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AVERAGING AND BIFURCATIONS IN SYMMETRIC SYSTEMS*

JACQUES HENRARD?T anp KENNETH R. MEYER}

Abstract. This paper considers a periodic system of nonlinear ordinary differential equations
which admit a special symmetry. This symmetry is found in such classic equations as Duffing’s equation
and van der Pol’s equation. It is shown that such equations can be transformed to a nonsymmetric
periodic system with half the period. Special normal forms for these symmetric systems are developed
as an aid to the study of the bifurcations of periodic solutions. These normal forms are derived by the
use of Lie transforms.

The first author developed a computer program which explicitly preforms the normalization. This
program was used to explicitly normalize many systems of equations and a sampling of these systems is
discussed.

1. Introduction. Upon reviewing the list of worked examples in nonlinear
oscillations one is struck by the large percentage of equations exhibiting special
symmetry properties. One might be led to believe that in nature restoring forces
are always odd, forcing functions are always odd harmonic, the ratio of forcing to
natural frequencies is always p : ¢ where p and q are odd, etc. However a deeper
look into the theory suggests that these symmetry conditions are imposed by the
authors to simplify the computations. By choosing the symmetry conditions
carefully, interesting phenomena can be gleaned from the first average of the
equations. Since the computation of the second or third average of an equation is
considerably more difficult than the computation of the first average, the imposed
symmetry conditions greatly reduce the necessary work.

In order to obtain asymptotic solutions for the equations of celestial
mechanics, the first author with Deprit and Rom has developed two essential tools
which facilitate the computation of the average of a system of equations to a
higher order. The first, the method of Lie transforms[1], [4], is an algorithm which
computes the average of a system of equations by recursive formulas. The second,
PSP [6], is a package of general computer subroutines which perform literal
arithmetic and analytic operations on Poisson series. (Poisson series are slight
generalizations of those series obtained when an analytic system of differential
equations is written in polar coordinates.) These two tools have been used to
construct a program which will average equations of the form X +w’x =
F(x,%, A cost, Bsint, ) to high order in the literal sense. The details of this
program will be given below. Since the arduous computations of the method of
averaging can now be done by a computer, it seems appropriate to analyze the role
of symmetries in averaging. As a starting point we consider a periodic system of
equations which admits the type of symmetry found in Duffing’s equation. It is
shown that systems with this symmetry can be transformed into another periodic
system with half the period and without symmetries. Thus from a theoretical point
of view the symmetries add nothing new.
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134 JACQUES HENRARD AND KENNETH R. MEYER

2. General results. Consider the system
(2.1 i=f(x,1),

where =d/dt,xeR> and f:OXR-R?, 0 open in R*" is smooth. The
symmetry condition we shall impose on f is

2.2) fl=x,t+m)=—f(x, 1), (x,t) e OXR.

When (2.2) holds, (2.1) is clearly 27r-periodic in . Such a system can be obtained
by writing £ + f(£)£ + g(é€)=p(t), f even, g odd and p odd harmonic, as a system of
two first order equations in the usual way. Thus the general remarks made below
apply to the celebrated equations of Duffing and van der Pol.

A periodic solution ¢ of (2.1) of (least) period 2ms will be called odd
harmonic if ¢(¢+mm)=—¢ (). Such a periodic solution reflects the symmetry
property (2.2) of the equation.

We shall show that an equation of the form (2.1) satisfying (2.2) can be
transformed into a periodic system of period 7. Let

O, I,
d _(—1,, o,,)

be the usual 2n X2n skew symmetric matrix of Hamiltonian mechanics. Let

(2.3) x=e"u
so that (2.1) becomes
(2.4) ’ u=nh(u,t),

where h(u, t)=—Ju+e "f(e”u, t). Since ¢’“*™ = —¢” for all ¢, one sees that if f
satisfies (2.2), then h satisfies

(2.5) h(u, t+m)=h(u,t),

i.e., h is 7 periodic. Conversely if one makes the substitution (2.3) in equation
(2.4), one obtains an equation of the form (2.1) with f(x, t) = Jx +e”h(e ”x, t). So
if h satisfies (2.5), then f satisfies (2.2).

