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ON THE METHOD OF AVERAGING, INTEGRAL MANIFOLDS
AND SYSTEMS WITH SYMMETRY*

P. R. SETHNAY, K. R. MEYER} AND A. K. BAJAJ§

Abstract. A unified treatment and generalizations of some of the more important results associated
with the method of averaging are given. The generalizations make the results applicable to a larger class of
problems. Furthermore, the method of proof is simpler than what is traditional in this field. Examples
demonstrating the use of basic results in applications are given.

Key words. method of averaging, integral manifolds, symmetry

1. Introduction. We present here a unified treatment of some of the more important
results associated with the method of averaging and in addition generalize them to the
case of systems with symmetry. Our results, furthermore, are not restricted to systems
that are almost periodic in time and therefore are applicable to a larger class of systems
as they occur in applications.

Our approach is mathematically simpler than what is traditional and therefore
perhaps more accessible to individuals in the applied fields. This simplicity is attained,
however, at a price. We are here content to obtain estimates on size and location of
certain invariant sets of the dynamical systems while the traditional results, in many
cases, give a description of the motion in the invariant set.

The results given here generalize those by Sethna in [1] to the case of invariant
manifolds.

Consider the system

(1.1) u=Au+¢eh(t u,e)

where ue R", A is nXn constant matrix, £ is a real parameter and the function
h:RxR" x[0, eg] > R" is smooth, the properties of which will be discussed below.
The parameter ¢ is often introduced by “‘scaling” the dependent variable in some
appropriate manner. The matrix A will be assumed to have eigenvalues on the pure
imaginary axis and all eigenvalues are assumed to have simple elementary divisors.
Thus the system is “‘critical” in the sense of Hale [2]. The restriction that all the
eigenvalues lie on the pure imaginary axis is in fact not a restriction if we regard u as
on the center manifold [3]. The method of averaging can be applied to classes of
problems distinct from those represented by (1.1) where the parameter € does not arise
from “scaling’ and thus the results then are not restricted to local neighborhoods of
the state space [4]. Our results will apply also to such problems.

We first reduce (1.1) to “standard form.” Let u=e*'x where xe R". Then by
hypothesis e~*' exists for all ¢t and x satisfies

(1.2) %x=¢ef(t, x,e) where f(1, x, £)=e “h(t, e*'x, ¢).
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The function f is assumed to be a smooth vector valued function of its variables
and in the standard results f is assumed to be almost periodic in t. In this introduction,
for simplicity, we will assume f to be merely a Fourier polynomial in .

For system (1.2), the standard results in the simplest case are based on the following
change of variables [S].

Let
(1.3) x=¢+ed(t, §)
where £€ R" and
(1.4) o(t, §)EJ’ [f(s, & 0) —fo(€)] ds
where

1 T
(1.5) Jo(€) = lim T J f(t,£0) dr.
00 0

Substituting (1.3) into (1.2), we have

(1.6) <I+8z—(§)é=sﬁ>(§)+8[f(t,§+€¢, e)—f(1,£0)]

where we have eliminated d¢/4dt by using (1.4) and where I is the n X n identity matrix.

By fixing a large radius R, the matrix 9¢/6¢ is bounded for all |£|=R and so
(I+£3¢/3¢) has an inverse for |¢/=R and |e|= &, for some &,>0. Moreover, this
inverse is of the form I + e W (t, ¢ £) where ¥ is uniformly bounded for |¢|= R, || = &,.
We wish to investigate the solutions of these equations near the zeros of f,. Let the
set of zeros of f, be denoted by M and assume that M is closed and bounded. Thus
the radius R should be taken so large so that M lies inside the sphere of radius R
and this choice of R fixes &,.

Equations (1.6) can then be written as

(1.7) E=cfy(&)+e%§(1, & €)
where
(1.8) E=V(t,&e)fo(&)+e '[f (1, E+ed, £)—f(1, £ £)]+ O(e).

From (1.8) we see that g is smooth and uniformly bounded for all ¢, |¢£|= R and |&| = &,.
The “‘averaged system” corresponding to (1.2) is defined to be the autonomous
system

(1.9) E=efo(&)

and the standard results for the method of averaging give information about the
solutions of (1.2) based on the properties of solutions of (1.9).

For results. valid for all ¢, i.e. for what are called “steady state” solutions in
applications, the simplest result is as follows. It is assumed that (1.9) has a constant
solution £° and that the matrix df,(£°)/9¢ has eigenvalues with nonzero real parts;
then it is shown that there exists an £* such that for 0 < e < &*, there exists a solution
x(t, &) of (1.2) which is almost periodic in ¢ (if f is almost periodic in ¢) such that
x(1,€)> £° as e > 0 and x(t, £) has the same stability properties as £°. The results given
in this work are generalizations of those in [1]. The difference in the nature of the
standard result and those obtained here can now be explained in this simple case.
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Results in [1] differ from the above standard result in that in [1] f is assumed, with
some restrictions, to be merely bounded by ¢ > ¢, and the result given proves that there
exists an £*, such that for e, 0<e <&* there is a positively invariant set for (1.2) in
a small neighborhood of £° if the eigenvalues of af,(£°)/9¢ have negative real parts
and that some solution of (1.2) leaves a small neighborhood of £° if 3fy(£°)/d¢ has at
least one eigenvalue with positive real part. In each case the neighborhood shrinks to
&% as £-0.

