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SCALING HAMILTONIAN SYSTEMS*

K. R. MEYERt

Abstract. This paper presents a detailed discussion of scaling techniques for Hamiltonian systems of
equations. These scaling techniques are used to introduce small parameters into various systems of equations
in order to simplify the proofs of the existence of periodic solutions. The discussion proceeds through a series
of increasingly more complex examples taken from celestial mechanics. In particular, simple proofs are given
for Lyapunov’s center theorem, the continuation theorem of Hadjidemetriou, and several theorems on
periodic solutions by the author.

1. Introduction. Perturbation analysts often argue over which general method is
best--the methods of averaging, Lie transformations, two-timing, Lyapunov-Schmidt,
etc., all have their strong advocates. However, no matter what perturbation technique is
used, an important, fundamental and often overlooked question is the correct selection
of the equations of the first approximation. In some cases it is so obvious what the first
approximation is that there really is no choice, but in other cases the choice can
drastically affect all subsequent analysis. In celestial mechanics the equations of the
first approximation are called the main problem, and I shall use this term since it
emphasizes the importance of these equations.

A historic example where the choice of the main problem had important conse-
quences is found in lunar theory. Until the works of Hill were completely understood,
researchers looking for a good approximate solution to the equations of celestial
mechanics which described the motion of the moon used as their main problem two
decoupled Kepler problems. The two Kepler problems were the equations of motion of
the earth and moon about their combined center of mass, and the equations of motion
describing the sun and the center of mass of the earth-moon system. Coupling terms
were neglected in the main problem. Various perturbation techniques were used, but
the approximate solutions failed to agree with the observational data over long periods
of time. In a series of papers [5], Hill redefined the main problem of lunar theory by
taking into account the fact that the motion of the moon is strongly affected by the sun.
Hill’s main problem took into account more terms, and as a result the perturbations
were smaller and the series converged better numerically. In fact, for many years lunar
ephemerides were computed from series developed by Brown, who used Hill’s main
problem. Even today searchers for more accurate lunar theories use Hill’s main prob-
lem.

In this survey paper, I want to discuss a general procedure for deciding the correct
definition of the main problem in various situations in celestial mechanics. The exam-
ples are taken from my own work and therefore consist mainly of problems of finding
periodic solutions in Hamiltonian formalism.

The method present is certainly not newmin fact it is so old that I have no idea of
when it originated. The method is also not obscuremin fact almost all perturbation
techniques are based either explicitly or implicitly on this method. The, method is
simply that of scaling variables. Since the problems discussed here are written in
Hamiltonian formalism, the scaling will be done so that the resulting equations are
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again Hamiltonian and so the scaling is symplectic (canonical). Therefore I call the
method symplectic scaling. There have been other discussions of scaling as a general
procedure in applied mathematics; see for example [16].

Scaling is often presented as a triviality. Sometimes an author starts his discussion
with a single statement like: "scale by x--, ex and y- ey" and then proceeds with page
upon page of detailed calculation. Usually there is no discussion of why the equations
were scaled nor whether this scaling is the best. in fact, I have seen many papers that
could be greatly simplified if the author had used a different scaling (say x- ex and
y-., e2y). The examples given below illustrate how to obtain the correct scaling for a
particular problem in celestial mechanics.

2. Review of transformation theory, i shall deal exclusively with autonomous
Hamiltonian systems. Even though this paper attempts to be reasonably self-contained,
I assume that the reader has some background in differential equations and Hamilto-
nian mechanics. The excellent introductory book by Pollard [13] should be more than
adequate. I shall not bog myself down with topological or smoothness questions, since
the results given below are local in nature. All functions and vector fields will be
assumed to be C on some open set in R2 or even defined on all of R 2. Also vectors
will be column vectors unless otherwise stated, but will be written as row vectors in the
text for typographical reasons.

If qb" R/--, g k and y (x) then i)q/Ox or Oy/Ox will denote the k Jacobian
matrix. Thus if H" R2--,R, xR2 then i)H/i)x is a row vector. Define XTH- XZH=
(iH/ix)r where the superscript T denotes the transpose.