Let ¢ be a periodic solution of (2.1) of least period 2ms and define

Y(@)=e"¢(t)so ¢ is a 2mmr- -periodic solution of (2.4). If m is odd and ¢ is odd
harmonic, then ¢ (¢t +mm) = e—J('+'"’T)¢ (t+mm)=(—e")(~¢ (1)) = ¢(¢), and so 17
is mar-periodic. Conversely if m is odd and ¢ is mar-periodic, then ¢ is 2mar-
periodic and odd harmonic since ¢ (t+ma)=e’ """yt +mm) = (—e™ )y (t) =
—¢(t). When m is even ¢ is odd harmonic if and only if ¢ is odd harmonic. In
summary:

THEOREM 1. Let the change of variables (2.3) transform (2.1) to (2.4). Then
(2.2) holds if and only if (2.5) holds. Let the transformation (2.3) carry a
2mar-periodic solution ¢ of (2.1) into a 2mar-periodic solution y of (2.4). When m is
odd, ¢ is odd harmonic if and only if Y has period mm. When m is even, ¢ is odd
harmonic if and only if  is odd harmonic.

Since e” is symplectic, equation (2.1) is Hamiltonian if and only if equation
(2.4) is Hamiltonian.
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We are interested in the bifurcation of odd harmonic periodic solutions and
so we must discuss the variational equation and characteristic multipliers. Let ¢
be an odd harmonic periodic solution of (2.1) of period 27 and let v = x — ¢ (¢) so
that (2.1) becomes

(2.6) v=2g(v,1),

where g(v, t)=f(v+¢ (1), t)—f(d (1), 1). Clearly g(0,¢)=0 and g(—v,t+7)=
—g(v, t). Thus the variational equation of (2.1) about an odd harmonic periodic
solution also satisfies condition (2.2) and so there is no loss in generality in
assuming that f(0, ¢) = 0. This being the case, the linearized variational equation is

(2.7) i=A()x,

where A ()= (3f/3x)(0,t) and A is wr-periodic. Let X(¢) be the fundamental
matrix solution of (2.7) which satisfies X(0) = I. Since the original equation is
2r-periodic, the characteristic multipliers of the zero solution are the eigenvalues
of X(27) by the usual definition. However we would like to propose that the
eigenvalues of —X () be called the characteristic multipliers of the zero solution
of (2.1) for the following reason. When (2.3) is used to transform (2.1) to (2.4) the
variational equation of (2.4) about the zero solution is

(2.8 u=B(t)u,

where B(t) = (0h/ou)(0, t) and the fundamental matrix solution Y of (2.8) which
satisfies Y(0)=1is Y(¢t)=e "X (¢). Since (2.4) is mr-periodic, the characteristic
multipliers of the zero solution for (2.4) are the eigenvalues of Y(7r) = —X (7). For
example, consider the two systems

(2.9) X = (%)xz, X,= (_%)xl,
(2.10) X = (%)xz, X, = (_%)xl,

taken as variational equations of a system of the form (2.1) with (2.2) and
£(0, £)=0. For both (2.9) and (2.10) the eigenvalues of X(27) are ¢**>*™> which
are cube roots of unity. However, for (2.9) the eigenvalues of —X(w) are
—e*™? = ¢™2™/3 which are cube roots of unity and for (2.10) the eigenvalues of
X () are —e**>™"* = ¢7"™/® which are sixth roots of unity. Thus the eigenvalues of
—X(mr) distinguish (2.9) and (2.10) whereas the eigenvalues of X(27) do not.

Loud’s investigations in [8] also seem to justify this convention.

3. Averaging. In this section we shall use the method of Lie transforms [4] to
discuss the theory and implementation of averaging on a system of the form (2.1)
satisfying (2.2). The process of averaging is based on constructing a change of
variables x = ¢(y, ¢) for the system (2.1), and in order to preserve (2.2) we shall
require that ¢(—y, t+7)=—¢(y, t). This will also insure that odd harmonic
periodic solutions are carried into odd harmonic periodic solutions. The class of
equations considered here is very restricted since the computations are to be
performed on a computer. However, the examples discussed in § 4 show that the
class contains a wealth of interesting special cases.

