
The IMA Volumes
in Mathematics

and Its Applications

Volume 28

Series Editors
Avner Friedman Willard Miller, Jr.

Institute for Mathematics and
its Applications

IMA

The Institute for Mathematics and its Applications was established by
a grant from the National Science Foundation to the University of Minnesota in
1982. The IMA seeks to encourage the development and study of fresh mathemat­
ical concepts and questions of concern to the other sciences by bringing together
mathematicians and scientists from diverse fields in an atmosphere that will stim­
ulate discussion and collaboration.

The IMA Volumes are intended to involve the broader scientific community in
this process.

A vner Friedman, Director
Willard Miller, Jr., Associate Director

* * * * * * * * * *

IMA PROGRAMS

1982-1983 Statistical and Continuum Approaches to Phase Transition
1983-1984 Mathematical Models for the Economics of

Decentralized Resource Allocation
1984-1985 Continuum Physics and Partial Differential Equations
1985-1986 Stochastic Differential Equations and Their Applications
1986-1987 Scientific Computation
1987-1988 Applied Combinatorics
1988-1989 Nonlinear Waves
1989-1990 Dynamical Systems and Their Applications
1990-1991 Phase Transitions and Free Boundaries

* * * * * * * * * *

SPRINGER LECTURE NOTES FROM THE IMA:

The Mathematics and Physics of Disordered Media

Editors: Barry Hughes and Barry Ninham
(Lecture Notes in Math., Volume 1035, 1983)

Orienting Polymers

Editor: J.L. Ericksen
(Lecture Notes in Math., Volume 1063, 1984)

New Perspectives in Thermodynamics

Editor: James Serrin
(Springer-Verlag, 1986)

Models of Economic Dynamics

Editor: Hugo Sonnenschein
(Lecture Notes in Econ., Volume 264, 1986)

Kenneth R. Meyer Dieter S. Schmidt
Editors

Computer Aided
Proofs in Analysis

Springer-Verlag
New York Berlin Heidelberg London
Paris Tokyo Hong Kong Barcelona

Kenneth R. Meyer
Departments of Mathematics
and Computer Science
University of Cincinnati
Cincinnati, OH 45221
USA

Series Editors

Avner Friedman
Willard Miller, Jr.

Dieter S. Schmidt
Department of Computer Science
University of Cincinnati
Cincinnati, OH 45221
USA

Institute for Mathematics and Its Applications
University of Minnesota
Minneapolis, MN 55455
USA

Library of Congress Cataloging-in-Publication Data
Computer aided proofs in analysis / Kenneth R. Meyer, Dieter Schmidt,

editors.
p. cm. - (The IMA volumes in mathematics and its

applications ; v. 28)
1. Numerical analysis-Data processing-Congresses. 1. Meyer,

Kenneth R. (Kenneth Ray), 1937- II. Schmidt, Dieter S.
m. Series.
QA297.C638 1990
519.4'0285-dc20 90-45342

Printed on acid-free paper.

© 1991 by Springer-Verlag New York Inc.
Softcover reprint of the hardcover 1 st edition 1991
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trades names, trade marks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy prepared by the lMA.

9 8 7 6 5 4 3 2 1

ISBN-13: 978-1-4613-9094-7
DOl: 10.1007/978-1-4613-9092-3

e-lSBN-13: 978-1-4613-9092-3

28

1. Mohamed Elbialy 2. Alessandra Celletti 3. Ken Meyer 4. Marc Jacobs 5. Jyun Fu 6. Rafael de la Llave
7. Alkis Akritas 8. Richard McGehee 9. Chris McCord 10. Bruce Miller 11. Bruno Buchberger 12. Tony Hearn
13. L1am Healy 14. Anne Noonburg 15. Govlndan Rangarajan 16. Jong Juang 17. Carmen Chicane 18. Luis SeeD
19. Shut-Nee Chow 20. Richard Rand 21. Richard Aron 22. Vincent Coppola 23. Konstantin Mischaikow
25. Andre Depr!t 26. Jerry Paul 27. Etienne Depr!t 28. Dave Richards 29. Ramon Moore 30. George Corliss
31. Louis RaIl 32. Shannon Coffey 34. Mark Muldoon 35. David Hart 36. Johnnie Baker 37. Phil Korman
38. J. P. Eckmann 39. Barry Cipra 40. Dieter Schmidt 41. Oliver Aberth 42. C. Y. Han 43. Bruce Char

The IMA Volumes
in Mathematics and its Applications

Current Volumes:

Volume 1: Homogenization and Effective Moduli of Materials and Media

Editors: Jerry Ericksen, David Kinderlehrer, Robert Kohn, J.-L. Lions

Volume 2: Oscillation Theory, Computation, and Methods of Compensated Compactness

Editors: Constantine Dafermos, Jerry Ericksen,
David Kinderlehrer, Marshall Slemrod

Volume 3: Metastability and Incompletely Posed Problems
Editors: Stuart Antman, Jerry Ericksen, David Kinderlehrer, Ingo Muller

Volume 4: Dynamical Problems in Continuum Physics
Editors: Jerry Bona, Constantine Dafermos, Jerry Ericksen, David Kinderlehrer