The crucial and limiting condition in all these results is the condition on the
eigenvalues of the matrix 9f,(£°)/0¢. In many instances the constant solutions of (1.9)
are not isolated but form invariant sets, usually surfaces, that are subsets of R".

Consider for example the van der Pol equation
(1.10) = el

U= —wu;+ (1 —u)u,.

The principal matrix solution for £ =0 is

(111) At [sin wt  cos wt]
. e’ = .
Cos wt —sin wt

and the transformation u = (u,, u,) = e*'x where x = (x,, x,) leads to

% =e(1—u?)u, cos wt,
(1.12) : v
X% =¢e(1—u?)u, sin wt.

Now if we introduce the transformation x - ¢ as in (1.3), system (1.12) reduces to

£

: +
§1=‘2'(1 £ §2>§1+€ gt &, &, 8),
(1.13)

€

éz=5<1 £ fz)§2+s &t &, &6, ¢)

with g as in (1.8). The averaged system is the same as (1.13) with g, =g, =0. The
constant solutions of the averaged system are solutions of
§2+ 2
61_( l 462 &
(1.14) (&)= =0.

§2 <§1+§2>§2

The solution £°= (0, 0) is isolated and the corresponding variational equation has
posmve real eigenvalues. On the other hand (1.14) has the family of solutions (fl
£ ) 4, each of which has a zero elgenvalue This can be seen as follows. Introduce
the parameter 6 with £} =2 cos 6, £3=2sin 6. Then

afo(£°) &’ _1 [— v —5?53] ( ~25sin 9) ~
ot do 20 88 &7 2cos0)

Thus any solution on the circle £ "+ §2 =4 has a zero eigenvalue and the corresponding
eigenvector d¢°/d# is tangent to the circle.

Such behavior can occur on tori of any dimension less than n and the standard
results of the method of averaging treat such problems by introducing suitable polar
coordinates in the formulation of the problem, so that the original system in standard
form is periodic in a vector variable 6. Such results are discussed at length in [6].
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We wish to demonstrate below that analogous behavior also occurs in systems
with symmetry. Suppose the system (1.1) with u€ E", an n-dimensional Euclidian
space, has k parameter symmetry, i.e. there exists an n Xn nonsingular matrix S(9),
0 € R such that S(0) =1, 8S(0)/86 #0 and is C' for all 6 R* and

S(6)A=AS(6),
S(0)h(t,u, )= h(t, S(6)u, )

(1.15)

forallue E", te R,0< & = &,, 0 € R". Although our interest is in systems with symmetry,
our analysis will depend on the properties (1.15) only and not explicitly on the group
property S(6,)S(6,)=S(6,+6,). The group property merely imposes conditions on
the shapes of the integral manifolds under consideration. We note that because of the
first of (1.15), S(6) e* =e*'S(9) for all ¢ and 6. Furthermore,

S(0)f(t,x, £)=5(0) e *'h(t, e*'x, )

=e “'h(t, e*'S(0)x, £)
and thus, if z=5(6)x, we have
Z=¢f(t,z¢€)

so that the “standard form” is invariant under the transformation z = S(8)x.
Also, since

S(0)f(1, & €)= f(1, S(0)¢, ¢),

and

(1.16) S(0)fo(€) =fo(S(0)€),

the averaging operator commutes with S(8). Thus, if £°# 0 is a constant solution of
the averaged equation (1.9), then, from (1.16), S(8)¢&° is also a constant solution for
each 6. Thus, we have a k-parameter family of constant solutions forming an invariant
set of the averaged system of equations.

Since

(1.17) fo(S(6)€%) =0,
differentiation of (1.17) with respect to the jth component of 8 yields

3fo(S(8)€°) 45(6)
Y 36,

(1.18) £=0

for all 6 € R . Thus, we see that the matrix af,(S(0)£°)/¢ has a zero eigenvalue for
all 6 including 6 =0 and the corresponding eigenvector is (35(0)/86,)¢°, which is
tangent to the invariant surface.

We will discuss here any system of equations in which the averaged equations
have invariant surfaces of constant solutions. The surface of constant solution may be
due to symmetry or due to other causes as was the case in the example of the van der
Pol equation. There are cases in which the symmetry parameter and the parameter
corresponding to 6 in the van der Pol equation coincide; then, the symmetry parameter
becomes redundant.

In the standard results relating to integral manifolds and the method of averaging,
it is necessary to have a global parameterization of the integral manifold. In our case
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this is not the case and manifold without global parameterization can also be treated
by our procedures. ’

There are some references on persistence of invariant manifolds with hyperbolic
structure [7], [8], [9] that do not have the restriction of global parameterization. These
results, however, do not pertain to the problem discussed here.

This work was motivated by example B in the text. Example B was studied in
[10] and [11] by Bajaj and Sethna by the method of alternate problems [6] for periodic
solution. During this study it was found that the standard results of the method of
averaging relating to integral manifolds were not applicable to this problem indepen-
dently of which coordinate system was chosen for the analysis.