Consider

(3.1) $+w’x=¢eF(x, %, t, €),
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where F is a polynomial in x, X, cos ¢, sin ¢ and &. When (3.1) is written as a system
in the usual way, the system will possess the symmetry discussed in the previous
section if

3.2 F(—x,—x,t+m, ¢e)=—F(x, %, t, €).

With the introduction of polar coordinates by x =r cos ¢, X =—wr sin ¢ the
equation (3.1) becomes

':=8R(r’ ¢1 L 8),
(3.3) :

d=w+ed(r, ¢t ¢),

where R and r® are polynomials in r and & with coefficients which are finite
Fourier series in ¢ and ¢. Condition (3.2) on F implies

R(r,¢+7'r,t+'n',£)=R(r, ¢7 t,E),
O(r,p+m, t+m,e)=P(r, ¢, t, ¢).

Since we shall introduce many functions satisfying the above condition we shall
call such functions 7r-periodic in (6, 7). If (3.3) satisfies (3.4), then a solution r(z),
¢(¢) is odd harmonic of period 2mr if r(t+ mm) =r(t) and ¢ (t + ma) = —¢(¢). In
order to summarize the method of Lie transforms and apply it to (3.4), it is
convenient to make (3.4) autonomous by introducing the new angular coordinate
7 and augmenting (3.4) by 7= 1. Thus (3.4) becomes

(3.5) =2,z ¢),

where z" = (r, ¢, 7) and Zy=(eR(r,¢,7,8), o +p(r,$, 7, €),1). Since Z,, is a
polynomial in ¢, it has an expansion

(3.4)

K

(3.6) Zze)=Y (%) Z%).

i=0

The change of variables z = z({, £) which performs the averaging process on (3.5)
is constructed as the solution of a system of equations

3.7) 9 wie),  20)=¢
de

where W has a finite expansion
N

(3.8) Wiz e)= ¥ (%) Win(a).
i=0 \l:

The equation (3.5) in new coordinates becomes
(3.9) {=Z*{ &)+ O™,

where Z* has an expansion of the form

N /gt ;
(3.10) z*@.0)= 1 (5) zi0.
The method of Lie transforms introduces a double index array of functions {Z}}
which agree with the previous definition when i or j are zero and can be computed
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by the recursive formulas

(3.11) Zi=Z1+ z ( )Lkﬂz, k>
where

oZ oW,
(3.12) L"“Z=a_zW"“_ a;“z.

With this brief summary we shall prove:
THEOREM 2. For any N >0 there exists a change of variables p = p(r, ¢, t, €),
0= 0(r, ¢, t, €) with the properties
(i) p and 6 are 27-periodic in ¢ and t and w-periodic in (6, t);

(ii) p(r, ¢, 1,0)=rand 0(r, ,1,0)=o;

(iii) when r, ¢ and p, 0 are considered as polar coordinates in the plane, the
change of variables is analytic in the rectangular coordinates of the plane, t
and €;

(iv) in the new coordinates the equations (3.4) become

p=eP(p,0,t,e)+e" "'P'p, 6,1 ¢),

(3.13)
0=w+eH(p, 0,1t e)+sN+1H'(p, 0,1 ¢),

where P, P', H, H' are 2r-periodic in 6 and t and mr-periodic in (0, t) and

P(p, 0+wt, t,e)=P(p,0,0,¢),
H(p,0+wt, t,e)=H(p, 6,0, ¢).

(3.14)

Proof. We shall construct W inductively so that the conditions of Theorem 2
are satisfied order by order. Let W,=(u;(r,d,7), vi(r,¢,7),0) and Z =
(R ,(r b, 7), d; r,,7),8), where §=1if i= j=0 and § =0 otherwise. Since we
take the third component of W, to be zero, then ¢ = 7. Note that Z3 = (0, w, 1) and
Z] is 2ar-periodic in 6 and 7 and mr-periodic in (6, 7).