An autonomous Hamiltonian system of n degrees of freedom in g is a system of
ordinary differential equations of the form

(2.1) 2=JvH(x)
where H" IR " [R , x ", "=d/dt and J is the 2n X 2n constant matrix

-1 0

where 0 and I are the n n zero and identity matrices. The independent variable will
be called time, the function/-/, the Hamiltonian and (2.1), the equations of motion. If
x (q,p) where q,p N" then the equations of motion take the classical form

(2.2) g/=-, p= q"

Thus there is a well-defined prescription for obtaining the equations of motion
from the Hamiltonian. This prescription is not invariant under all changes of variables.
That is, if one changes variables in both the equations of motion and the Hamiltonian,
then the new equations of motion may not be obtained from the new Hamiltonian by
the prescription given in (2.1). Those changes of variables which preserve this prescrip-
tion are known as sympleetie or canonical. There is a vast literature on the subject of
symplectic changes of variables, but fortunately only one basic fact will be needed for
the subsequent discussion. The texts by Pollard [13], Wintner [17] and Abraham and
Marsden [1] contain more details.

Consider the change of coordinates x-q(y) for (2.1). These equations become

(2.3) .,9=P-(y)JVxH(,(y))-P-l(y)J --x (,(y))
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where P(y) is the Jacobian O(y)/Ox. As noted above, these equations need not be in
Hamiltonian form; i.e., the right-hand side is not of the form J7eK(y) where K". However, if we assume that

(2.4) J=ITJTr

where # is a nonzero constant, then

0H} r-- T- IJ - =#JTr, -x =#J Ox Oy =JVy(#H((y))),

or

(2.5) .f,=J gryK( y )

where

(2.6) K(y)=#H((y)),

A change of variables x-(y) which satisfies (2.4) for all y and for some nonzero
constant # is called a symplectic transformation with multiplier #. What was just shown
is that these transformations preserve the Hamiltonian character of the equations and
in particular transform (2.1) to (2.5).

If # then the change of variables is simply called symplectic. Many elementary
texts consider only this case, but the added generality of having a # different from is
very important for scaling.

As an example, consider the problem of changing units in the N-body problem.
Let q,...,q be the position vectors with respect to a Newtonian frame of N point
masses moving in 3. Let Pl,’",Pv be the momentum vectors and m,...,m be
masses of these point masses. Then the Hamiltonian for the N-body problem is

N kmimj(2.7) H-
IIpII2

i=1 i <_i<j<_N Ilqi- qjll

where k is the universal gravitational constant. If x-(ql,...,q,p,...,p), then
x6s and the equations of motion for the N-body problem are (2.1).

Scaling and changing units are essentially the same thing. Let’s say for example
that the quantities in this problem are all measured in the CGS system. Then k 6.67
10 -8. If we wish to change the unit of length, then we set q= al, p-ap- where a is
the conversion factor (a- 100 cm/m if the new unit of length is meters). This change
of variables is symplectic with multiplier a-, and so the Hamiltonian becomes

N 2

(2.8) H= Ilffl____l k mimj

< a-S I1-11"2mi <i N

In this mixed system of units (MGS) the gravitational constant becomes k/a3= 6.67
10-4. In theoretical work it is convenient to use nonmetric units and to take a3= k so
that the gravitational constant is 1. We shall take k- in all subsequent discussions.

Since the bars over variables are not esthetic and are besides a lexicographical
nuisance, it will be convenient to drop them in all subsequent discussions. The opera-
tion of first changing variables by qi=oti, p-aff and then dropping the bars is
denoted by qaq,pap. It should be carefully noted that this notation implies a
change of variables and is only used to limit the proliferation of symbols.



880 K.R. MEYER

Sometimes it is necessary to change the independent variable also. If t=flr,
where/3 is a constant, then (2.1) becomes

(2.9) x’=JVxK(x)
where ’= d/d’r and K-fill. Thus scaling time is equivalent to multiplying the Hamilto-
nian by a factor. In the scaling notation fit and Hfill.

3. The noncritical case. Since the main application of scaling to be discussed in
this paper is to establish the existence of periodic solutions, I shall summarize some of
the known elementary results. Let q(t,,) be the solution of the Hamiltonian system

(3.1)
which satisfies q(0,,)= where , is a real parameter. Since (3.1) is autonomous, a
necessary and sufficient condition for a particular solution q,(t, 0,0) to be T-periodic
(T>0) is

(3.2) q(T, 0, ,0)-- 0

This is easily proved by observing that both q(t,0,0) and q(t+ T,60,o) are both
solutions of (3.1) and that (3.2) implies that both these solutions satisfy the same initial
condition. Thus the uniqueness theorem for ordinary differential equations assures that
the two solutions are identical.

