. for the N=n—1
body problem for n =3, 4 and showed that there was a unique positive value of the
mass that makes this r.e. degenerate. In Meyer and Schmidt (1987), we verify this fact
and show that additional families of r.e. bifurcate from the original family. Palmore
(1976) makes a similar statement about the existence of a unique positive critical mass
for all n. From the table in Appendix B, we see that m(6, 2) =20.91 and m(6, 4) =.00598,
and so this is not the case for n =6. We computed this table all the way up to n =20
and found that as n increases, more and more positive critical masses appear. Moreover,
the critical mass of Palmore is m(n,2) in our notation, and it becomes negative at
n =7 and remains negative up to n = 20. Later we will show that these positive critical
masses give rise to new families of r.e. which bifurcate from the r.p.r.e.

Palmore (1982) also states that there is a unique positive circulation which makes
the Kirchhoff potential degenerate for all n = 3. Appendix B shows that the uniqueness
is false for 8=n=12 and we extended the table to n=20 to find more and more
positive critical circulations as n increases. For the Kirchhoff problem the exact formula
for the critical circulation m(n, k) takes on a simple form as shown in Appendix A.
From this we see that m(7,4)=0, so one critical circulation is zero. Negative values
of the circulation are meaningful and so we investigate these bifurcations in the next
section also.

There are several other errors in Palmore (1976), (1982). He also states that the
r.e. when m =0 is a nondegenerate maximum of the potential for both problems and
for all n. Since we work with the self-potential or the negative of the potential, this
would mean that the matrices obtain by deleting the first and last rows and columns
of B+ C are positive definite and in particular the d(n, k) >0 for 2<k=n/2+1. This
is false when 6 = n =12, which can be seen easily by looking at determinants d(n, k)
given in Appendix B—in particular d(6,4)=-0.036<0. Again we extended this all
the way to n=20. We give a simple analytic argument in Appendix D which shows
that the potential does not have a minimum at this r.e. when n=6. As noted above
the Kirchhoff problem is degenerate when n=7 since m(7,4)=0. The source of all
these errors seems to be in the analysis of the 2 x2 submatrices D(n, k).
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4. The splitting lemma, reflections, and Hopf’s method. There is a simple argument
due to Hopf (1942) that establishes a bifurcation without a knowledge of higher-order
terms. The analysis of the Hessian given in the previous section along with the symmetry
of the potential function is enough to adapt Hopf’s argument to the present situation.
We present this argument before the discussion of the full normalization to emphasize
how little computation is necessary to establish some information about the nature of
the bifurcation.

Fix n and k, let u = m —m(n, k) and h =2n—2. The special case when n is even
and k=n/2+1 will be treated at the end, so for now assume we are not in this case.
By the analysis of the previous section and the splitting lemma as found in Poston
and Stewart (1978) there is a coordinate system n near [] so that

(4.1) U=xtnitnit- - -xni+G(ny, n, p).

In catastrophe theory the Lyapunov-Schmidt method is called the splitting lemma. In
the next section we discuss in detail how the quadratic terms are brought into the
above form and how the function G is computed order by order using Deprit’s method
of Lie transforms and the second author’s algebraic processor POLYPAK.

From the form of the Hessian A in (3.5) and the fact that the submatrices D(n, k)
and D™ (n, k) have the same determinant which is linear in the mass m, we see that
the quadratic terms of G have the form au(ni+7n3)/2 where a is a nonzero constant.

Also % is invariant under a reflection & which leaves the regular polygon relative
equilibrium fixed. In the original coordinates the reflection is

(42) gi:qj_)qn—ja 0§j<n, qn—)qw

At one of the critical masses a perturbation in the direction of the kernel of the Hessian
is of the form
g =o' to*z+w'z, kt+tl=n+2,

(4.3) A .
qj=w’+w’kz, k=Il=n/2+1.

In the first case the z; and z; are not independent but are linearly related (essentially
conjugates), so one can be used as a coordinate of the perturbation. In the second
case the z is arbitrary. Thus we can use z; or z as a coordinate in the kernel of the
Hessian. The action of & on this subspace is
(4.4) .%:wj+wjkzk+wﬂz,—>wj+wjk2k+wﬂfl, k#1
4.4 ) A _ ,

R0+ 0™z > 0’ + 0z, k=Il=n/2+1.
Thus in coordinates R :z, > Z, or R:z-> Z, so R is a reflection on this subspace also.
Therefore, we can choose the coordinates 7, and 7, so that

(4'5) G(n19 nzaﬂ)EG(”h,“"h,M)-

This is essentially the same as Lyapunov-Schmidt reduction in the presence of symmetry
discussed in Proposition 3.3 of Golubitsky and Schaeffer (1985).