Induction hypothesis M. Z; and W, are known for 0=i+j=M and
0=k =M and such that (a) Z; and W, are 27r-periodic in 6 and 7 and 7r-periodic
in (6, 7) (b) Z; and W, have finite Fourier expansions in (6, 7) and (c) Zy=
(Ro(r, 6, 7), <I>0(r 0, 7), 8), where R} and P}, satisfy (3.14).

Clearly the induction hypothesis holds for M =0, so assume it holds for
M=N-1.By (3.11),

N-1
k

where the last term in the above has been separated out since it is the only term not
given by the induction hypothesis or by the hypothesis of the theorem itself.
First, the last component of Z%iszero. Z0is 27r-periodicin @ and 7, is #-periodicin
(0, 7) and has a finite Fourier expansion in 6 and 7 by the hypotheses of the
theorem. Using (3.12) and the induction hypothesis N — 1, it is clear that the other

(3.15) ZN_I—{ZN+ Y ( )Lkﬂzl"v_k_l}unz&
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terms in the brackets have the same properties. Thus for k =1,
(3.16) leil—k=K1,iI—k+LN—lZ8a

where K_, is a known function by the hypothesis with last component zero,
27r-periodic in @ and 7, wr-periodic in (6, 7) and has a finite Fourier series
expansion. A simple induction argument shows the above is true for k =

1,2, -+, N. Thus we arrive at the basic equation to be solved, namely
(3.17) ZY =Ko +LnZJ.
If we let Kby = (a(r, 6, 7), B(r, 6, 7), 0), then (3.17) is equivalent to
Rf)v= a— [w%+%],
op ot
(3.18)
dun  OJv
o) = —[ — +—N}.
0=B-|w od ot

The two equations in (3.18) are similar and so we shall only discuss the first.
Let

a(r, 0, 7)=ago+ X {a,, cos (pb+qt)+b,, sin (pd +qr)},
S
(3.19) un(r, 0, 7) =Y {a,, cos (pd +q7) +b,, sin (pb +qr)},
<
RY(r, 0,7)=abo+Y {apq cos (p +q7)+b,, sin (pb +q7)},
o

where § is a finite set of pairs of integers (p, q) # (0, 0). Since « is 7-periodic in
(6, 7), we may assume that if (p,q)€ S, then p+gq is even. With the above
expansions, the first equation in (3.18) becomes

@00 = Ao,
(3.20) A pg= apy —(wp +q)b,,,
bpg=bpg +(wp +q)a,,.

The unprimed variables are given and the others must be solved. Define S’ =
{(p.q)eS:(wp+q)#0} and S"=S-S'. Then define bp,=(wp+q) 'ap,
Apg=—(0p+q) " byg, ap,=bp, =0 when (p, q)€S'". Also define a’y, = a,q, by =
bpg bpg=ap,=0 when (p, q) € S”. This clearly solves (3.18).

Since (p, q) € S implies p +g even, and S', S” € S we have that (p, g) € S’ or S”
implies p +q even. Thus Ry and uy are 7r-periodic in (6, 7).

Also by the definition of S§”, if (p,q)eS", then pw+qg=0 and so
p(0+w7)+qr = pé. Thus each term in the expansion for Ry satisfies (3.14).

4. Examples. We shall consider two classes of examples; the first is a
modified form of Duffing’s equation and the second is the forced van der Pol
equation.

The modified Duffing equation. Consider the system

4.1) i +(wo+e®A)x =e{B(x +A cos1)*+(x + A cos t)°}.
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When B =0 we have the standard Duffing equation which admits the symmetry
property previously discussed. When B # 0 the equation does not possess the
symmetry property. Since we are interested in discussing bifurcations we shall
choose wq of the form wy = p/q, where p and q are relatively prime integers. We
shall, in the series of examples given below, contrast and compare the types of
bifurcations which occur when 8 =0 and 8 # 0, when p and g are both odd and p
or g even.