2. A Lyapunov function for the invariant surface. Our objective is to prove a
theorem for a system of the form (1.7). This equation can be written in the following
form by using the slow time 7= &t:

(2.1) §'=fo(€)+eg(r, & ¢)

where d/dr="and g(r, £ ) =g(7/¢, & ¢).
We assume that the averaged system

(2.2) &'=fo(é)

has a k parameter family of constant solutions.

More precisely, we assume that M ={¢e R": fi(£) =0} is a nonempty, bounded
set such that the rank of the Jacobian (8f,/9€&)(&,) is exactly equal to I =n—k at each
point & e M. This assures that M is a compact, C*-submanifold of R". The set M is
overdetermined by the n equations fo(£) =0. Choose I functions from the set of n
equations f,(£) = 0 which determine M ; specifically, let F = (F', - - -, F') be I functions
such that M ={¢&: F(£)=0 and such that (6F/3£)(&,) has rank I for each &€ M. Let
us assume that coordinates &,,---, &, have been ordered so that the Jacobian
{(6F'/0&7) (&)}, i,j=1,- - -, 1 is nonsingular. Thus ordering depends on the point &,
but £, will be fixed for most of the argument given below.

We assume throughout this and the next section that the linearized averaged
equations

(23) y'= ——af(;(j o,

have k zero eigenvalues and /= n—k eigenvalues with negative real parts for each
& € M. We note that this assumption is independent of coordinates, since the matrix
of coefficients of the linearized equations transforms by a similarity transformation
when variables are changed.

Now we shall construct a specific coordinate system which locally brings M into
a plane. Introduce coordinates (p, 8) by

p'=F'(¢),
;;’=f'(§),
(2.4) o' = £
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The Jacobian of this change of variables is

oF 0Pl oF'
a¢! ag" | aE"

. . | .

. DO B
)s oF' aF'y oF
(') aé—l al: agn
P10 0
P01 0 0 0

0 |
Lo 1

which is nonsingular at ¢ = &,. Thus by the inverse function theorem there exist open
sets U, R', U, R¥, W< R" such that (p, 8) € U, X U, are valid coordinates in R"
for the neighborhood W of &€ M < R™ In these coordinates the manifold M is given
by {(p, 8): p =0} and the equations (2.1) are of the form

0,=P(0’p)+€g (0’ ,T,E)’
(2.6) Al 1\Y, p.

p, :PZ(O, P) + £g2(0’ P, T, 8)'
Since M is given by p =0 and when ¢ =0 the set M consists of critical points, we
have p,(0, 0) = p,(6, 0)=0. Thus the Jacobian (3( p,, p»)/3(6, p))(6, 0) must be of the

form
[o K(o)]
0 H(8)J
Since the eigenvalues of this Jacobian must be the same as the eigenvalues of
(afo/0€)(&,), we see that all the eigenvalues of H(6) must have negative real parts.
Write p»(6, p) = H(8)p+ p»(6, p) so p,(6,0)=0and (6p,/5p)(6,0)=0;i.e., p, is second
order in p. Thus in the new coordinates the equations (2.1) become
0’:])'(0, P)+Egl(0a P, T, E),
p'=H(8)p+p(6, p) +£8:(6, p, 7, €).

2.7)

Although the above derivation of (2.7) is simpler, some readers may prefer an
alternate derivation as given in the Appendix. The derivation given in the Appendix
is based on some work of Hale and Stokes [12]. In it the coordinates are based on the
solutions of (2.3) and give a clearer mental picture of the situation.

Now let us define a Lyapunov function for equations (2.7). Since all the eigenvalues
of H(@) have negative real parts, the matrix

o0

D(0) = J eH' (O H O gy

0
is an I X1 positive definite symmetric matrix which satisfies the identity
(2.8) HT(0)D(6)+ D(0)H(6)=—1

By restricting their sizes, if necessary, we may assume that U, and U, are balls
of radii r, and r, with centers at 0 and 0, respectively. Let a(8) ={r3— |8 —0,||*}* so
a: U,> R is a smooth function which is positive on U, and «(8) and its first partial
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derivatives tend to zero as 6 tends to the boundary of U,. Define

1 if |pll=r/2,
B(p)=4{0 if o=,
y@2p/r) if n/2<|pll<n

where y(x) is the cubic polynomial which has a maximum of 1 at 1 and a minimum
of 0 at2, namely y(x) = (2x — 1)(x —2)°. Note that 8 is a C' function which is identically
1 when ||p||=r,/2 and identically zero when ||p||> r,. The two functions & and B8 will
be used to extend the local definition of our Lyapunov function to a global Lyapunov
function.

Define v(p, 6) = p"D(0)pa(6)B(p). Clearly v is positive for 0<||p||<r, and
16 —0,]| <r, and v(0, 8)=0. Also v tends to zero as |p|| > r, or as |6 —0,] > r, as do
the first partials of v. Thus if we consider v as a function of the original variables ¢
which are valid in all of R", we see that v is well defined in W and v along with its
first partials tends to zero as £ tends to the boundary of W. Thus we can make a C'
extension of v by defining v to be identically zero for £ R" — W.