The necessary and sufficient condition (3.2) is interesting since it shows that the
existence of periodic solutions of a differential equation is equivalent to solution of a
system of (nondifferential) equations. In theory, at least, only finite dimensional meth-
ods could be used to establish the existence of periodic solutions. This is certainly not
the case when we are trying to establish the existence of almost periodic solutions,
invariant manifolds, etc. For these problems infinite dimensional methods are essential.

One approach to solving (3.2) is the use of the implicit function theorem. If
(T, 0,0) satisfies (3.2) then the implicit function theorem would give nearby solutions,
provided the Jacobian matrix

Oq (T, o)_I(3.3) 0-
were nonsingular or equivalently that the Jacobian matrix

(3.4)

did not have the eigenvalue + 1. The eigenvalues of .(3.4) are so important in the study
of periodic solutions that they are named the characteristic multipliers (or simply
multipliers) of the periodic solution. Unfortunately, + is always a multiplier of a
periodic solution of an autonomous system. Even worse, since (3.2) admits H as a first
integral, the algebraic multiplicity of / as a multiplier is greater than or equal to 2. In
the class of nonautonomous periodic equations, the usual case is that a periodic
solution does not have the multiplier + 1, and so this is usually called the noncritical
case. In the class of autonomous equations, the usual case is that a periodic solution has
the characteristic multiplier + with multiplicity precisely + [7], and so for autono-
mous systems this is the noncritical case. In the case of autonomous Hamiltonian
systems, the usual case is that a periodic solution has the characteristic multiplier /
with algebraic multiplicity preciselyequal to 2, and so for such systems this is the usual
case 15].
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In each of the cases listed above we have defined a noncritical case for each choice
of our universe of discourse. The reason I call these the noncritical cases is that for each
of these definitions of the noncritical case there is a theorem which states that in the
noncritical case a small perturbation within the universe of discourse causes a slight
perturbation in the periodic solution. Moreover, each of these theorems admits an
elementary proof based on the implicit function theorem. The most satisfying discus-
sion of these theorems is contained in Poincar6 [14], but a clear, elementary discussion
in modern notation can be found in Deprit and Henrard [2].

In the autonomous Hamiltonian case the precise statement of the theorem alluded
to above is"

THEOREM 3.1. Let g’, k-O,l,.2,’",H:2ng be smooth and let
q(t,l,) be the solution of (3.1) so that q(0,,)--. Assume that (T,0,0), T>0,
satisfies

and

ii) (T, ,0)_i } -2n-2rank -Then the periodic solution q,( t, o,o) is smoothly embedded in a(k+ 2)-parameter family
ofperiodic solutions. That is, there are a neighborhood 0 ofo in R ’, a neighborhood P of
(0, O) in g -, and smooth maps ’" P 0 g and " P 0 g such that ’(0, O, o) T,
(0,0,0)-0, and q(t,(a, fl,,), ,) is a z(a, fl,,)-periodic solution of (3.1) where
(a, fl)P andS,

Note that even when the equation does not depend on a parameter (i.e. k-0), the
periodic solution is still embedded in a 2-parameter family of periodic solutions. These
two additional parameters can be chosen as the value of the integral H on the periodic
solution and the time from a well-chosen epoch along the periodic solution. In this case
these periodic solutions locally fill a cylinder in 2n; see [1, Fig. 8.2-1]. Again we refer
the reader to [2] for a simple clean proof of this theorem.

The remainder of this section is devoted to illustrating the method of symplectic
scaling as a tool for reducing a given system to one to which the above theorem applies.
Consider first the famous Lyapunov center theorem by glancing at the proofs given in
[4], [6], [8]. In this theorem we assume that the equation (3.1) has an equilibrium point,
say at x- 0, and then expand the right-hand side in a Taylor series to get

(3.5) Yc:Ax+f( x )
where f(0)-0, Of(O)/19x-O and A is a 2n2n constant matrix. The Hamiltonian
becomes

(3.6) H(x 1/2xrSx + K(x )
where S is the Hessian of H at x--0, A--JS, K and the first and second partials of K
vanish at x-0. By setting f-0 in (3.5) we obtain the linearization of the equations
about the equilibrium point--an obvious candidate for the main problem. We would
expect or at least .hope that the solutions of the linear system are nearly the same as the
solutions of the full equation when x is small, but how can we demonstrate this
connection? To obtain a measure of x being small, scale by x--, ex. This scaling is
symplectic of order e- and so (3.5) becomes

(3.7) Yc=Ax + O( e)
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and the Hamiltonian becomes

(3.8) H(x) = 1/2xrSx + O( e).
When e=0, (3.7) becomes linear and the general solution is q,(t, li, O)=(expAt)li.