Note that when £ = 0, (4.1) has x =0 as a 27r-periodic solution. If 8 # 0 (i.e.,
we consider the equation as not possessing the special symmetry condition), then
the characteristic multipliers of x =0 for ¢ = 0 are exp (£27woi) which are not 1
unless wo=k,k=1,2,3,- - -.Thusfor w, # k, B # 0 and ¢ sufficiently small, (4.1)
has a 2#-periodic solution of order . We shall call this the harmonic solution. If
B =0 (i.e., we consider the equation as possessing the symmetry condition), then
the characteristic multipliers of the odd harmonic solution x = 0 are —exp (+7woi)
which are not +1 unless wo=2k—1, k=1,2,:--. Thus if we#2k—1, k=
1,2,3,- -+, and ¢ is sufficiently small, (4.1) will have an odd harmonic 27-
periodic solution of order &.

Note that the equation is Hamiltonian and so the product of the characteristic
multipliers must be +1 for all periodic solutions. If the characteristic multipliers
are real and distinct, the periodic solution will be called hyperbolic, and if the
characteristic multipliers are of unit modulus and # +1, the periodic solution will
be called elliptic. Since the characteristic multipliers are continuous in a parame-
ter, small perturbations of elliptic (or hyperbolic) periodic solutions will remain
elliptic (resp. hyperbolic).

In the examples given below we shall discuss the bifurcations from the
harmonic periodic solution for the truncated averaged equation only. It is only a
simple application of the implicit function theorem to establish that these periodic
solutions persist for the full equation. Most of the results aré covered by the
theorem in Henrard [5].

The examples given below are arranged in groups which compare and
contrast bifurcation phenomenon. Examples 1 to 3 are one group.

Example 1. wo =2 a=1, B # 0. In this case the average of (4.1) is

P =—&{rBA sin 2¢ — )} + O(e?),

42 é=3+e{A—3A%—3r" — AB cos (2¢ — )} + O(&”).

As remarked above, (4.1) has a 2#7-periodic solution, the harmonic, which is of
order ¢ in the original coordinates. From the equation for 7 in (4.2) one sees that
in the new coordinates the harmonic is of order & °. Thus the change of coordinates
which translates the harmonic to the origin in (4.2) differs from the identity by a
term which is 27r-periodic and of order &°. Having made this change of variables,
the terms of order 1 and &' in (4.2) would be unchanged but the equation for 7
would contain r as a factor! Thus we may assume without loss of generality that the
equation for 7 in (4.2) has r as a common factor. We note that this change of
variables can and will be assumed to be made on all the examples of this section.
This change of variables precisely locates the harmonic and so simplifies the
discussion of the bifurcations.
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When ¢ = 0, the harmonic has characteristic multipliers —1, —1. In order to )
determine the characteristic multipliers of the harmonic for & # 0, it is necessary to
calculate the Jacobian K of the period map in rectangular coordinates at the
origin. Equations (4.2) are easy to solve to first order, and then after changing to
rectangular coordinates one finds that

(4.3) K:(_(l) _(1))+8((a-(|)-b) (a;b)>+62(7:1 :)Jro(gs),

where a = BAm, b= {%AZ—A}W and m, n, r, s are constants which need not be
calculated. Since det K =1, one calculates that m +s = b2 and so the trace is

K=-2+e%{(A-3A%*-B*A% 7"+ - .

Consider A and B as fixed nonzero numbers and A as a parameter to be varied. By
applying the implicit function theorem to the equation trace K = —2, there exist
functions A;(e), Ax(¢) such that A;(0)=3A—|BA|, Ay(e)=3A%+|BA| and
|trace K|>2 when A€ (A;(g), Ay(¢)) and trace K = —2 when A= A;(g) or Ay(e).
Thus as we change the natural frequence, i.e., change A, the harmonic changes
from elliptic to hyperbolic and back to elliptic.

In order to find 44r-periodic solutions which bifurcate from the harmonic, let
r(t, ro, do, ), d(t, ro, do, £) be the solution of (4.2) which pass through ry, oo when
t =0. The bifurcation equations are

s (47rero)”Yr(4m, ro, ¢o, €) —ro} =—BA sin 2¢o - - - =0,
T (dme) M (@m, ro, bo, £) — po—2m} ={A—3A% 32— AB cos 2o} +- - -
=0.