Thus, if 8G/dm,(7;,0,0) =0, then n =(%,,0, - - -, 0) is a critical point of %. Since
0G/3m,(0,0, ) =0, n, is a factor of 3G/dn,(7;,0, w), and so we must solve

oG
5(% 0, w)=pan,+n,8(n, u)
1

(4.6)
=m(apn+g(n, un))
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or

(4.7) ap+g(n, u)=0

where g(0, u)=0. Since a # 0, the implicit function theorem gives a solution of (3)
of the form u = v(7,) and so n =(7,,0, - - -, 0) is a critical point of % when u = v(7,).
So we have shown that locally the critical point set of % in R" x R' consists of two
intersecting curves namely (n, )= (0, ») and (n, u)=((n,,0, - -, 0), v(n,)). These
solutions are symmetric with respect to the reflection # and are unique in this class.
Of course there may be more nonsymmetric solutions.

Hopf’s argument just given depends only on the analysis of the Hessian and the
symmetry of the system and so is quite easy to apply. The values of m(n, k) and the
corresponding a’s are easy to compute from the formulas in Appendix A for both the
N-body problem and the Kirchhoff problem. Appendix B contains a table of m(n, k)
and Appendix C a table of a for 3=n=12. Since the computed values of the a’s are
nonzero the above result holds in all these cases.

However, this result is rather weak. First of all G could be identically equal to
zero, in which case the function v(n,) would be identically zero also. Most people
would not call this a bifurcation. The result does not tell how many r.e. are found
since the method only looks for symmetric solutions. To overcome the first weakness
only a little more computation needs to be carried out.

The full normalization of % was carried out by the method of Lie transforms
using the second author’s algebraic processor POLYPAK in almost all cases. The size
of the problem grows rapidly with n since (1) the number of variables increases, (2)
the number of critical masses increases, and (3) the order to which we must carry out
the normalization increases. The first two cause linear growth in complexity whereas
the third causes exponential growth in complexity. The full normalization is discussed
in the next section.

If we are content to seek only solutions that are symmetric with respect to the
x-axis we need only compute the first nonzero term in G(7n,,0,0) to determine the
general nature of the bifurcation. Thus the quest for symmetric solutions grows like a
polynomial in n in the generic case.

Using the previous notation as found in (6) assume that

(4.8) g(m,0)=—Bni+---

where B # 0. Then the solution u = v(m,) is a solution of
(4.9) ap =g(m, p)=ap—PBni+---=0,
(410) I’«=”(771)=571’13+"‘

Now we can decide how many symmetric relative equilibria bifurcate from the
regular polygon relative equilibria as p varies, since we can solve (4.6) for n, to find

(411) n1=‘p/aM/B+....

Here we use the standard convention about the pth roots. In particular, if p is even,
there are two r.e. that bifurcate from the r.p.r.e. for © >0 when ¢8>0 or for u <0
when af <0. If p is odd one r.e. bifurcates from the r.p.r.e. for u <0 and one for u > 0.

In the special case when n is even and k = n/2+1 the kernel of A has dimension
1 and so the splitting lemma says there are coordinates such that

(4.12) U=tnitnit- - xni+G(n,p).
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In the previous case we used the symmetry & to reduce the problem to that of solving
(4.6). In this case we need only look at 6G/dn,(n,, #) =0 and proceed exactly as above.

Generically we would expect p =1 unless the problem had a further symmetry in
which case we would expect p =2. We explain this difference in the next section. Thus
in the generic case we do not have to compute the function G to high order. Appendix
C contains a table of «a, B, and p for both the N-body and the Kirchhoff problems
for 3=n=12, 2= k=n/2+1. Note that several entries are missing from the table for
the N-body problem since these correspond to negative mass. The N-body problem
behaves in a generic manner with p being 1 or 2, but the Kirchhoff problem is somewhat
unpredictable. Note in Appendix C, when n=11, k=6 that p=2 for the N-body
problem whereas p =4 for the Kirchhoff problem. The Kirchhoff problem is even more
degenerate when n =4, k =3. In this case p = 1 and with it g(n,, u) =8u(n,+ 71+ - -).
All the terms have a factor u and therefore the r.e. exists for u =0 with 7, arbitrary.
We will come back to this case in the next section.