In order to apply the theorem above, this system must have a periodic solution.
Therefore let the eigenvalues of A be ,,h2,-..,h2, and assume A +i0, A2 = -i0,
o>0. Let rl and be the corresponding eigenvectors so Art=ior and (expAt)rl=
(exp iot)rl. Thus Re(expAt)l (expAt)o is a T= 2r/0 periodic solution. The Jacobian
matrix (3.4) becomes in this case

(3.9) -- (T,,0,0) (exp 2rr A)
which has eigenvalues exp-+-2rri 1, exp(,_2rr/0),.- .,exp(,2,2rr/0 ). Thus for the
second condition of the theorem to hold it must be assumed that

0mod2rri fork-2,...,2n,

or

(3 11) X’ is not an integer for k 2,. ,2n
hi

If this condition applies, then (3.7) has a 3-parameter family of periodic solutions which
are of the form (expAt)o+ O(e). The original equation (3.5) has a two-parameter
family of periodic solutions of the form e(expAt)lio+ O(e2). It may seem that we have
proved that (3.5) has a 3-parameter family also, but this equation is independent of e,
and the theorem given above gives precisely a k + 2 manifold of periodic solutions
whose period is close to T. Thus one of the parameters is redundant. That proves
Lyapunov’s center theorem!

As a second example, consider the relationship between the full three-body prob-
lem and the restricted three-body problem. In the traditional derivation of the re-
stricted three-body problem, one is asked to consider the motion of an infinitesimally
small particle moving in the plane under the influence of the gravitational attraction of
two finite particles which revolve around each other on a circular orbit of the Kepler
problem. Although this description is picturesque, it hardly clarifies the relationship
between the restricted three-body problem and the full problem. Consider the planar
N-body problem where N 2 or 3 written in rotating coordinates [1 ]. The Hamiltonian
is

N

(3.12) Hu- IIyII2-2 xTi KYi 2
rnim

l<-i<j<-N Ilxi-x II

where m is the mass, x,. is the position and y is the momentum of the th particle in a
rotating coordinate system and K=(_ o ). In order to consider the case when one
particle is small, set m --ea where a is a positive number to be determined later and e

will be treated as a small parameter (we are not scaling at this point!). Making this
substitution in (3.12) with N-3 and rewriting yields

(3 13) n IIy3Ile z eami
2e"

xKy3- " Ilxi" x31i / nz,
i=1
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Here the terms involving the third particle have been removed, leaving the Hamiltonian
of the two-body problem as a remainder. Since e is a small parameter which already
measures the smallness of one mass, we should attempt to make e also measure the
deviation of the motion of the first two particles from a circular orbit. That is e, or a
power of e, should measure not only the smallness of m3, but also how close the first
two particles come to a circular orbit. To accomplish this we must prepare the Hamilto-
nian H2 so that one variable represents the deviation from a circular orbit. Actually
part of this preparation has already been done, since in rotating coordinates a circular
orbit appears as an equilibrium solutions. Let Z=(x,x2,y,y2), so H2 is a function of
the 8-vector Z, and let Z*=(a,a2,b,.b2) be a critical point of H2, so VH2(Z*)=0.
(Later we shall give explicit values for the a’s and b’s, but for now it is enough to know
that they exist.) By Taylor’s theorem

(3.14) m_( z)- z*) +1/2( z- Z*)S(z- z*) + 0(11z- z*ll
where S is the Hessian of H2 evaluated at Z*. Since constant terms in the Hamiltonian
drop out when the equations of motion are formed, we shall ignore H2(Z*) by setting it
to zero. If the motion of the first two particles is nearly circular, then Z-Z* should be
small, so this suggests the scaling