Note that we have factored out an r, from the first equation which is admissible
since the harmonic is at the origin. It is easy to find solutions to (4.4) to first order
and then apply the implicit function theorem to obtain solutions (r;(¢), ¢;(¢)),
i=1,2,3,4, of (4.4), where

4.5) ¢1(0) =0, ¢2(0) =, ¢’3(O) = 77/2, ¢’4(O) = 377'/2
and
r(0)=r(0)=3A—-3A% - AB),

“o r3(0)=rs(0) =35A—3A>+ Ap).

These solutions tend to the harmonic as A-> A;(¢) or A- A,(g). One calcu-
lates as before that the trace of the Jacobian of the period map for these periodic
solutions is 2+ &°(3r1(0)’BA)+- - - and 2+ £ %(=3r,(0)’BA) +- - - .

Insummary: let A and B be fixed and nonzero. Let ¢ be sufficiently small. For
A¢Z[A(g), Ay(€)], the harmonic is elliptic and for A € (A;(g), A,(¢)), the harmonic
is hyperbolic. For A > A, (¢), there are two elliptic 47 -periodic solutions of (4.2) or
(4.1) which tend to the harmonic as A A,(¢)+, and for A> A,(¢) there are two
hyperbolic 47r-periodic solutions of (4.2) or (4.1) which tend to the harmonic as
A-> Az(&‘ )+.
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It is easy to see that the two elliptic (resp. hyperbolic) 47 -periodic solutions
are really 27-translates of one another and so should be considered as a single
periodic solution.

This is the typical type of bifurcation which occurs in a Hamiltonian system at
a periodic solution which has characteristic multipliers —1, —1 (cf. [9]).

The next example shows that a far different type of bifurcation occurs when
wo=3, B =0, but this can easily be explained by the general results of § 2.

Example 2. wo = La=1, B = 0. Since B = 0, equation (4.1) is symmetric and
so the harmonic is odd harmonic. Using our convention, the characteristic
multipliers of the harmonic when ¢ =0 are e*™/? = +i, whereas the usual conven-
tion gives that the characteristic multipliers are —1, —1. In view of this, one would
not expect the harmonic to become hyperbolic when ¢ #0 as in the previous
example. Since 8 =0, one must compute more terms in the average of (4.1) to
yield

i=e{=Fr’A’sin (4¢ —20)}+ O(>),
d=3+e{A—-3A—3r* }+ O(&?).
As before we may assume that the harmonic is given by r =0 in (4.7). It is easy to

compute the characteristic multipliers of the harmonic from (4.7) to find that they
are

(4.8) exp (xmi){5+e(A—3A%)+0(d)).

Thus by the implicit function theorem, there is a function A;(¢) such that
A,(0)=3A% and the harmonic has characteristic multiplier +i if and only if
A= A1(8 ).

Now we shall look for odd harmonic 4#-periodic solutions. The bifurcation
equations are then

(27T€2r3)_1(r(27T, ro, ¢07 8)_r0) = _%A:; Sin 4¢0+ e = O’
Qme) (@2, ro, do, €)—do—m) =(A—3A—3r5)+- - - =0.

As before one solves these equations to first order and applies the implicit
function theorem to get solutions (r;(¢), ¢:(¢)), i=1,- - -, 8, where

¢1(O) = 07 ¢2(0) = 77/21 ¢3(0) =, ¢4(O) = 377-/21

4.7)

4.9

(4.10)

¢s(0)=m/4, @6(0)=37/4, ¢,(0)=57/4, ¢s(0)=T7/4,
and
(4.11) r(0)=3A—-3A%).