‘
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FIG. 1(a). n=3,k=2. FiG. 1(b). n=3, k=2.

Figure 1 shows the r.e. which bifurcate from the equilateral triangle family. This
is the case when n =3, k=2, and p =1, so the two isosceles triangle r.e. exist on either
side of the critical mass m(3,2)=0.77 for the 4-body problem or m(3,2) =1 for the
Kirchhoff problem. The acute triangle exists for m <m(3,2) and the obtuse for
m>m(3,2). Figure 2 shows the r.e. which bifurcate from the square family when
n=4, k=3, and p =2. Only the kite r.e. shown in Figure 2(a) is symmetric with respect
to the x-axis and is established by the above argument. It exists for m > m(4, 3). Figure
3 shows all the r.e. that bifurcate from the duodecigon family when n =12 and for
various k and p. Only those shown in Figs. 3(a), 3(c), 3(e), 3(g), 3(i), 3(k) (every other
one) are symmetric with respect to the x-axis or with respect to R. Figure 3 shows the
special case when n is even and k=n/2+1. These are the ones established by this
argument. Note that all of the r.e. in Fig. 3 have an axis of symmetry even though in
some cases it is difficult to see at first glance. We will discuss these figures more in the
next section.

5. Symmetries and higher-order normalization. In the special case when n is even
and k=n/2+1 the Hessian A does not have a two-dimensional kernel, and so the
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FIG. 2(a). n=4, k=2. FIG. 2(b). n=4, k=2.

F1G. 2(c). n=4, k=3.

discussion of the previous section is complete for this case. Thus we will assume that
k# n/2+1 throughout this section.

Let £=(&,  , &) =(x2,"**, Xn, Y2, " *»¥n) > Where h=2n-2, are the Pal-
more coordinates discussed in § 2. As before fix n and k and let u =m—m(n, k).
Obviously % is invariant under the symmetries of the regular polygon with n sides;
that is, there is a subgroup D, of the orthogonal group O(h, R) which is isomorphic
to the dihedral group such that

(5.1 U(DE ) = U(E )

for all D e D, and all small ¢ and w.

When u =0, the Hessian A of U at ¢£=0 has a two-dimensional kernel and
therefore there is an orthogonal matrix O, such that OTAO =diag (0,0, A5, -+, A)
where A;#0 for 3=i=h. Let O,=diag(1,1,1/Vx3], - -, 1/VIA,]) so B=0"AO =
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Fi1G. 3(a). n=12, k=2.

Fi1G. 3(b). n=12, k=2.

FiG. 3(c). n=12, k=3.

FIG. 3(d). n=12, k=3.

FI1G. 3(e). n=12, k=4.

Fi1G. 3(f). n=12, k=4.
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FIG. 3(g). n=12, k=S5.

F1G. 3(i). n=12, k=6. F1G. 3(j). n=12, k=6.

Fi1G. 3(k). n=12, k=7.
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diag (0,0, +1, - - -, 1) where O = O0,0,. If we change coordinates by ¢ = O¢ then the
Hessian of % in these coordinates is B or the quadratic part of U is as in (4.1). Usually,
we use the same symbol for a function in different coordinates, but for the moment

let U'(¢, u)=U(OL, n) so
U(DE, p) = U(& p),
(5.2) UA(0O0™'DOE, )= U(OL, w),
U(0O7'DOL, ) =U'(L, p),
or

(5.3) U (DL, w)=U'(L, 1)

where D'e @,=07'9,0. From (5.3) D' leaves the Hessian of %’ invariant and so
D'"BD’ = B. This and the special form of O implies D’ is of the form