(3.15) Z- Z* eaU

where U is a new variable and/3 is a positive number to be determined. So far we have
implemented the assumptions that the third mass is small, that the deviation of the
motion of the first two particles from a circular orbit is small, and that the smallness
relationships is in the form of a power law. a and fl have not been given yet, and so the
precise relationship between the two small quantities is not yet established. This is the
point at which symplectic scaling gives some guidance on how to proceed. Note first
that (3.15) is a symplectic change of the U variables with multiplier e-2t; however,
(3,15) is not a symplectic change of variables on the whole space since x and Y3 have
not been changed yet. The scaling (3.15) implies x =a +O(et) and x2=a2+O(e)
where a and a2 are the constant vectors defined above, so x and x2 are order zero in e.
Since we are not interested in the case when x is close to al or a 2 (the collision
problem) nor that when x is large (the case of a comet), we shall take x as order zero
in e also. Thus for a change of variables on the whole phase space to be symplectic, it is
necessary that Y3 e2t Thus we complete (3.15) with

(3.16) x3 (, Y3 - eztrl.
Using (3.14), (3.15) and (3.16) in (3.13) yields

(3.17)

In order to make the first and third terms in (3.17)just as important as the second and
fourth, it is necessary to have a-2/3. Setting/3- 1, a 2 gives a small integer solution
of this relation. To summarize: if m = ex then

(3.18) X3"*, y3e2rl, Z-Z*--’eU
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is a symplectic change of variables which reduces (3.13) to

(319) H3-{ Ilr/ll2
2 -lrKrl- I1- -USU/O(e)"

i:1

The quantity in the braces above is the Hamiltonian of the restricted three-body
problem if we take m +m2-- 1, m =/, m2-- 1-/, a-- (1 -/,0) and a2:(-/,0). The
quadratic term in U is simply the Hamiltonian of the linearization of the equations of
motion of the two-body problem about the circular solution. For e 0 the Hamiltonian
H is a sum of these two Hamiltonians, and so the equations of motion decouple. If
=(t), =if(t) is any solution of the restricted problem, then :(t), r/=+(t), U----0
is a solution of the equations of motion defined by (3.18) with e--0. Thus for bounded
times, there are solutions of the full three-body problem of the form --(t)+ O(e),
rl=+(t)+O(e) and U=O(e).

Looking at (3.18) we see that since Y3 is the momentum of the third particle and
m --e2, the variable r/ is really the velocity of the third particle. Thus all the new
quantities have been given physical meaning, and the relationship between the small
quantities has been established.

The problem defined by the Hamiltonian (3.18) is still degenerate due to the fact
that the original three-body problem admits symmetries and integrals. Specifically, the
Hamiltonian H is invariant under the full group of Euclidean motions of the plane and
admits linear and angular momentum as integrals. Holding these integrals fixed and
then identifying configurations which differ by a Euclidean motion only leads to a
Hamiltonian on a reduced space. The details of this reduction are unimportant for the
present discussion and are classical. It is enough to say that after this reduction is done
the Hamiltonian (3.19) becomes

(3.20) n3-( Ilr/ll2 2
mi } (r2 R2

2
-rg*/-

II-aill + + } +O(e)
i--I

where r and R are scalar variables. See [9] for a complete discussion of this reduction.
Thus if -(t), /-(t) is a r-periodic solution of the restricted problem with char-
acteristic multipliers 1, 1, ?, ?- , then -(t), r/- (t), r-R- 0 is a r-periodic
solution of the three-body problem defined by (3.20) with e-0 with characteristic
multipliers 1, 1, h, h-, exp/ir.- Thus if 4:1 and r0 mod 2rr, this represents a
nondegenerate r-periodic solution of the three-body problem defined by (3.20) with

Now the classical perturbation theorem applies to yield the theorem of Hadjide-
metriou [3], namely, that any nondegenerate periodic solution of the restricted problem
whose period is not a multiple of 2r can be continued into the full three-body problem.

There is another restricted three-body problem, known as Hill’s lunar equations,
which is derived under slightly different assumptions. The traditional description [5] of
this equation is even more picturesque then the description of the restricted problem.
One is asked to consider the motion of an infinitesimal body (the moon) which is
attracted to a finite body (the earth) which is fixed at the origin of a rotating coordinate
system. The coordinate system rotates so that the positive x-axis points to an infinite
body (the sun) which is infinitely far away. The ratio of the two infinite quantities [sic]
is taken so that the gravitational attraction of the sun on the moon is finite.