As before these solutions can be arranged into groups containing trajectories
which are translates by 27 of one another. Specifically the solutions correspond-
ing to the pairs of indices (1, 3), (2, 4), (5, 7) and (6, 8) forms such groups. But the
change of variables discussed in § 2 makes the second (resp. the fourth) group the
translate of the first (resp. the third) by 7. We shall thus group together the first
four and the last four solutions in order to stress the similarity of the results with
the typical bifurcation of a periodic orbit whose characteristic multipliers are the
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eigenvalue of —X(#) rather than of X(27). While doing so we shall keep in mind
that each group contains two different periodic orbits of the original system.

This is the typical bifurcation which occurs in a Hamiltonian system when a
periodic solution has characteristic multipliers which are fourth roots of unity [9].
Compare this bifurcation with the bifurcation discussed in the next example where
B # 0, wo = %

Example 3. wo=%, a =1, B#0. The equation is not symmetric and the
characteristic multipliers of the harmonic for £ =0 are +i, fourth roots of unity.
The averaged equations are

F=e>20r°AB sin (4¢ — 1)+ O(&>),

(412 $=1+e{20-3A%-3r1+ 0O(e?).
The analysis of this example is almost the same as in the previous example. In
summary: there exists a A;(e) such that A;(0)= 3A% and the harmonic has
characteristic multipliers equal to i for A= A(¢), £ small. For A>A(¢), there
are two groups (of four each) of 8m-periodic solutions for A > A;(e): one group is
elliptic and the other hyperbolic, which tend to the harmonic as A A;(g)+.

The next group of examples is concerned with the bifurcations from the
harmonic solution when the characteristic multipliers are third roots of unity. The
case when wo =3, B =0, a =1is analyzed in many standard texts, and so we shall
assume that the reader is familiar with the example. See [2] or [3]. Recall that in
this case two groups of three unstable periodic solutions bifurcate from the
harmonics, one for A greater than some A;(¢) and the other one for A smaller than
Al (6 ) .

Example 4. wo= 2a=1, B # 0. The equation is without symmetry and the
harmonic has characteristic multipliers et ® cube roots of unity, when ¢ =0.
The averaged equations are

F=—e’33r°A 23 sin 3¢ —21)+ O(&>),
(413) [ 2 3 942 9 .2 2

¢ =35+efliA—3A  —1er'}+O(e").
The analysis is similar to the analysis of Example 2. In summary: there exists a
Ai(g), A1(0)=3A such that the harmonic has characteristic multipliers e™4mI3
when A = A(¢) for £ small. For A> A,(g), there are two groups (of three each) of
periodic solution of period 64r: one group is elliptic and one hyperbolic which tend
to the harmonic as A—> A(g)+.

This is again the typical behavior when one considers bifurcation from a
periodic solution which has characteristic multipliers which are cube roots of
unity. '

Example 5. wo=3, a =1, B =0. When w,=3 the standard convention and
our convention on characteristic multipliers both say that the harmonic has
characteristic multipliers which are cube roots of unity for € = 0. In the case when
wo =3, the usual convention still gives that the characteristic multipliers of the
harmonic are cube roots of unity but our convention gives —exp (+24i/3) which is
a sixth root of unity.
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In this case, the averaged equations are
F=¢*(—43.8292)r’ A% sin (6¢ —41)+ O(&”),

(4.14) ,
é=3+el3A—FA—15r’}+ O(e?).

Using our convention again in summary: there exists a A;(g), A;(0) = 3A? such
that the harmonic has characteristic multipliers —exp (£2ri/3) for A=A (g), &
small. For A> A,(¢g), there are two groups (of 6 each) of 67r-periodic solutions:
one group is elliptic and one hyperbolic, which tend to the harmonic as A—
A;(g)+. The grouping of solutions is made according to the rules explained in the
analysis of Example 2.

In the next four examples we simply give the averaged equations for the
readers reference. Enough terms in the averaged equations are given so that the
reader can easily analyze the equations. Some coefficients are truncated to 6
significant digits even though the original computations were carried out to 16
significant digits.

Example 6. wo=3, a =1, B =0. The average equations are

F=—e®r’sin (¢ —31)+0(e?),
b =3+e{tA—3A—3r"—2r 'A% cos (¢ —31)}+ O(e?).