5o oo 0)

where E is a 2 X2 orthogonal matrix and F is some nonsingular (h —2) x (h —2) matrix.
The set of such E’s form a subgroup & of O(2, R) which is clearly isomorphic to the
subgroup of 9, obtained by letting F be the identity matrix in (5.4). Since & is
isomorphic to a subgroup of a dihedral group and as we saw in the last section contains
a reflection, it must be isomorphic to a dihedral group whose order divides 2n. The
order of this group depends on n and k, and the precise dependence will be given at
the end of this section along with the discussion of the specific findings.
Let ¢ be a formal parameter and consider

oo

(5.5) Uy, €)= % (?—;)%?({, )

i=

where U (¢, w, 1) = U({, p) and 97 is a homogeneous polynomial in ¢ of degree i+2.
The method of Lie transform given by Deprit (1969) constructs a near identity change
of variables

(=l pe)=nt+---
where { is the general solution of the differential equation

d
(5~6) d—j= W({, My 8): £|€=0= .

If the function W has the formal expansion

(5.7) WL e)= 3 (8—') Wian(Z, 1)

=0 \I!
then in the new coordinates

U*(n, p, €)= U (L(, p, €), p, €)
(5.8) © [
- % (5)ue w.

The functions %, and %* are related by the double index array {2/}, which agrees
with the previous definitions when either i or j is zero and are related by the recursive
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relation
(5.9) W= U+ Eo ( ,’c)[%’;:}” Wi,

where [ , ] is the Lie derivative operator on functions given by

(5.10) [%u, W]=@W.
ol

Let 2, be the space of homogeneous polynomials of degree k+2 in ¢;, -, {,
with coefficients which are smooth in u. Let %, be the subspace of ?, of homogeneous
polynomials in ¢, and ¢, only and Ry = 3P+ - -+ {,Pr—, so that P, =KD R,.
Since Uy=1%¢"B{ the operator L: W-[UJ, W] defines a self-map of P, with kernel
¥, and range %&,.. By a standard argument in normal form theory, we can find a formal
series for W so that U%* is in normal form, i.e., UL e K, for all k=1. That is, the
higher-order terms in %* depend only on 7, and 7,. This argument is found in Meyer
and Schmidt (1977), for example. This is the formal version of the splitting lemma.

Moreover, the normalizing generating function W satisfies W, € &, so that the
function W is zero on E={¢: &=+ - - = &, =0}. Thus = is an invariant surface for (7)
or the change of variables (6) fixes E or E={n: n;="-+=n, =0}. This means that
the new function U* is invariant under the linear action defined by the matrices of
the form (5.4) with F = I, the identity matrix.

We see that the normal form for % is the same as given by the splitting lemma
in formula (4.1). Moreover, if the normalization is carried out as outlined above, the
higher-order terms (i.e., G in 4.1) are invariant under the standard action of & on the
plane.

Let € have order 2d where d divides n. Appendix C has a table giving d for
various n and k. Consider the n,, 7, plane as the complex plane by setting w = 0, +in,
and let ¢ =exp (27i/d) be a primitive dth root of unity. By the above, we are reduced
to studying the critical points of

(5'11) F(W, W,M)_—'G("h, T’Z’l")
where T is invariant under the action of & or
(5.12) T(¢w, dw, u)=T(w,w,u),  T(w, W, u)=T(w,w,n).

The only terms in a Taylor expansion which satisfy the conditions in (5.12) are of
the form

(5.13) (ww)'w¥ or (ww)w?
where i and j are integers. Thus a typical expansion of I' would look like this:
(5.14)  T(w, w, ) =pi(wh)+po(wiw)+- - - +(1/d) g (w' + W) +- - -

The p’s and ¢’s are real functions of u. By the analysis of the Hessian given in § 3,

pi(w)=au+- - - where a is a nonzero constant. Assume we are in the generic case so

that ¢,(0) # 0 and in addition p,(0) # 0 when d >4 and p,(0) # ¢,(0) when d =4.
Case 1. d =3. Let ¢,(0) = b, so we must solve

r
?—-=a,uw+bw2+- =0,
ow
(5.15) au(ww)+bw’+- - =0,

aur’+br exp (i30)+- - - =0
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where w=r exp (if). Thus, by the implicit function theorem I'" has critical points at
r=Fau/b+- - when exp(i36) = £1. That is, three critical points move linearly away
from the origin (or the r.p.r.e.) as u varies from zero. This case occurs when n=3,
k =2 (Fig. 1(a) shows a solution where exp (i30) = +1 and Fig. 1(b) where exp (i30) =
—1. );whenn=9, k=4, n=12, k=35 (Fig. 3(g) shows a solution where exp (i30) = +1
and Fig. 3(h) where exp (i36) = —1) for both problems, and when n =6, k =3 for the
Kirchhoff problem. See Appendix C. In the notation of the previous section a = a,
B=b,and p=1.
Case 2. d=5. Let p,(0)=b#0 and ¢,(0) = ¢ # 0, so we must solve