Let us compute the derivative of v along the trajectories of (2.7) when & =0 and
for ||p||<r/2 (so B=1). This derivative is
Jda

P

oD
(2.9) vo=—p pa+ pT—g Prat2p Dpa+t p"Dp—

Now p, = O(|p|) and p,= O(|p]*) as |p| >0 and so for fixed 6
vy=—p pa+O0(pl).

Thus for each 6 we can choose an 7(8) such that vy <0 for 0 < lo| < 1(8) and moreover
n(6) can be taken as continuous in 6. Thus the set U ={(p, 6): |p| < n(8)} is an open
neighborhood of p=0, ¢ U,.

Going back to the original variables ¢ in R", we have constructed a globally
defined C'-function v(¢) which satisfies (1) v(£)=0 for all & (2) v(€)>0 for €€
V—M; (3) v(£€)=0 for € M; (4) v4<0 for £€ W' — M where W' is the set of all &
corresponding to U. In (4) the computation of the derivative is taken along the solution
of (2.2).

Now M is a compact set and so if we perform the above construction for each
point of M there are a finite number of coordinate systems such that the unions of
the corresponding W and W’ cover all of M. That is, there exist a finite number k,
and globally defined C' functions v, - - -, v, which satisfy (1), (2), (3), and (4) above
on the open sets W, and W, and such that

k k
UW, oM and U Wi/oM.

Define w(¢)=0v,(&)+---+1v(¢) and N=(U* W)Nn(U*W’). N is an open
neighborhood of M in R" and the function W is C' and satisfies (1) W(¢)=0 for all
£€R™;(2) W(§)>0forall Ee N—M; (3) W(¢)=0for £ M; (4) Wi(£) <0 for all
£€0—M where Wj is the derivative of w along the trajectories of (2.1) when & = 0.

3. Mainresults. We are now ready to prove a theorem for (1.2) using the Lyapunov
function constructed in the previous section. The system in standard form is:

(3.1) x=ef(t, x, ).

Then as shown in the introduction, using the near identity change of variables (1.3),
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(3.1) can be reduced to

(3.2) §'=fo(§) +eg(r, & ¢)

where r=et,d/dr=", g(7, £ €)= g(t/¢, £ €) and where ¢ is as in (1.8). The averaged
equation corresponding to (3.2) is

(33) §'=fo().
For any set M and any positive number § we define a §-neighborhood of M to be
Bs(M)={¢£e R": d(¢&, M) <8},
where
d(¢ M) =inf{d (¢ ¢): { € M}.

We now state and prove our main result.

THEOREM 1. Let the functions f, and g be C* for |£|< R, 1= 75, 0= ¢ = &,. Assume
that M = {¢: fo(¢) =0} is nonempty, is contained in |£| < R, for some R >0, and that the
rank of (3fy)/(8€)(&) is identically equal to l=n—k for all {,e M. Also assume
(8f0)/ (3€) (&) has | eigenvalues with negative real parts and the remaining k eigenvalues
with zero real parts for all & € M.

Then for any n > 0 there exist a 8, and an ¢,, depending on 7 such that if (7, &, 7o, €)
is the solution of (3.2) with y(7o, £o, 7o, €) = €0 € Bs, (M) then (7, o, 7o, €) € B, (M) for
all 7z 7, and 0<e<eg,,

The proof is based on a procedure used by Malkin [13] and is similar to the one
used by Sethna [1].

Proof. Let w be the Lyapunov function which was constructed in the previous
section. The derivative of w along the trajectories of (3.2) is

4 iw
W=wote p g
where wyq is as in the previous section.

Let n be so small that the n-neighborhood of M, B, (M), lies inside the open
neighborhood N which was constructed in the previous section. Let a=
min {w(£): d(& M) =n}. Since w(¢)>0 for €€ N—M and M is compact, we have
a>0. Since w(¢) =0 for ¢ M and w is continuous, there is a § = §, > 0 such that if
£€ Bs(M), then w(¢)<a/2.

Let C be the closure of B,(M)— Bs;(M); so C is a compact set in R" which does
not meet M. Since wgy(£) is negative for £€ C, there is a b>0 such that wo(¢) <—b
for £€ C. Now w and g are C' on C and so (9w/9¢)g is bounded on C. Thus there
is an ¢, > 0 such that le(ow/0€)(£)g(é)|<b/2forall0=e= €, and £ € C and therefore
w'(¢)<-b/2for0=e=¢, and £ C.

Let ¢(7)=y(7, &, 70, €) be the solution of (3.2) such that (7,) = &€ Bs(M).
Define w(7)=w(¢(7)). Since (7o) = &€ Bs(M), we have w(r,) <a/2. Assume that
for some time beyond 7, this solution leaves the » neighborhood of M. Let T> 7, be
the first time that it leaves, then ¢(7)> B, (M), 1,=7< T, and d(¢(T), M) = ». Thus
w(T)= a. Now for each 7 in the range 7,= 7 < T, either: (i) ¢(7)e B;(M) so w(7)<
a/2;or (ii) y(7) € B,(M)— Bs(M) < C where w'(7) <0. Thus w(r) = a/2for7y=7<T
but w(T)= a. This contradicts the continuity of w(7) and the theorem is established.