Volume 5: Theory and Applications of Liquid Crystals

Editors: Jerry Ericksen and David Kinderlehrer

Volume 6: Amorphous Polymers and Non-Newtonian Fluids

Editors: Constantine Dafermos, Jerry Ericksen, David Kinderlehrer

Volume 7: Random Media

Editor: George Papanicolaou

Volume 8: Percolation Theory and Ergodic Theory of Infinite Particle Systems

Editor: Harry Kesten

Volume 9: Hydrodynamic Behavior and Interacting Particle Systems

Editor: George Papanicolaou

Volume 10: Stochastic Differential Systems, Stochastic Control Theory and Applications

Editors: Wendell Fleming and Pierre-Louis Lions

Volume 11: Numerical Simulation in Oil Recovery

Editor: Mary Fanett Wheeler

Volume 12: Computational Fluid Dynamics and Reacting Gas Flows

Editors: Bjorn Engquist, M. Luskin, Andrew Majda

Volume 13: Numerical Algorithms for Parallel Computer Architectures
Editor: Martin H. Schultz

Volume 14: Mathematical Aspects of Scientific Software
Editor: J.R. Rice

Volume 15: Mathematical Frontiers in Computational Chemical Physics
Editor: D. Truhlar

Volunle 16: Mathematics in Industrial Problems
by A vner Friedman

Volume 17: Applications of Combinatorics and Graph Theory to the Biological
and Social Sciences

Editor: Fred Roberts

Volume 18: q-Series and Partitions
Editor: Dennis Stanton

Volume 19: Invariant Theory and Tableaux
Editor: Dennis Stanton

Volume 20: Coding Theory and Design Theory Part I: Coding Theory
Editor: Dijen Ray-Chaudhuri

Volume 21: Coding Theory and Design Theory Part II: Design Theory
Editor: Dijen Ray-Chaudhuri

Volume 22: Signal Processing: Part I - Signal Processing Theory
Editors: L. Auslander, F.A. Griinbau111, J.W. Helton, T. Kailath, P. Khargonekar
and S. Mitter

Volume 23: Signal Processing: Part II - Control Theory and Applications
of Signal Processing

Editors: L. Auslander, F.A. Griinbau111, J.W. Helton, T. Kailath, P. Khargonekar
and S. Mitter

Volume 24: Mathematics in Industrial Problems, Part 2
by A vner Friedman

Volume 25: Solitons in Physics, Mathematics, and Nonlinear Optics
Editors: Peter J. Olver and David H. Sattinger

Volume 26: Two Phase Flows and Waves
Editors: Daniel D. Joseph and David G. Schaeffer

Volume 27: Nonlinear Evolution Equations that Change Type
Editors: Barbara Lee Keyfitz and Michael Shearer

Volume 28: Computer Aided Proofs in Analysis
Editors: Kenneth R. Meyer and Dieter S. Schmidt

Volume 31: Mathematics in Industrial Problems, Part 3
by A vner Friedman

Forthcoming Volumes:

1988-1989: Nonlinear 'Waves Multidimensional Hyperbolic Problems and Computations (2
Volumes)

Microlocal Analysis and Nonlinear Waves

Summer Program 1989: Robustness, Diagnostics, Computing and Graphics in Statistics

Robustness, Diagnostics in Statistics (2 Volumes)

Computing and Graphics in Statistics

1989-1990: Dynamical Systems and Their Applications

An Introduction to Dynamical Systems

Patterns and Dynamics in Reactive Media

Dynamical Issues in Combustion Theory

Twist Mappings and Their Applications

Dynamical Theories of Turbulence in Fluid Flows

Nonlinear Phenomena in Atmospheric and Oceanic Sciences

Chaotic Processes in the Geological Sciences

FOREWORD

This IMA Volume in Mathematics and its Applications

COMPUTER AIDED PROOFS IN ANALYSIS

is based on the proceedings of an IMA Participating Institutions (PI) Conference
held at the University of Cincinnati in April 1989. Each year the 19 Participating
Institutions select, through a competitive process, several conferences proposals
from the PIs, for partial funding. This conference brought together leading figures
in a number of fields who were interested in finding exact answers to problems in
analysis through computer methods. We thank Kenneth Meyer and Dieter Schmidt
for organizing the meeting and editing the proceedings.

A vner Friedman

Willard Miller, Jr.

PREFACE

Since the dawn of the computer revolution the vast majority of scientific compu­
tation has dealt with finding approximate solutions of equations. However, during
this time there has been a small cadre seeking precise solutions of equations and
rigorous proofs of mathematical results. For example, number theory and combina­
torics have a long history of computer-assisted proofs; such methods are now well
established in these fields. In analysis the use of computers to obtain exact results
has been fragmented into several schools.

This volume is the proceedings of a conference which brought together people
in symbolic algebra and in interval arithmetic with some independent entrepreneurs
who where interested in obtaining precise answers to questions in analysis by com­
puter methods. There were mathematical physicists interested in the stability of
matter, functional analysts computing norms in strange function spaces, celestial
mechanists analyzing bifurcations, symbolic algebraists interested in exact integra­
tion, numerical analysts who had developed interval arithmetic, plus much more.
The mix included developers and end users. The papers within reflect the hetero­
geneous background of the participants.

Barry Cipra, an independent mathematics reporter, attended the conference to
research his article "Do mathematicians still do math?" which appeared in the
May 19, 1989 issue of Science. This article contains long quotes from several of the
participants at the conference. It gives a little of the flavor of the conference.