ol
o auw+b(ww)>+- - -+ ew? '+ .. =0,
(5.16)
aur*+br*+- - -+ cr exp (id9)+- - - =0.
By the implicit function theorem I" has critical points at

(5.17) r=v—au/b+---, exp (idf) = x1.

That is, I' has 2d nonzero critical points for x>0 and none for u <0 when ab<0
and vice versa when ab > 0. These solutions fall into two families of d each depending
on the sign of exp (id6). The families move away from the origin like the square root
of u. For most n and k, we have d =5 (see Appendix C). For n =12, Figs. 3(a), 3(i)
show the solutions where exp (i126) = +1 and Figs. 3(b), 3(j) show the solutions where
exp (i1260) = —1. In the notation of the previous section a =a, B=b, and p =2.

Case 3. d =4. Using the above notation, we must solve

(5.18) aur*+(b+cexp (i40))r*+---=0

and so there are solutions of the form

(5.19) r=v—au/(bxc)+---,  exp(i48)==1.

If b=+ c are of one sign then there are eight solutions for u on one side of zero as in
Case 2. This happens when n = 12, k = 4. Figure 3(e) shows a solution when exp (i460) =
+1 and Fig. 3(f) shows a solution where exp (i40) = —1. If b+ ¢ have two signs then
there are four solutions when w is negative and when w is positive as in Case 1. This
happens when n =4, k =2. Figure 2(a) shows a solution when exp (i46) = +1 and Fig.
2(b) shows a solution when exp (i46) = —1.

To understand the relationship between n, k, and the order d of the rotational
subgroup which acts on the two-dimensional subspace, we proceed as we did in the
previous section when we discussed the reflection symmetry. % is invariant also under
a rotation O which leaves the regular polygon relative equilibrium fixed. In the original
coordinates the rotation is

(5.20) @‘:qj_)(’)qj—ly 0§j<n9 @:qn_)qn'

This rotation © with the reflection ® generates the symmetry group of % which also
fixes the r.p.r.e. Q. At one of the critical masses a perturbation in the direction of the
kernel of the Hessian is of the form

=o'+ oz + o'z, k+l=n+2,
(5.21) @
. g, = + 'z, k=Il=n/2+1.
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In the first case the z, and z; are not independent but are linearly related (essentially
conjugates), so one can be used as a coordinate of the perturbation. In the second
case the z is arbitrary. Thus we can use z; or z as a coordinate in the kernel of the
Hessian. The action of @ on this subspace is

s 0: 0’ + 0™z + o'z > 0’ + 0™ (0 )z + 0" (0 Yz, k#1

(522) 0:0'+ @™z '+ 0™ (0 )z, k=1l=n/2+1.

Thus in coordinates 0:z,—» (w' %)z, or 0:z->(w' %)z, so O is a rotation on this
subspace also; but it does not necessarily generate the full symmetry group. The order
of the rotation group generated by O on this subspace is d where (k—1)d =0 mod n.
Appendix C lists n, k, and d for all cases 3=n=12.

Consider Figs. 3(e) and 3(f) for example where n =12, k =4, and d = 4. By rotating
these figures by I1277/12 for I=0,1,---,11 we obtain d =4 distinct r.e. which have
symmetry given by the dihedral group Ds, because k—1=3. Contrast that with Figs.
3(a) and 3(b) where n=12, k=2, d =12. When we rotate these figures by 127/12,
[=0,---,11 we obtain d = 12 distinct r.e., which have the symmetries of the dihedral
group D, (generated by a single reflection), since k—1=1. The other figures follow
the same pattern.

Finally we will consider the degeneracy in the Kirchhoff problem when n=4,
k=3. In this case the symmetry with respect to both axes is preserved. Since the
moment of inertia has to remain constant, r.e. can only be formed by a rhombus with
the fifth vortex at the center. The coordinates of the five vortices are

qo=—q,=1+x,,
G =4q3= i\/1—2x0—x§,
q4=0.