Briefly, I shall indicate how Hill’s lunar equations can be derived from the
three-body problem; for details see [12]. In this problem two masses m and m2 (the
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earth and moon) are small relative to the mass of the third (the sun). Also the distance
between the earth and moon is small relative to the distance between their center of
mass and the sun. The first assumption is easy to implement: simply set ml-e6/.l,
m2--e6/,2 and m3=/3. (Here I have fixed the exponents since I already worked out
what they should be.) In order to implement the second assumption, we must choose
coordinates so that one variable represents the distance between the two bodies. A
classical set of symplectic cordinates known as Jacobi coordinates has one coordinate
which represents the distance between two of the bodies and so is the logical choice
here. The Jacobi position vectors are uo, the position of the center of mass of the triple;
Ul, the position of particle 2 relative to particle 1; and u2, the position of particle 3
relative to the center of mass of particles and 2. The variables v0, 1)1 and v2 are the
corresponding momenta where v0 is the total linear momentum of the system. Making
the initial scaling

(3.21 ) v -.o E61)
1’ 1)2 "-’) 861)2

as in the previous example and fixing the center of mass at the origin, u0-0, and
ignoring the total linear momentum v0 leads to the following Hamiltonian for the full
three-body problem:

(3.22) H3--H’+H"+O(e6),

H,_IIvII 2

2M--- u"JV e61a’ P’
Ilull

H,,_ [Iv2[[ 2 12 02
2M2 -uJ1)2

Ilu2-v0ull Iluo+’lull"

Here M, M2, v0, v are all positive constants defined in terms of the original classes.
The only property needed here is v0 + , 1.

The Hamiltonian H’ contains only u and v, the variables of the earth-moon pair,
whereas the Hamiltonian H" contains cross terms. Since u is to be taken as a small
quantity later, rewrite H" as

(3.23) H"=H* + H**,

n,_llv2112
2M2

uJv2-2(1+1)Ilu211

H**
2(0 --1 ) 12 01

Ilu211 Iiu2- V0Ull Ilu04- VlUl

Now H* contains only U2 and v2, the variables describing the motion of the earth-moon
pair about the sun. Since this motion is assumed to be nearly circular, we set Z-(u2, v2)
and Z* (a, b) as before so that

(3.24) /4*(z) =/-/,(z*) +1/2(z- z*)s(z- z*) +....

Now the full set of physical assumptions can be affected by the following scaling:

(3.25)

(3.26)
Ul -oI2Ul 1) --o 1:21)

Z- Zo--, eU.
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Scaling (3.25) says that the distance between the earth and the moon is small, and
scaling (3.26) says that the earth-moon system moves about the sun in a nearly circular
orbit. This scaling is symplectic with multiplier e- and greatly simplifies the problem.
The Hamiltonian H** is not completely ignorable, though, so it must be expanded in a
series of Legendre polynomials, the details of which are not appropriate here.

The end result is that the Hamiltonian of the full three-body problem becomes,
under these assumptions,

(3.27) H3-{ ll’0ll2 2)}2 - rJn-11- +(3  2-11 ll UrSU+( 2)

where and r/ are essentially u and v (the variables describing the motion of the
earth-moon system) and U measures the deviation from a circular orbit of the motion
of the earth-moon system around the sun. The quantity in the braces in (3.27) is the
Hamiltonian for Hill’s lunar equations, and the last expression in parenthesis comes
from H**. As with the restricted problem, it is easy to prove that any nondegenerate
periodic solution of Hill’s lunar equation whose period is not a multiple of 2r can be
continued into the full three-body problem. See [12] for a complete account of this
derivation, including the details of the expansion of H** in Legendre polynomials.

4. The critical eases. Scaling is particularly useful in the critical cases, since it is
usually not obvious which terms in the Taylor expansion of the Hamiltonian are
important for the perturbation analysis. The correct scaling not only defines the main
problem, but also orders all the terms according to the strength of their influence on the
problem at hand. Obviously, since the critical case is the complement of a nice case,
further subdivision is necessary. Also, there will always be a system which is so
degenerate that it does not fall into any of the previously defined subcases. This section
defines what I consider to be the first critical subcase for Hamiltonian systems. This
subcase is defined as all systems which can be analyzed by Lemma 4.1. The only new
tool necessary to prove this lemma is the variation of constants formula, and so the
proof is not much more difficult than the proof of Theorem 3.1.