We thank Drs. Charles Groetsch and Jerome Paul for their help in organizing
this conference. Patricia Brick, Steven Skogerboe, Kaye Smith and Marise Widmer
are to be praised for the excellent 'JEXing of the manuscripts. The conference was
funded by grants from the Departments of Mathematical Sciences and Computer
Science of the University of Cincinnati, the National Science Foundation and the
Institute for Mathematics and its Applications.

Kenneth R. Meyer

Dieter S. Schmidt

CONTENTS

Foreword ... Xl

Preface X1l1

The conversion of a high order programming
language from floating-point arithmetic to
range arithmetic .. 1

Oliver Aberth

Sylvester's form of the resultant and
the matrix-triangularization subresultant
PRS method ... 5

Alkiviadis G. Akritas

Computing the Tsirelson space norm. 12
Johnnie W. Baker, Oberta A. Slotterbeck and Richard Aron

Floating-point systems for theorem proving 22
G. Bohlender, J. Wolff von Gudenberg and W.L. Miranker

Computer algebra and indefinite integrals 33
Manuel Bronstein

A computer-assisted approach to small-divisors
problems arising in Hamiltonian mechanics. 43

Alessandra Celletti and Luigi Chierchia

On a computer algebra aided proof in
bifurcation theory .. 52

Carmen Chicone and Marc Jacobs

MACSYMA program to implement averaging using
elliptic functions ... 71

Vincent T. Coppola and Richard H. Rand

Validated anti-derivatives 90
George F. Corliss

A toolbox for nonlinear dynamics 97
Shannon Coffey, Andre Deprit, Etienne Deprit,
Liam Healy and Bruce R. Miller

Computer assisted proofs of stability of matter
R. de La Llave

Accurate strategies for K.A.M. bounds

116

and their implementation 127
R. de la Llave and D. Rana

A software tool for analysis in function spaces 147
J.-P. Eckmann, A. Malaspinas and S. Oliffson Kamphorst

Equation solving by symbolic computation 168
Anthony C. Hearn

Deciding a class of Euclidean geometry theorems
with Buchberger's algorithm 175

Bernhard Kutzler

Lie transfonn tutorial - II
Kenneth R. Meyer

Interval tools for computer aided proofs

190

in analysis ... 211
Ramon E. Moore

Tools for mathematical computation 217
L.B. RaZZ

Shadowing trajectories of dynamical systems. 229
Tim Sauer and James A. Yorke

Transfonnation to versal nonnal form 235
Dieter S. Schmidt

Computer assisted lower bounds
for atomic energies ... 241

Luis A. Seco

THE CONVERSION OF A HIGH ORDER PROGRAMMING LANGUAGE
FROM FLOATING-POINT ARITHMETIC TO RANGE ARITHMETIC

OLIVER ABERTHt

Floating-point arithmetic is the computation arithmetic that most high-level
programming languages provide. A well-known drawback of this arithmetic is that
when extended calculations are performed, the final answers have an error that
varies widely. Under certain conditions the error is so large as to completely inval­
idate the results, and the person doing the computation is often unaware that this
has occurred.

Computer arithmetic more complicated than floating-point arithmetic can help
in controlling the errors that are made in computation. In recent years we have
gained experience solving a variety of numerical problems exactly by using the pro­
gramming language PRECISION BASIC or PBASlC [1],[2], which employs range
arithmetic.

Range arithmetic is essentially a variety of interval arithmetic [3],[4], so sim­
plified that the computation for one of the four rational operations +, -, x, or .;­
requires a minimal number of extra steps beyond those needed by ordinary floating­
point arithmetic. A possible form of range arithmetic is as follows: Suppose that
every number is manipulated by the computer in the form

(1)

Here the decimal digits d], ... ,dn form the mantissa, with the decimal point pre­
ceding the first digit d], which must be non-zero if n is larger than 1. The single
decimal digit E is the range (or maximum error) of the mantissa, and the integer
e defines the number's power of 10 exponent. The range digit E is understood as
always associated with the last digit dn of the mantissa, so that the representation
of line (1) is an abbreviation for the interval

Here the number n of mantissa digits is variable instead of fixed as is the case
with ordinary floating-point arithmetic. Thus constants such as 10/4 or 0 can be
represented in range arithmetic as

.25 ± 0 .101 or .0 ± 0.10°

A long computation, such as the solution of a set of k linear equations in l,

unknowns Xi, normally begins by manipulating input constants, such as those above,
which are error free or exact (their range is 0). The successive results of additions,

tMathematics Department, Texas A & M University, College Station, Texas 77843

2

subtractions, and multiplications of these exact numbers then create other exact
numbers which tend to have longer and longer mantissas, such as

(2) .351275896553 ± 0 . 101

To control the length of the mantissas of numbers generated by arithmetic oper­
ations, it is useful to employ the parameter precision. This parameter is under
the control of an executing program, and equals the maximum number of mantissa

digits permitted for a result of any rational operation +, -, x, or ..;-. Thus if the
precision is currently set at 10 digits by an executing program, then any generated
number is allowed to have a mantissa of no more than 10 digits, and its range must
be non-zero if this leads to truncation. With this precision the number of line (2),

being a result of an arithmetic operation, would appear as shown below .