Remark 1. Our proof uses several changes of variables which are not necessary
to perform in applications. The main hypothesis concerns the function fo(¢) which
can be computed directly from the original equations (1.2) and hence (1.1).
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Remark 2. If one or more of the eigenvalues of (3fy)/(9¢)(&,) has positive real
part for some &€ M, one can use an argument similar to the one in [1] to prove an
instability result. Namely, there is an 1 >0 such that for any >0 and any small ¢
there is a T> 74 and a & € B;(M) such that d(¢(T, &, 7o, €), M) = n.

4. A nonlocal result. In many nonlinear problems the system has more than one
stable invariant set in the form of almost periodic solutions.

It then becomes a matter of importance in applications to determine which of
these solutions is the one to which a given solution approaches as t > o, i.e. to determine
the nonlocal domain of attraction of these stable almost periodic solutions. An analysis
leading to such a result was given in [14]. A similar result is possible in the case when
more than one disjoint positively invariant manifolds exist, as is the case in the class
of systems discussed here. The analysis depends on a finite time result which is
Bogolyubov’s first theorem [5]:

THEOREM. If system (3.1) satisfies the conditions stated earlier, then given any
0>0, u>0, however small, and L>0, however large, there exists an e*, 0<e*<e¢,
such that if y(1, £°, 7o) is a solution of (3.3), starting at |¢£°| < R is defined for 0=t <o
and it along with its o neighborhood remains in the set |{|< R for all t = t,, then for all
g, 0<e=¢e* the solution x(t,x°, t°) of (3.1) with x°= ¢° satisfies

(1, x°, t) — (1, £°, to)| <

forallt 0=t=L/e.

Using this theorem and Theorem 1, one can prove the following:

THEOREM 2. Under the hypotheses of Theorem 1, let x(t, x°, t,) be a solution of
(3.1) with x° = x(to, x°, t,) and let (1, £°, t,) be a solution of (3.3) with (1o, £°, t,) = £°
and x°= ¢ Furthermore suppose (1, £°, t,) is such that d(M, y(t, £, t,) >0 as t > o0
and § with its o neighborhood lies in the ball of radius R, then there exist some T > t,
and g, such that for any given n |x(t, x°, t,) — ¥(t, &°, to)| < nforty=1t = Tand x(t, x,, t;) €
B,(M) forall t=T, for 0<e=e,.

Thus, if the solution of the averaged equation approaches M, then the solution
of the original system starting with the same initial conditions is in the domain of
attraction of M.

5. Applications. We give below two applications of our results. The first is a
nonautonomous system of fourth order, the averaged equation of which has a one-
dimensional manifold in the form of S'. In the second example the system is of 8th
order with a four-dimensional center manifold. Our analysis is done in this four-
dimensional state space of the center manifold. In this space it is shown that the
averaged system has, depending on the case, a one- or two-dimensional manifold
which has a positively invariant set in its neighborhood. Furthermore it is possible to
give explicit estimates of these positively invariant sets.

A. Spherical pendulum with vertically oscillating support. Consider a spherical
pendulum suspended at the top and the point of suspension oscillating vertically with
a dimensionless velocity w(t).

The equations of motion, in dimensionless form, up through cubic terms, can be
shown to be

(5.1) €+ G+ (wi— (1)) €= —Hwi— (1) £(£2+ n?) — E(E2+ 7)) — £(E€+ ),
(5.2) H+én+(wo—pi(0)n=—3wa—mi())n(E+ 1) — n(E+ 9 n(&€+ %),

where wj =g/l is the linear natural frequency, ¢ is the damping coefficient and the
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coordinates ¢ and n are the nondimensional projections of the displacement on two
orthogonal vertical planes. .

This problem has been studied by Sethna and Hemp [15] under slightly different
assumptions. We note here that the dissipation terms in (5.1) and (5.2) provide a
moment about the vertical axis in contrast to the case in [15] and thus the system is
not reducible to a second order system.

We are interested in studying small nonlinear motions when primary parametric
resonance occurs, that is, when w(¢) is sinusoidal and its frequency v is nearly twice
the natural frequency. To make the above conditions explicit, let £=¢"?a, n=1¢"?8,
T=wot, y=v/wo=2(1—ed), { = ewyc and w(t) = ev sin vt where d is the “detuning”
parameter and ¢ is a small parameter. Furthefmore let

(5.3) a=u, a=u, P=u;, B=1u,.