The lemma deals with a Hamiltonian system of the form

(4.1) = VH(z,e)=Az+ef(z,e)
where zR2, eR, A is a 2n2n nonsingular matrix such that expAT=I for some
T>0, and f is a smooth function. Since expAT= I, all solutions of (4.1) when e=0 are
T-periodic and all their characteristic multipliers are + 1. Thus when e=0 the system
fails to satisfy the hypotheses of the perturbation theorem of the previous section. In
order to restrict the level of degeneracy of this system, some condition must be placed
on the higher order terms represented by f.

Let fl be a real parameter and define

(4.2) B( fl, ) flA+fore-’f( eA’, O) ds.

The function B (sometimes called the describing function) is defined entirely in terms
of the known quantities A and f and does not depend on the unknown solutions of
(4.1). The first critical subcase is defined by:

LEMMA 4.1. If there exist smooth functions (a), fl(a), where a is real and (a) ,
fl( a) , such that

i) B((a),(a))=O,
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0B 0B )ii) rank -0-if’ 0- ((a),’(a))-2n-1

for ]al_<a0, then there exists a smooth 2-parameter family of periodic solutions of (4.2),
denoted by q( t, a, e), such that

iii) q(t,a,e) is T(a,e) periodic for e small and

iv) (t, a, 0)= (expAt );(a),
v) r+ + ).

The details of the proof can be found in [11]. The essential step in the proof is a
simple calculation of the general solution of (4.2). Let k(t, ’0, e) be the solution of (4.1)
which satisfies k(0,’0,e)="o and seek the periodic solutions whose period is
From the variation of constants formula

+
so the problem of finding an initial condition leading to a periodic solution is just
solving

One simply applies the implicit function theorem to this system of 2n equations to
solve 2n- of the equations and then uses the integral H to show that the last equation
is also satisfied.

As the first example of how scaling can be used to reduce a problem to a system
where this lemma applies, consider the restricted three-body problem where the small
mass is far from the primaries. The Hamiltonian of the restricted three-body problem is

n_llll 2 2

(4.3) 2 il ’a il
where the notation is the same as in (3.19). The equations of motion are

2

(4.4) -K+u, il-K+ m’(ai-)
[[ai-!ll

In order to study this problem for large , scale by --, e-: and er/. This is a
symplectic scaling with multiplier e, so the Hamiltonian becomes

(4.5) H__lrKrl+e3{l,rll.2 }2 I111 + O(

and the equations of motion become

(4.6) =K+e3rl+O(eS),
To lowest order in e, these equations are linear and the general solution is (exp Kt)o,

(exp Kt)o. So if z (1, rl), A diag(K,K ), the system (4.6) is of the form (4.1) with
e3 replacing e. Since exp Kt is the rotation matrix by an angle for small e, the solutions
are nearly circular with periods near 2rr. Since rotating coordinates are being used, this
means that near infinity the infinitesimal body mainly feels the effect of the Coriolis
and centrifugal forces, and in a fixed frame it would be nearly at rest. The coefficient of
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the e3-term is the Hamiltonian of the Kepler problem where the central body has mass
(we have assumed that the sum of the masses of the primaries is 1). This can be

interpreted as meaning that the next most important force felt by the infinitesimal body
is the attraction of a fixed body at the center of. mass of the two primaries whose mass
is equal to the sum of the masses of the two primaries.

The function B in (4.2) is easy to compute. Setting ’-(, /), B-0 becomes

(4.7) /3K+2r/-0, /3Kr/-2rrll 0.

It is not difficult to analyze these equations and show that Lemma 4.1 applies. (The
details are found in [10].) The main conclusion of this analysis is that the restricted
three-body problem has two families of nearly circular orbits of large radius.