. 3512758965 ± 1 . 101

A division of one exact number by another, which does not yield an exact decimal
result (such as 1 divided by 3) also gives a result with a 10 digit mantissa and a
non-zero range. Thus any arithmetic operation with exact operands mayor may

not yield an exact result, depending on the operation and the current precision.
Arithmetic operations with one or both operands non-exact are executed as interval
arithmetic operations and yield a non-exact result. As computation proceeds with
these numbers, the mantissa length can be expected to decrease slowly, with the
number of mantissa digits dropping steadily from 10 toward 1, so that numbers
such as

.72176 ± 2.105 or .4913 ± 4 . 102

are obtained, or even numbers such as

.0 ± 1.108

if the computation is too extensive for the prescribed precision.

A typical computation in range arithmetic can now be described. The problem
of solving k non-singular linear equations in k unknowns Xi again can serve as an
example. Suppose the goal of the calculation is 7 correct decimal places for t.he

unknowns Xi. The precision is set at some value comfortably above 7 depending on
how extensive the computation is. For our example it would be useful to let the

precision depend in some fashion on k, the number of equations. To be specific,
assume here a choice of 15 for the precision. After the comput.ation in range arith­
metic is complete, the values obtained for Xi either indicate that 7 correct decimal
places can be printed, or else indicate the need for a higher precision. In the latter
case, the amount by which the precision should be increased can be estimat.ed from

the least accurate Xi value. The entire computation is then repeated at this higher
precision, and the desired answers correct to 7 decimals are eventually produced.

The cases where the calculation must be repeated are likely to be cases which result
in large errors if the calculations are done in ordinary floating-point arithmetic.

3

With range arithmetic, because the interval width is represented by so few digits
(only one in our examples), it serves mainly to bound off the reliable mantissa digits
and to cause the automatic discard of questionable mantissa digits as new arithmetic
results are generated. In an actual computer implementation, it is efficient to use
as many decimal digits for the range as will fit into a unit of memory storage. This
is two digits if the unit of storage is a byte, four digits if the unit of storage is a
word (2 bytes), and so forth.

Before making a comparison of floating-point arithmetic with range arithmetic,
we list some characteristics of each. With floating-point arithmetic different sizes are
usually allowed for the mantissa (with names like single precision, double precision,
extended precision). These sizes must be specified in advance in a program before it
is run. A fixed amount of memory space is allotted for each floating-point number
of a particular size, and the mantissa representation may be in either binary or
decimal form.

With range arithmetic, the amount of memory space needed for a number is
variable instead of fixed, so that the number of digits n in the mantissa must be
stored with the number as an element of its memory representation, along with
its mantissa, exponent, and range. For an input constant only as many mantissa
digits are used as are necessary to correctly express the number, and the range is
set to zero. This variability in memory space needed for a number entails a level of
indirection in storing and retrieving numbers. A pointer to each number is allocated
instead of the memory space to hold the number as with floating-point arithmetic,
and this pointer then points to the number created in a section of memory given
over to this purpose. Thus management of the memory storage of numbers must be
done somewhat like the way it is done with a LISP type language. The mantissa
representation must be decimal instead of binary, for otherwise input constants,
such as 0.1, would require recomputation every time the precision were increased.

The disadvantages of range arithmetic relative to floating-point arithmetic are
easy to discern. These are the increased complexity in referencing a ranged number,
and the more complicated rational operations +, -, x, 7. The extra complication
of the arithmetic operations is not major, however, since it consists mainly in having
to make a preliminary computation of the result range; most of the computer time
is spent forming the result mantissa, just as with floating-point. Actually, since
the mantissas become shorter and shorter in length as an extended computation
proceeds, the later arithmetic operations may execute faster than the equivalent
floating-point operations with full-length numbers.

There are a number of significant advantages to range arithmetic. The foremost
is that it provides a method for determining the appropriate precision to use in a
computation. The number of significant digits that are obtained with a preliminary,
or sample, computation is a guide as to whether the precision is sufficient or should
be increased. A second major advantage is that when the final results of a compu­
tation are printed, or displayed at the computer console, these results can often be
obtained correct to the last decimal place. Here we need to differentiate between
straightforward and non-straightforward calculations. A straightforward calcula-

4

tion is one that proceeds from mathematically specified input constants through
to end results, by means of a finite length sequence of arithmetic operations or
function evaluations. Otherwise the computation is non-straightforward. Thus the
calculation by the elimination method of the solutions to a set of linear equations is
straightforward, whereas the computation of the zeros of a high degree polynomial
by Bairstow's method is non-straightforward, since the method is iterative and the
zeros are only approximated.

With a straightforward computation, when the end results are displayed with
proper attention paid to the size of the range so that suspect decimals are held back,
then these results are automatically obtained correct to the last decimal place. If too
few correct decimal places are obtained, it is a simple matter to increase the precision
appropriately and repeat the computation. For a non-straightforward calculation,
there must be available some method of obtaining a rigorous upper bound E on the
error of each result R. Then after the calculation of E is made in range arithmetic,
the range of R can be incremented by an amount reflecting the size of E, and then
displayed just as if it were the result of a straightforward computation. (In PBASIC
a special operation +/- is used to achieve this, so that the displayed value would
be R +/- E.) If too few correct decimal places are obtained, then the iteration
procedure yielding R must be continued.

Two minor advantages of range arithmetic should also be mentioned. It is
often convenient to calculate in rational arithmetic. Here a pair of integers p,

q are used to represent each rational number T', with T' equal to p/q. Rational
arithmetic can not easily be programmed in terms of floating-point arithmetic,
since no indication is obtained when digits are discarded when doing arithmetic
operations on integer pairs. On the other hand, programming rational arithmetic
in terms of range arithmetic is easy since the integer pairs yielded by arithmetic
operations have zero ranges as long as digits are not discarded.