Using (5.3), the equations (5.1), (5.2) transform to

(54) u=Au+eh(r,u )
where
0 y/2! 0
I
I 7E
(5.5) A= : i 5 g
i —-y/2 0
and
du,
(v* cos vr)u; — cup — duy + 3w, (ul+ u3) —u, (ui+ uz) + O(e)

(5.6) h(r,u, &)= du

(V2 cos vr)us — cus— dus +Sus(ui+ u3) — us(ui+ uz) + O(e)

The physical system is invariant to rotations about the vertical axis through the
point of suspension and this is reflected in that the equations (5.6) are covariant to
the rotation matrix

cos 6 0 sin 0 0
0 cos 6 0 sin 0
—sin 6 0 cos§ 0 |’
0 —sin 6 0 cos 6

(5.7) S(8) = 0 <[0, 27],

that is, the matrix A and the function » satisfy the conditions (1.15).
Equations (5.4) are reduced to the standard form

(5.8) x=¢ef(r,x,¢€)

by the transformation u = e”*"x. Note that the right-hand side is 47/ y periodic in .
The averaged equation corresponding to (5.8) is

(5.9) £=¢gfo(§)
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where
[ —lc+dE,+ (£~ £) — {66, (£16:+ ££4)
+E(EFTE)-SEE+E)}
_%sz_ dé + (&1 &) +Tl‘6{6§2(§l§2+ &3€4)
+E(E+E) -SE(E+E))
(5.10) fo(&)=

—Seby+déyt (6= &) - Gl6E(E 6+ ) |
+E(E+E) - SE(E+8)}
_%Cf‘t - dfg“' (&+ fg) +11§{6§4(§1 &t EE)
s E(E+E) 565+ 6))

After some lengthy calculations, it can be shown that, in terms of the polar variables
a,, a,, ¥, and ¢, defined through

&1=a, cos ¢, &=a;sin ¢y,
&= a, cos P, &4=ay sin i,

the only nontrivial constant solutions of (5.9) are given by

(5.11)

1 _,[(d—r—c/2
(5.12a) 11/1=c,1/2=-2-cos ! (———2—'>,
and
(5.12b) al+ai=16r
where r? satisfies the quadratic

2

(5.12¢) r—2 dr2+(-2c-> +d*-2=0
which has one solution
(5.12d) PR=d+N8—¢
if 4d*>8— ¢? and two solutions, one as in (5.12d) and
(5.12e) ri=d-W8—c if4d*<8-c.

Each of the manifolds is a circle in R*. This can be seen as follows. Equation
(5.12b) in view of (5.11) represents S in R*. Furthermore from (5.11) we have
&/ & =coth o, and &/ &,=coth ¢,. Since ¢, and ¢, are constants, each of these
equations represents a three-dimensional plane through the origin and their intersection
is a two-dimensional plane through the origin. The manifold is the intersection of S°
and this two-dimensional plane and is therefore a circle.

In addition to the above manifolds there is a zero solution of the averaged system
(5.9). This solution can be shown to be asymptotically stable for 4d>>8—c* and
unstable when 4d* <8 — ¢’. It then follows from the classical result that in the neighbor-
hood of the origin there is a stable or unstable periodic solution respectively. Not
surprisingly, the condition 4d”>>8— ¢? is also the condition for the existence of two
manifolds M, and M, and 4d”><8—¢? is the condition for the existence of only one
manifold M,. Furthermore, it can be shown that M, is stable and M, is unstable.

Then based on Theorem 1 and the classical theorem we can draw the following
conclusions about the motion. If 4d>> 8 — ¢” the straight vertical portion is stable. The
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motions corresponding to M; and M, are motions in some vertical planes. The one
corresponding to M, is of larger amplitude and stable and the one corresponding to
M, is of smaller amplitude and unstable. The motion that will actually occur will of
course depend on the domains of attraction of the vertical position and that of the
invariant set corresponding to M,. If the averaged equations are integrated numerically,
then by appealing to Theorem 2 one can draw conclusions about these domains of
attractions.

If 4d”><8—c* we have the vertical position unstable and the system performs
stable periodic motions in some vertical plane.

B. Flow-induced oscillations in articulated tubes. Consider a two-segment articu-
lated tubes system hanging vertically. The fluid enters the tubes at the top and is
discharged at the bottom end of the lower tube tangentially. A cartesian coordinate
system is fixed at the top and the Z-axis coincides with the downward vertical position.
We assume that the fluid is incompressible, the velocity profile at any cross-section is
uniform and the velocity of the fluid relative to the tubes is constant. Both the tubes
have the same circular cross-section and the diameter of each tube is small compared
to its length. We further assume that the bending stiffnesses of the joints have radial
symmetry and the elastic restoring forces are linearly proportional to the angles between
the center lines of adjacent tubes. This system has rotational symmetry about the
vertical axis. Periodic motion of such systems has been studied by Bajaj and Sethna
[10] by another method in great detail. We therefore suppress many of the details of
the calculations and merely give an outline of the essential features of the method of
analysis. The coordinate system is as follows: x;, and x;, +x,, are, respectively, the
nondimensional position coordinates along the X-axis of the end points of the upper
and lower tube segments. Similarly x,, and x,, +x,, are, respectively, the position
coordinates along the Y-axis. The XY plane is perpendicular to the X-axis.

The system depends on five dimensionless parameters a, k, 8, p and G. Parameter
“a” is the ratio of the lengths of upper and lower segments. “k” is the ratio of stiffness
of the upper joint to that of the lower joint. “B” is the ratio of mass of fluid to the
total mass at any instant. The flow rate in dimensionless form is represented by p and
G is the dimensional gravity parameter.