The last example illustrates the proper method of scaling when one encounters
nonelementary divisors in a matrix. The restricted three-body problem always has two
equilibrium points which are at the vertices of an equilateral triangle, one of whose
sides is the line segment joining the two primaries. The linearized equations about this
equilibrium point consist of two harmonic oscillators when the mass ratio is small, and
form a complex saddle when the mass ratio is near 1/2. There is one specific value of the
mass ratio where the linearized equation has two equal pairs of imaginary eigenvalues
and the Jordan canonical form for the coefficient matrix has off-diagonal elements.
When restricting to symplectic similarity transformations, the canonical form for the
linearized system is

0i 0 0

(4.8) 0 0i 0 0
0 0 -0i 0
0 0 -1 -oi

with certain reality conditions.
After some preparation the Hamiltonian is of the form

(4.9) H--io(ZlZ3--Pz2z4)+z2z3-+-(alzz+a2z(z3z4+a3z21z)-P
where the z’s are complex coordinates satisfying the reality conditions- -z4, 2- Z3"
The best scaling for this problem will push the off-diagonal terms in the matrix into the
higher order terms. Introducing a small parameter e and scaling by

(4.10) z eZl, Z2 eZz2, Z eZZ3, Z4 EZ4

accomplishes this task. The scaling in (4.10) is symplectic with multiplier e-3, and so
the Hamiltonian becomes

(4.11) H= i(zlZ -- z2g4) + (z,2z + a3zz +....

The equations of motion implied by (4.11) are in the form (4.1), and the function B
in (4.2) is easy to compute and analyze. The proper scaling in this problem has
simplified not only the zeroth order terms but the first order terms as well, and this
greatly simplifies the analysis. Applying the lemma to this problem establishes the
existence of two families of periodic solution which emanate from this equilibrium
point for the restricted three-body problem. The reader is referred to [11] where this
problem and a more interesting one are discussed in detail.

There are many other interesting problems where scaling can greatly ease the
analysis. The examples given here were chosen to illustrate a variety of different
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situations where scaling can help, without getting us too deeply involved in the techni-
cal aspects of the problem. The main point of this survey is to demonstrate how the
correct scaling is obtained when suddenly the equations are greatly simplified, and
suddenly (but after the fact) it is obvious why you should use that scaling.

REFERENCES

[1] R. ABRAHAM AND J. MARSDEN, Foundations of Mechanics, 2nd ed., Benjamin/Cummings, Reading, MA,
1978.

[2] A. DEPRIT AND J. HENRARD, A manifold of periodic solutions, Adv. Astron. Astrophys., 6 (1968), pp.
12 ff.

[3] J. D. HADJIDEMETRIOU, The continuation of periodic orbits from the restricted to the general three-body
problem, Celestial Mech., 12 (1975), pp. 155-174.

[4] J. K. HALE, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.
[5] G. W. HILL, Researches in the lunar theory, Amer. J. Math., (1878), pp. 5-26, 129-147, 245-260.
[6] A. KELLY, On the Liapunov sub-center manifold, J. Math. Anal. Appl., 18 (1967), pp. 472-478.
[7] I. KUPKA, Contribution ?t la thkorie des champs gnriques, Contribution to Diff. Eqs., 2 (1963), pp.

457-484.
[8] V. V. NEMYTSKII AND V. V. STEPANOV, Qualitative Theory of Differential Equations, Princeton Univ.

Press, Princeton, NJ, 1960.
[9] K. R. MEYER, Periodic solutions of the N-body problem, J. Differential Equations, 39 (1981), pp. 2-38.

[10] Periodic orbits near infinity in the restricted N-body problem, Celestial Mech., 23 (1981), pp.
69-81.

[ll] K. R. MEYER AND D. S. SCHMIDT, Periodic orbits near L4 for mass ratios near the critical mass ratio of
Routh, Celestial Mech., 4 (1971), pp. 99-109.

[l 2] Hill’s lunar equations and the three-body problem, J. Differential Equations, 44 (1982), pp. l-10.
[13] H. POLLARD, Mathematical Introduction to Celestial Mechanics, Prentice-Hall, Englewood Cliffs, NJ,

1966.
[14] H. POINCARE, Les mthodes nouvelles de la mcanique celeste, Gauthier-Villar, Paris, 1892.
15] C. ROBINSON, Genericproperties of conservative systems I, II, Amer. J. Math., 92, pp. 562-603,897-906.

[16] L. SEt3EL, Simplification and scaling, SIAM Rev., 14 (1972), pp. 547-571.
[17] A. WINTNER, The Analytic Foundations of Celestial Mechanics, Princeton Univ. Press, Princeton NJ,

1941.