In numerical programming a popular method of bounding the error is to use in­
terval arithmetic in various forms, with a pair of floating-point numbers to represent
each variable. As is well known, this requires certain modifications of the floating­
point arithmetic operations because the direction of rounding must be modified
in certain situations. Often it is difficult to make the appropriate modifications,
especially if the floating-point operations are done by hardware instead of soft­
ware. This type of interval arithmetic can also be carried out with a pair of ranged
numbers representing each variable. Here no modification of the range arithmetic
operations is necessary, and the method mentioned of determining what preC1SlOn
of computation to use is applicable here too.

REFERENCES

[1] O. ABERTH, Precise scientific computation with a microprocessor, IEEE Transactions on
Computers, C-33 (1984), pp. 685-690.

[2] O. ABERTH, Precise Numerical Analysis, Wm. C. Brown Publishers, Dubuque, Iowa. 1988.
[3] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computation, translated by Jon

Rokne, Academic Press, New York, 1983.
[4] R. E. MOORE, Methods and Applications of Interval Analysis, SIAM, Philadelphia. 1979.

SYLVESTER'S FORM OF THE RESULTANT
AND THE MATRIX-TRIANGULARIZATION SUBRESULTANT

PRS METHOD

ALKIVIADIS G. AKRITAS*

Summary. Sylvester's form of the resultant is often encountered in the liter­
ature but is completely different from the one discussed in this paper; the form
described here can be found in Sylvester's paper of 1853 [12], and has been previ­
ously used only once, by Van Vleck [13] in the last century. Triangularizing this
"rediscovered" form of the resultant we obtain a new method for computing a great­
est common divisor (gcd) of two polynomials in Z[x], along with their polynomial
remainder sequence (prs); since we are interested in exact integer arithmetic compu­
tations we make use of Bareiss's [4] integer-preserving transformation algorithm for
Gaussian elimination. This new method uniformly treats both complete and incom­
plete prs's and, for the polynomials of the prs's, it provides the smallest coefficients
that can be expected without coefficient gcd computations.

1. Introduction. In this note we restrict our discussion to univariate polyno­
mials with integer coefficients and to computations in Z[x], a unique factorization
domain. Given the polynomial p(x) = cnxn + Cn_IXn- 1 + ... + co, its degree is de­
noted by deg(p(x)) and Cn, its leading coefficient, by lc(p); moreover, p(x) is called
primitive it its coefficients are relatively prime.

Consider now PI(X) and P2(X), two primitive, nonzero polynomials in Z[x],
deg(PI(x)) = nand deg(p2(x)) = m, n ::::: m. Clearly, the polynomial division
(with remainder) algorithm, call it PD, that works over a field, cannot be used in
Z[x] since it requires exact divisibility by Ic(p2)' So we use p •• eudo-divi.'lion, which
always yields a pseudo-quotient and pseudo-remainder; in this process we have to
premultiply PI(X) by IC(P2)n-m+1 and then apply algorithm PD. Therefore we
have:

(1) IC(P2r-m+lpI(X) = q(X)p2(X) + P3(X), deg(P3(x)) < deg(p2(x)).

Applying the same process to P2(X) and P3(X), and then to P3(X) and P4(X),
etc. (Euclid's algorithm), we obtain a polynomial remainder sequence (prs)

where Ph(X) =1= 0 is a greatest common divisor of PI (x) and P2(X), gCd(PI (x),P2(X)).
If ni = deg(p;(x)) and we have ni - ni+1 = 1, for all i, the prs is called complete,
otherwise, it is called incomplete. The problem with the above approach is that
the coefficients of the polynomials in the prs grow exponentially and hence slow

*University of Kansas. Department of Computer Science, Lawrence, Kansas 66045

6

down the computations. We wish to control this coefficient growth. We observe
that equation (1) can also be written more generally as

i = 1,2, ... , h - 1. That is, if a method for choosing (3; is given, the above equation
provides an algorithm for constructing a prs. The obvious choice (3i = 1, for all i,

is called the Euclidean prs; it was described above and leads to exponential growth
of coefficients. Choosing (3; to be the greatest common divisor of the coefficients of
Pi+2(X) results in the primitive prs, and it is the best that can be done to control
the coefficient growth. (Notice that here we are dividing Pi+2 (x) by the greatest
common divisor of its coefficients before we use it again). However, computing the
greatest common divisor of the coefficients for each member of the prs (after the first
two, of course) is an expensive operation and should be avoided. So far, in order to
control the coefficient growth and to avoid the coefficient gcd computations, either
the reduced or the (improved) subresultant prs have been used. In the reduced prs
we choose

(3) (31 = 1 and (3i = lC(Pi)n;-l-n;+l, i = 2,3, ... ,h - 1,

whereas, in the subresultant prs we have

where

and H· = lc(p·)n;-l-n; H 1-(n;-1-n;)
t l t-l , i = 3,4, ... , h - 1.

That is, in both cases above we divide Pi+2(X) by the corresponding (3i before we use
it again. The reduced prs algorithm is recommended if the prs is complete, whereas
if the prs is incomplete the subresultant prs algorithm is to be preferred. The proofs
that the (3;'s shown in (3) and (4) exactly divide Pi+2(X) are very cQmplicated [7]
and have up to now obscured simple divisibility properties [11], (see also [5] and
[6]). For a simple proof of the validity of the reduced prs see [1]; analogous proof
for the subresultant prs can be found in [8].