To this order the average is the same if 8 # 0.
Example 7. wg=2, « =1, B #0. The averaged equations are

F=—g(g)r’ sin (¢ —21)+O(e?),
d=2+e{fA—3A°—Zr’—5r "A’B cos (¢ —20)}+ O ().
Example 8. wo=2, a =1, B =0. The averaged equations are
F=—&’(350)rA " sin 29 —41)+ O(s>),
b =2+e5A-3A°-Zr}+O(e).
Example 9. wo=4, a =1, B =0. The averaged equations are
F=—£%(3.74923x10°)rA%sin (2¢ —81)+ O(e”),
b=4+elzA-7A*~r'H+ O(e).

Locking-in and van der Pol’s equation. Consider the equation
4.15) x+(wo+e*A)x =e{(1-x*)x + A cos t}.
The theory of invariant manifolds can be applied to (4.15) when w, # 1 to establish
the existence of an invariant periodic cylinder in R > __the (x, x, t)—space (cf. Hale
[2], [3]). Loud [8] has investigated this equation when wo=1, @ = 1 and estab-
lished the existence of periodic solutions of period 27 for A # 0. Thus equation
(4.15) has periodic solutions whose frequencies are “locked-in" to the period of
the forcing term even though the natural frequence, 1 + €A, is not precisely one. In
view of the general discussion of the locking-in phenomenon in Sternberg [10],

one would expect something similar when w is a rational number. Indeed this is
the case as the examples given below show.
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Example 10. wo=3, a =2. The averaged equations are

F=gGHr—ir’}+e*{aar’A cos 3¢ — 1)} +O(e),

b =2+ BA-3+ 55 —55r* —&rA sin 3¢ — 1)}+ O(e”).
Neglecting terms of order ¢ % and higher, these equations are autonomous and
have a stable limit cycle with characteristic multipliers 1 and 1 —3me + O(e %). This
information is enough to apply the invariant manifold theory to give the existence
of a periodic invariant cylinder but not enough to establish the existence of
periodic or ergodic solutions on this invariant cylinder. However, the terms of
order & do establish the existence of periodic solutions of period 67 as we shall
see. From the above equations we can easily compute the approximate solutions
to find that the bifurcation equations are

5_1{’(677, ro, $o) —ro} = 377{’0—%’3}"‘ O(e)=0,

e H{p (67, ro, o) — po— 2} = (6m)3A—3+16r" — 3567 —&arA sin 3ot + O(e)
=0.

The first equation has a solution ro=2+ O(¢) by the implicit function theorem.
Substituting this into the second equation gives

f(A, )+ 0(e)=0,

where f(A, o) =A —é—%A sin 3¢o. The zeros of f are easy to find by solving for A
as a function of ¢,. Since (3f/dA) = 1, the implicit function theorem can be applied
again to yield 67r-periodic solutions of van der Pol’s equation. In summary one
finds: for ¢ suﬂiaently small, there exist functions A,(g), A,(g), A,(0) = 16|A|
A(0)=35+75|A| such that for A;(¢) <A<A(g), equation (4.15) has 6 perlodlc
solutions of period 67r. These solutions are in two groups, 3 asymptotically stable
and 3 unstable. The solutions in a group are translates of one another. Also for
A= A;(g) or Ay(g), equation (4.15) has 3 periodic solutions of period 67 which has
one characteristic multiplier equal to +1. For A<<A(¢) or A> A,(g), the equation
has no periodic solutions of least period 6.
This gives another example of the locking-in phenomenon. The examples
below are similar and so we shall only give the averaged equations.
Example 11. wo= %, a =4. The averaged equations are
F=elsr—3r’}+ O(?),
b=t e b~ e A s 3A %+ Hr - A
— st +3005r° — (0.02570)r® —36r> A? cos (4¢ — 21)}+ O(&”).
Example 12. wo= 2 a=4.The averaged equations are
F=e3r—3r’}+0(e),
d=3++£%-7.456x107)r* A" cos (6¢ —41) + O(s°).

In the above the terms indicated by three dots are polynomials in ¢, A, r, A and
independent of f and ¢.
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