Let m be the value of the vorticity at the origin, then the potential function (2.8) turns
out to be

—%log2—(1+2m){log (1+x,) +31log (1 —2xo—x3)}.

For m # —} the potential function has extrema at x,=0 and x,=—3%. For m = —3 the
potential function is independent of x, and therefore any rhombus can serve as a r.e.
for the Kirchhoft problem. See Fig. 2(c).

Appendix A. Entries in the Hessian.
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where y=06+2 and

1 n—1
S== Y

1

2% 2, sin® (@r/n)’

& n=lsin® (mrk/n)

b

k+l=n+2, k#]|,

R, =
T2 Soin? (mr/n)
v "=lsin (wrk/n) sin (ar(k—2)/n)
Tk: 8+1 SN
2°70 2 sin” (7rr/n)
R +
m(n,2)=—P1ES)
y(2n—-R,-S)
2_
m(n, k)=—M——,
Y(Rc+ R, +2T,)
T.—R
m(n, k)=u, 2k=n+2.
2y

In the Kirchhoff problem, § =0, the formulas for m simplify to
m(n,2)=%n-1)%
m(n, k) =3{(k—=2)(n—k)—n+1},

1311

k=34, --,(n+2)/2.

Appendix B. Critical masses and subdeterminants.

Kirchhoft n+1 body problem

n k m(n, k) d(n, k) m(n, k) d(n, k)

3 2 1.000E + 00 — 7.705E - 01 —_

4 2 2.250E+00 — 2.380E+00 e

4 3 —5.000E-01 2.000E+00 —2.500E - 01 1.500E + 00
5 2 4.000E+ 00 — 6.478E+ 00 —

5 3 —5.000E -01 1.200E+01 -2.442E —-01 1.144E+01
6 2 6.250E+ 00 — 2.091E+01 —

6 3 —5.000E-01 1.600E+01 —2.201E-01 1.577E+01
6 4 —2.500E - 01 1.000E+ 00 5.983E—-03 —3.590E - 02
7 2 9.000E + 00 — —6.433E+02 —

7 3 —5.000E —01 2.000E+01 —1.814E-01 1.800E+ 01
7 4 0.0 0.0 3.242E-01 —-4.342E+01
8 2 1.225E+01 — —-3.793E+01 —

8 3 —5.000E —01 2.400E+01 —1.306E - 01 1.686E + 01
8 4 2.500E-01 —1.500E+01 6.980E —01 -1.301E+02
8 5 5.000E — 01 —2.000E +00 9.963E - 01 —5.978E+00
9 2 1.600E+01 — —2.544E+01 —

9 3 —5.000E-01 2.800E+01 —6.937E—-02 1.116E+01
9 4 5.000E—01 —3.600E+01 1.119E+00 —2.725E+02
9 5 1.000E + 00 —8.000E+01 1.774E+ 00 —5.133E+02
10 2 2.025E+01 e —2.172E+01 —

10 3 —-5.000E - 01 3.200E+01 1.064E —03 —2.068E —01
10 4 7.500E — 01 —-6.300E+01 1.581E+00 —4.819E+02
10 5 1.500E +00 —1.440E+02 2.641E+00 ~1.002E+03
10 6 1.750E+ 00 —7.000E + 00 3.012E+00 -1.807E+01
11 2 2.500E+01 — -2.027E+01 —
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Appendix B. Critical masses and subdeterminants (cont.)

11 3 ~5.000E —01 3.600E+01 7.969E — 02 —1.830E+01
11 4 1.000E+00 —9.600E+01 2.080E+00 —7.687E+02
11 5 2.000E+00 —2.240E+02 3.588E+00 —1.708E+03
11 6 2.500E+ 00 —3.000E+02 4.391E+00 —2.340E+03
12 2 3.025E+01 — —1.974E+01 —

12 3 —5.000E -01 4.000E+01 1.657E—01 -4.411E+01
12 4 1.250E+00 —1.350E+02 2.611E+00 —1.143E+03
12 5 2.500E +00 —3.200E+02 4.605E+00 —2.665E+03
12 6 3.250E+00 —4.550E +02 5.894E+00 —3.949E+03
12 7 3.500E +00 —1.400E+01 6.338E+00 —3.803E+01