In contrast with the above prs algorithms, the matrix-triangularization subre­
sultant prs method avoids explicit polynomial divisions. In what follows we present
this method. We also present an example where bubble pivot is needed.

2. Sylvester's form of the resultant. Consider the two polynomials in
Z[x], p(x) = cnxn + Cn_1Xn-1 + ... + Co and P2(X) = dmx m + dm_1x m- 1 + ... +
do, C n # 0, dm # 0, n ~ m. In the literature the most commonly encountered

7

forms of the resultant of Pl(X) and P2(X) (both known as "Sylvester's" forms) are:

Cn Cn-l Co 0 0

0 Cn Cn-l Co 0

0 0 Cn Cn-l Co
res (Pl,P2) = B dm dm - l do 0 0 0

0 dm dm - l do 0 0

0 0 dm dm - l do

or

Cn Cn-l Co 0 0

0 Cn Cn-l Co 0

0 0 Cn Cn-l Co
res (Pl,P2) =

T 0 .0 dm dm - l do

0 dm dm - l do 0 0

dm dm - l do 0 0 0

where for both cases we have m rows of c's and n rows of d's; that is, the de­
terminant is of order m + n. Contrary to established practice, we call the first
Bruno's and the second Trudi's form of the resultant [3). Notice that resB(Pl,P2) =
(_1)n(n-l)/2 resT(p,P2). We choose to call Sylvester's form the one described below;

this form was "buried" in Sylvester's 1853 paper [12)and is only once mentioned in
the literature in a paper by Van Vleck [13). Sylvester indicates ([12)), p. 426 that he
had produced this form in 1839 or 1840 and some years later Cayley unconsciously
reproduced it as well. It is Sylvester's form of the resultant that forms the foun­
dation of our new method for computing polynomial remainder sequences; however
,we first present the following theorem concerning Bruno's form of the resultant:

THEOREM 1 (Laidacker [10)). If we transform the matrix corresponding to
resB(Pl(x), P2(X» into its upper triangular form TB(R), using row transformations
only, then the last nonzero row ofTB(R) gives the coefficients of a greatest common
divisor ofpl(x) and P2(X).

The above theorem indicates that we can obtain only a greatest common divisor
of Pl (x) and P2(x) but none of the remainder polynomials. In order to compute both

8

a gCd(PI(X),P2(X)) and all the polynomial remainders we have to use Sylvester's
form of the resultant; this is of order 2n (as opposed to n + m for the other forms)
and of the following form (P2 (x) has been transformed into a polynomial of degree
n by introducing zero coefficients):

Cn Cn-I Co 0 0 ... 0

dn dn- 1 do 0 0 ... 0

0 Cn Co 0 ... 0

res (p, q) = 0 dn do 0 ... 0
s

.........

0 0 Cn Cn-I Co

0 0 dn dn- I do

Sylvester obtains this form from the system of equations ([12]) pp.

p(x) = 0

q(x) = 0

x·p(x)=O

x·q(x)=O

x2 . p(x) = 0

x 2 • q(x) = 0

xn- I . p(x) = 0

x n- I . q(x) = 0

(8)

427-428)

and he indicates that if we take k pairs of the above equations, the highest power of
x appearing in any of them will be xn+k-I. Therefore, we shall be able to eliminate
so many powers of x, that x n - k will be the highest power uneliminated and n-k will
be the degree of a member of the Sturmian polynomial remainder sequence gener­
ated by p(x) and q(x). Moreover, Sylvester showed that the polynomial remainders
thus obtained are what he terms simplified residues; that is, the coefficients are the
smallest possible obtained without integer gcd computations and without introduc­
ing rationals. Stated in other words, the polynomial remainders have been freed
from their corresponding allotrious factors.

It has been proved [13] that if we want to compute the polynomial remainder
sequence PI (x), P2(X), P3(X), . .. ,Ph(X), deg(pi (x) ='n, deg(p2(x)) = m, n;::: m,
we can obtain the (negated) coefficients of the (i + l)th member of the prs, i =
0,1,2, ... , h - 1, as minors formed from the first 2i rows of (8) by successively
associating with the first 2i-l columns (of the (2i) by (2n) matrix) each succeeding
column in turn.

Instead of proceeding as above, we transform the matrix corresponding to the
resultant (8) into its upper triangular form and obtain the members of the prs with

9

the help of Theorem 2 below. We also use Bareiss's integer-preserving transforma­
tion algorithm [4]; that is:

let r~~l) = 1, and r;~) = rij, i,j = 1, ... ,n; then for k < i,j ~ n,

(5) (k) ._ (k-2)
rij .- (1/r k _ l ,k_I)'

(k-l)
r kj

(k-l)
rij

Of particular importance in Bareiss's algorithm is the fact that the determinant
of order 2 is divided exactly by r~~~2LI (the proof is very short and clear and is
described in Bareiss's paper [4]) and that the resulting coefficients are the smallest
that can be expected without coefficient gcd computations and without introduc­
ing rationals. Notice how all the complicated expressions for f3i in the reduced
and subresultant prs algorithms are mapped to the simple factor r~~~2k_1 of this
method.