Let

(5.13) Z = (X1, X12, X115 X12, X21, X22, X21, X22) 7.
The system of equations then take the form
(5.14) Z=A(p)Z+g(Zp)

where we have suppressed the dependence on other parameters and where Z € R® and
g is an odd function in Z that is very complicated and is given in [10].

The physical system is invariant to rotations about the Z-axis. It can be easily
shown that the matrix A and function g therefore satisfy
(5.15) _ S()A=AS(0)

and

S(0)g(z p) = g(5(6)z p)
where 5‘(0) is a one-parameter matrix given by

cos 61, sin 01,

6€[0,27].
—sin 01, cos 014]’ [0, 2]

§m=[
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We are interested in bifurcation phenomena when the equilibrium position Z =0
gets unstable as the flow rate p is increased. It is shown in [10] that for small values
of p, all the eigenvalues of matrix A are in the left half of the complex plane. As p is
increased, it reaches a critical value, p = p,, when a double pair of complex conjugate
eigenvalues cross the imaginary axis rendering Z =0 unstable.

Letting p = p., + u, (5.14) can be written as

(5.16) Z‘,=AOZ+M51(M)Z+§(Z,IJ«)

where A, has two pure imaginary pairs of eigenvalues +iwq,, +iw, and the other four
eigenvalues are in the left half of the complex plane. For small enough u and |z|, the
center manifold theorem [3] guarantees the existence of a four-dimensional center
manifold on which the system dynamics is governed by equations of the form

(5.17) y=Ay+uA(u)y+k(y, u)

where y € R* and the function k is as given below.
Let y=pu'/?u for 0<u <« 1, (the case of u <0 can be similarly treated) so that
(5.17) now takes the form

u=Au+pA (u)u+pk(u, p)

or
(5.18) u=Au+ph(u, u)
where
0
Yol o
_WO 0 |
A=|-—-=——- ————== s
0 | 0 WO
L :—Wo 0
o W:
—W I
A==
p v
L =W 7
and

R“%"’ ug)(Blul + Bouy) + (uyu, + u3u,)(Bsu, + Byu,)
+ (“%"‘ “3)(35'41 + Bsu,)

(“%4' ug)(Bﬂll + Bgu,) + (u12“2 +4u3u4)(B9u| + Byou,)
+(uz+ uy) (B u, + Bi,u,)

(“%"‘ u%)(31“3+ Byuy) + (uyuy + usu,)(Byus + Byuy)
+ (u§+ ui)(Bsuﬁ' Bguy)

(“%"‘ u%)(B7u3+ Bgu,) + (uyuy + usu,)(Byus + Biouy)
L +(“§+ ui)(311u3+312“4)

The constant 7 + iw is the rate of change with p of the critical eigenvalue. The constants
B, i=1,2,---,12 are determined by the nonlinear terms.

The system (5.18) is in the form of the autonomous systems discussed in § 1. These
equations on the center manifold inherit the symmetry of the original system as shown
by Ruelle [16]. Thus (5.18) satisfies (1.15) with respect to a one-parameter matrix S(8)
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which can easily be shown to be the same as the matrix S(0) of the previous example
given in (5.8).

Equation (5.18) is transformed to the “standard” form
(5.19) x"= puf (7, x, )

by the transformation u = e”*"x where 7= wyt. The right-hand side is 27-periodic in 7.
The averaged system is then

(5.20) &' = ufo(é)

where

g1+ 06, HH(E+ E){H & — (Hy+2H )&} + (E3+ £) |
{(H,—2Hy)é,— Hy6o} +2(€1 62+ E36){H o1 + Hoé,}]
- W’fl"“'lfz"'%[(f%*' fg){H2§l+(H1 _2H9)§2}+(§%+ fi)
{(H2+2H10)§l+H1§2}+2(§1§2+§3§4){H9§1 _H10§2}]
né&+ ﬁ’fw"‘%[(ﬁ"‘ fg){Hlfa_(H2+2H10)§4}+(§§+fi)
{(H,—2H,)&— Haba} +2(€ 6+ E€){Hioés + Hoo}]
- W’§3+ 77544'%[(5%"' 5%){H2§3+(Hl _2H9)§4}+(§§+ fi)
| {(Ha+2H )&+ Hiah +2(616+ &8){Hobs — Hioka)] |
and where H,, H,, H, and H,, are some combinations of the constants B;.

The constant solutions of the averaged system (5.20) can be obtained after some
long calculations. It can be shown that the system has only three constant solutions:

(i) £&=a[—sin ¢, cos ¢, cos ¢, sin ¢]7, ¢ €[0,27),

1
w

fo(§)=—

=)

(5.21) a2 = —4m/(H, — Hy),
(s22) () &= alsiné, —cos ¢, cos ¢,sin$1",  $<[0,2m),
‘ a*=—4n/(H,~ Hy),
and
(5.23) (iii) &= a[cos 6 cos ¢, cos 0 sin ¢, sin 8 cos ¢, sin 8 sin ¢]7,

(12:—87]/H1, 0, ¢e[03 277)'

Each of the solutions (5.21) and (5.22) is a one-parameter family, that is, they are
one-dimensional manifolds M, and M,, respectively, on the center manifold of the
original system (5.16) and are parameterized by the variable ¢. It can be easily checked
that physically they are the same solutions and represent motions such that each point
on the tube makes a circular path about the vertical. The parameter ¢ is just the
arbitrary phase of the autonomous system.