Appendix C. Coefficients.
Kirchhoft n+1 body problem

n k d p a B p a B

3 2 3 1 —1.200E+00 1.717E+01 1 —1.921E+00 1.562E+ 01
4 2 4 2 —7.843E-01 —4.919E+01 2 —9.756E — 01 —5.327E+01
4 3 3 1 8.000E +00 0 — — —_

5 2 5 2 -5769E-01  5858E+00 2 -3773E-01  LI32E+01
5 3 5 2 1.000E+01 —7.500E + 00 — — —

6 2 6 2 —4.541E-01 5.456E +00 2 —7.906E — 02 8.977E+00
6 3 3 1 1.200E+01 -1.697E+01 — — —

6 4 4 2 1.200E+01 —4.500E+ 01 2 1.800E+01 —7.850E+01
7 2 7 2 —3.733E-01 5.312E+00 — — —

7 3 7 2 1.400E+01 —2.100E+02 — — —

7 4 7 ? 1.400E +01 2? 2 2.098E+01 —1.169E+02
8 2 8 2 -3.165E-01 5.298E+00 — — —

8 3 4 2 1.600E+01 —3.840E+02 — — —

8 4 8 2 1.600E + 01 9.000E+01 2 2.393E+01 -1.930E+02
8 5 4 2 1.600E + 01 —2.560E+02 2 2.400E+01 —5.497E+02
9 2 9 2 —2.744E - 01 5.360E+00 — — —

9 3 9 2 1.800E+01 —2.100E+02 — — —

9 4 3 1 1.800E +01 ~5.728E+01 1 2.688E+01 —6.443E+01
9 5 9 2 1.800E+01 —2.550E+02 2 2.699E+01 —6.070E+02
10 2 10 2 —2.420E-01 5.469E+00 — — —
10 3 5 2 2.000E+01 —2.400E +02 2 2.930E+01 —2.550E+02
10 4 10 2 2.000E+01 -1.102E+03 2 2.982E+01 —1.325E+03
10 5 10 2 2.000E+01 —4.800E +02 2 2.997E+01 —1.685E+03
10 6 4 2 2.000E+01 —8.750E+02 2 3.000E+01 —2.253E+03
11 2 11 2 —2.164E—01 5.609E+00 — — —
11 3 11 2 2.200E+01 -2.772E+02 2 3.217E+01 —3.099E+02
11 4 11 2 2.200E+01 —9.900E +02 2 3.276E+01 —1.479E+03
11 5 11 4 2.200E+01 3.831E+04 2 3.294E+01 —2.005E+03
11 6 11 2 2.200E+01 ~7.425E+02 2 3.299E+01 -2.312E+03
12 2 12 2 —1.956E—01 5.772E+00 — — —

12 3 6 2 2.400E+01 -3.200E+02 2 3.504E+01 —3.739E+02
12 4 4 2 2.400E+01 —1.836E+03 2 3.570E+01 —2.628E+03
12 5 3 1 2.400E+01 —1.35TE+02 1 3.591E+01 =1.759E+02
12 6 12 2 2.400E+01 -1.925E+03 2 3.598E+01 —6.147E+03
12 7 4 2 2.400E+01 —2.304E+03 2 3.600E +01 —6.947E+03
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Appendix D. The potential of the hexagon configuration. Consider the one-
parameter perturbation of the hexagon configuration (with no particle at the centroid)
in the n-body problem given by

qo=(1+¢£)(2,0), g:=v(1-2e-€%)(1,V3),
g,=(1+¢)(—1,V3), g:=v(1-2e —%)(-2,0),
ga=01+e)(=1,-V3),  gs=v(1-2e—ed)(1,-3).

This perturbation has been chosen to keep the moment of inertia, I, fixed. From the
symmetry,

6 3 3 3
U= + + +
”‘Io—‘h” "‘10“12" ”‘h“‘h" "‘10_113"

3
=3{1-¢&’+-- -}+‘/7§{1—e+52+- . ~}+§{1+8+282+- . '}+%{1+%82+' . }

= (%+\/§) —%(7—4\/§)sz+- >

~5.48—-0.0269¢%+- - - .

Thus U initially decreases along this family and so the hexagon configuration is not
a minimum of the (self-) potential.
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