It should be pointed out that using Bareiss's algorithm we will have to perform
pivots (interchange two rows) which will result in a change of signs. We also define
the term bubble pivot as follows: if the diagonal element in row i is zero and the
next nonzero element down the column is in row i + j, j > 1, then row i + j will
become row i after pairwise interchanging it with the rows above it. Bubble pivot
preserves the symmetry of the determinant.

We have the following theorem.

THEOREM 2 ([2]). Let PI(X) and P2(X) be two polynomials of degrees nand m

respectively, n 2: m. Using Bareiss's algorithm transform the matrix corresponding

to ress(PI(X),P2(X» into its upper triangular form Ts(R); let ni be the degree
of the polynomial corresponding to the i-th row of Ts(R), i = 1,2, ... , 2n, and
let Pk(x), k 2: 2, be the kth member of tile (complete or incomplete) polynomial
remainder sequence ofpl(x) and P2(X). Then ifpk(X) is in row i of Ts(R), the
coefficients Ofpk+I(X) (witllin sign) are obtained from row i + j of Ts(R), where

j is the smallest integer such that ni+ j < ni. (If n = m associate botil PI (x) and

P2(X) with tile first row of Ts(R).)

We see, therefore, that based on Theorem 2, we have a new method to compute
the polynomial remainder sequence and a greatest common divisor of two poly­
nomials. This new method uniformly treats both complete and incomplete prs's
and provides the smallest coefficients that can be expected without coefficient gcd

computation.

3. The matrix-triangularization subresultant prs method. The inputs

are two (primitive) polynomials in Z[a:], PI (x) = cnxn + Cn-l + ... + Co and P2(X) =
dmxm + dm_Ix m- 1 + ... + do, Cn # 0, elm # 0, n 2: m.

Step 1: Form the resultant (S),ress(PI(.T),P2(X», of the two polynOlnials PI(X)

and P2(X).

Step 2: Using Bareiss's algorithm (and bubble pivot) transform the resultant (S)
into its upper triangular form Ts(R); then the coefficients of all the members of the

10

polynomial remainder sequence of PI (x) and P2 (x) are obtained from the rows of
Ts(R) with the help of Theorem 2.

For this method we have proved [2] that its computing time is:

THEOREM 3. Let PI(X) = cnxn + Cn_IXn- 1 + ... + Co and P2(X) = dmx m +
dm_Ixm- 1 + ... + do, Cn -I 0, dm -I 0, n 2: m be two (primitive) polynomials
in Z[x] and for some polynomial P(x) in Z[x] let IPloc represent its maximum
coefficient in absolute value. Then the method described above computes a greatest
common divisor of PI (x) and P2(X) along with all the polynomial remainders in time

Below we present an incomplete example where bubble pivoting is needed [3];
note that there is a difference of 3 in the degrees of the members of the prs, as
opposed to a difference of 2 in Knuth's "classic" incomplete example [2].

Example. Let us find the polynomial remainder sequence of the polynomials
PI(X) = 3x9 + 5x8 + 7x7 - 3x6 - 5x 5 - 7x4 + 3x 3 + 5x2 + 7x - 2 and P2(X) =

x8 - x 5 - x2 - X - 1. This incomplete prs example presents a variation of three
in the degrees of its members (from 7 to 4) and it requires a bubble pivot in the
matrix-triangularization method; that is, the special kind of pivot described above
will take place between rows that are not adjacent (the pivoted rows are marked by

"#").

row
1>
2>
3)
4>
5)

#6)
#7)

8>
9)

10)
11)

12 >
13)

14 >
15)
16 >
17)
18 >

The matrix-triangularization subresultant prs method

357 -3 -7357 -200000000
0100 -100 -1 -1 -100000000
o 0 5 7 0 - 5 - 7 6 8 10 - 2 0 0 0 0 0 0 0
o 0 0 - 7 0 0 7 - 6 - 13 - 15 - 3 0 0 0 0 0 0 0

degree
(9)
(8)
(8)
(7)

o 0 0 0 - 49 0 0 79 23 19 - 55 14 0 0 0 0 0 0 (7)
o 0 0 0 0 - 343 0 - 24 501 73 93 - 413 98 0 0 0 0 0 (7)
o 0 0 0 0 0 - 2401 - 510 - 1273 1637 - 339 56 - 2891 686 0 0 0 0 (7)
000000020584459754634302401000000 (4)
o 0 0 0 0 0 0 0 - 1764 - 3822 - 6468 - 2940 - 2058 0 0 0 0 0 (4)
o 0 0 0 0 0 0 0 0 1512 3276 5544 2520 1764 0 0 0 0 (4)
o 0 0 0 0 0 0 0 0 0 25811 - 18982 4520 - 811 - 3024 0 0 0
o 0 0 0 0 0 0 0 0 0 0 - 64205 - 77246 - 37568 - 28403 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 2124693 449379 519299 128410 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 - 5240853 - 1800739 - 2018639 0 0
00000000000000 - 22909248 - 24412716104817060
0000000000000 00 - 40801132476203300
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 398219984 81602264
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682427564

(4)
(3)
(3)
(2)
(2)
(1)
(1)
(0)

The members of the prs are obtained from the rows whose numbers are followed by
">", except for row 8 in which case the smaller coefficients shown below, in 6 >,

II

axe taken as the coefficients of the polynomial. The laxgest integer generated IS

27843817119202448 [17 digits].