The matrix 3f,/d¢ has only one zero eigenvalue in these cases. This is because the
motions are circular and the symmetry parameter and the arbitrary phase of the
autonomous system are indistinguishable. This particular motion can be studied by
standard results of the method of averaging when extended to the study of integral
manifolds [6].

The constant solution (5.23) is a two-dimensional manifold, M; on the center
manifold. This manifold is parameterized by two variables 8 €[0, 27] and ¢ €[0, 27].
The variational matrix df,/9¢ corresponding to the solution M; has two zero eigenvalues.
If the remaining two eigenvalues are not on the imaginary axis, we can again, using
Theorem 1, conclude the existence of an invariant set which for small enough w remains
close to the manifold M;.
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The motions corresponding to M; can be interpreted as motions in vertical planes.
The stability of the manifold M,, M,, M; can be studied for different values of the
parameters. In [11] is given the variety of cases that can occur in this system.

Appendix. In this Appendix we give an alternate derivation of (2.7) based on the
work of Hale and Stokes [12].
Consider (2.1),

(A.1) &'=f(€)+eg(r & ¢).
We will assume that the system
(A2) &'=1(8)

has a k-dimensional family of constant solutions.

More precisely, we assume that the set M ={¢€ R": f,(£) =0} is a compact, C>
manifold (submanifold of R") of dimension k. (A k-dimensional manifold is simply
a set which can be locally parameterized by coordinates in R¥.)

A parameterization of M is a smooth map £°: U~ R" where U is an open set in
R¥ such that ¢°(6) e M and the Jacobian (3£°/36)(6,) has maximal rank k for all
6o€ U. Here we consider 6 as a coordinate in U < R¥,

We will assume that the variational system

(A.3) y'=%(§§(0))y

has k zero eigenvalues and we will further assume that the corresponding eigenvectors
are linearly independent so that the n X k matrix 3¢°(6)/360 has rank k. Suppose the
remaining eigenvalues of (2.3) are A,(0), A,(0),- - -, A,(6) have nonzero real parts
(here k+1=n). Then (A.3) has the fundamental matrix solution Y(t)=(3£°(6)/a6,
Q(8) e™®7) where Q(6) and H(6) are respectively n xI and a X I constant matrices
dependent on 6. Every solution of (A.3) can then be written in the form y=
(9£°(6)/36)v+ Q(8) e”®"w, where v and w, are respectively k and I constant vectors.

Now let w=e"”®@"w, then since dw,/dr=0
d

(A4) Z_Ho)w.
dr

We plan to use a coordinate system mounted on ¢ = £°(9) with coordinates (6, w).
But first we obtain an expression relating (3f,/9£)(£°(9)), Q(6) and H(#8) for later
reference.

Let
0
(A5) y=ai¥v+0(0)w;
then
d_s£0) o o dw
dr 96 d‘r+Q(0)dT'

Substituting from (A.3) to (A.5) on the left side and from (2.4) on the right side,
since dv/dr =0, we have

3fo, o, gy | 9€°(6) B
yat (0))[—60 v+ Q(e)w] =Q(0)H(6)w.
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But (3f,)/(3€)(£°(9)) 3£°(68)/96 =0 and thus we have for w# 0

0
(A6) EL 000 - 0(0)H ),
Now we introduce the coordinate system
(A.7) £=£(0)+Q(0)p

where p is a I vector, with |p|< p, when p, is some number. Since the columns of Q
are linearly independent and the rank of 9£°(0)/d6 is k, the Jacobian at p=0,
det[0£°(0)/96, Q(6)17 0 and thus (A.7) is one-to-one. Substituting (A.7) into (A.1),
we have

ﬂ_{z[af 9Qp
dr [96 496

= fo(€°+ Qp) + e (7, £+ Qp, €)

]0 +Q(8)p’
(A.8)

where we use the notation

9Q oo ¥ & 9Qy do,

00 le rz1 30, d

Now taking into account (A.6), (A.8) can be written in the form
3¢ 9Q ) ]( 4 ) 0 o - 0
+= =fo(£°+ Qp)—=—Qp + +
[(ae 30” ) < o'~ Hp Jo(§°+ Qp) py: Qp +eg(r, &'+ Qp, €),
which can be written as

01=pl(03 P)+5‘11(0, P, T, 8),

(A.9)
p'=H(0)p+py(6,p)+eqxb,p,7,€)
where
(2)=A<e,p)[ﬁ<§°<o>+o<0)p) "f"“;"))Qw) ]
and
(Z) = A(6, p)d(r, £(6)+ Q(O)p, &)
where
3£°(0)  9Q(6)
A6, p) = [ae 396 Q(o)]

Equations (A.9) are the local representation of equations (A.l) and are valid in
a neighborhood.of p°(#)= M in R"™.
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