Pivoted row 6 during transformation 6. Stored row is:

6 > 0 0 0 0 0 0 0 42 91 154 70 49 0 0 0 0 0 0

Pivoted row 7 during transformation 7. Stored is:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

7) 0 0 0 0 0 0 0 294 637 1078 490 343 0 0 0 0 0 0

REFERENCES

AKRITAS, A.G., A simple validity proof of the reduced prs algorithm, Computing 38 (1987),
369-372.

AKRITAS, A.G., A new method for computing greatest common divisors and polynomials
remainder sequences, Numerische Mathematik 52 (1988), 119-127.

AKRITAS, A.G., Elements of Computer Algebra with Applications, John Wiley Interscience,
New York, 1989.

BAREISS, E.H., Sylvester's identity and multistep integer-preserving Gaussian elimination,
Mathematics of Computation 22 (1968), 565-578.

BROWN, W.S., On Euclid's algorithm and the computation of polynomial greatest common
divisors, JACM 18, (1971) 476-504.

BROWN, W.S., The subresultant prs algorithm, ACM Transactions On Mathematical Soft­
ware 4 (1978), 237-249.

COLLINS, G.E., Subresultants and reduced polynomial remainder sequences, JACM 14 (1967),
128-142.

HABICHT, W., Eine Verallgemeinerung des Sturmschen Wurzelzaehlverfahrens, Commentarii
Mathematici Helvetici 21 (1948), 99-116.

KNUTH, D.E., The art of computer Programming, Vol. II, 2nd ed.: Seminumeral Algorithms.
Addison-Wesley. Reading MA, 1981.

LAIDACKER, M.A., Another theorem relating Sylvester's matrix and the greatest common
divisor, Mathematics Magazine 42 (1969), 126-128.

Loos, R., Generalized polynomial remainder sequences. In: Computer Algebra Symbolic
and Algebraic Computations. Ed. by B. Buchberger, G.E. Collins and R. Loos, Springer
Verlag, Wien, New York, 1982, Computing Supplement 4, 115-137.

SYLVESTER, J.J., On a theory of the syzegetic relations of two rational integral functions,
comprising an application to the theory of Sturm's functions, and that of the greatest alge­
braical common measure, Philosophical Transactions 143 (1853), 407-584.

VAN VLECK, E.B., On the determination of a series of Sturm's functions by the calculation
of a single determinant, Annals of Mathematics, Second Series, Vol. 1, (1899-1900) 1-13.

COMPUTING THE TSIRELSON SPACE NORM

JOHNNIE W. BAKER*, OBERTA A. SLOTTERBECKt, and RICHARD ARONt

Abstract. After a review of Tsirelson space T, a reflexive Banach space containing no isomor­
phic copies of any ep space, the authors develop an efficient algorithm for computing the norm of T.
Properties of the algorithm, timings, and space considerations are discussed.

AMS(MOS) Subject Classification. 46-04, 46B25.

Keywords. Tsirelson space, norm algorithm.

I. INTRODUCTION. Ever since the introduction of Banach spaces in the early
1930's, a problem of continuing interest for functional analysts has been the structure
theory of these spaces. Specifically, a topic of basic research for the last fifty years has
been the study of the type and structure of finite and infinite dimensional subspaces
of a given Banach space. For example, a well-known, useful result of J. Lindenstrauss
and L. Tzafriri [5J is that if every closed subspace of a Banach space is complemented
(i.e. if it admits a projection onto the subspace), then the Banach space is in fact a
Hilbert space, up to isomorphism.

A natural hope of mathematicians for much of this time has been that the "brick­
work" making up the structure of an arbitrary infinite dimensional Banach space
consist of "reasonable" pieces. Specifically, it was hoped that Conjecture I below is
true:

Conjecture I: Every infinite dimensional Banach space contains a subspace
which is isomorphic to some fp or to Co.

Here, for 1 :::; p < 00, fp consists of those sequences of scalars (Aj)j for which the

norm !!(Aj)lIp == [2:~o IAjlP pip < 00, and Co == {(Aj) : II(Aj)lIco == maXIAjl < oo}.
The fp spaces and Co are called the classical Banach spaces. Since the fp spaces are
reflexive for 1 < p < 00, Conjecture II is substantially weaker than Conjecture I, and
is still open.

Conjecture II: Every infinite dimensional Banach space contains either an
infinite dimensional reflexive subspace or else a subspace isomorphic to Co

or fl'

In 1973, the Soviet mathematician B. S. Tsirelson [6J disproved Conjecture I by

* Johnnie W. Baker, Department of Mathematical Sciences, Kent State University, Kent, Ohio
44242, CSNET address: jbaker@kent.edu

tOberta A. Slotterbeck, Department of Mathematical Sciences, Hiram College, Hiram, Ohio
44234, CSNET address: slotter@kent.edu

:lRichard Aron, Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242,
CSNET address: aron@kent.edu

13

producing a Banach space containing no isomorphic copy of any of the classical Ba­
nach spaces. Within a year, T. Figiel and W. B. Johnson [4] had produced another
such example, a space which we will call T. In fact, T is the dual of Tsirelson's
original space. It is reflexive and has an unconditional basis. Nevertheless, and not
surprisingly, the structure of T is extremely complicated and remains far from being
well-understood. As will be seen below, the norm on T is defined as a limit of an
infinite recursion and, consequently, computations involving this norm have been
extremely slow and difficult. In this paper, we describe an algorithm for computing
the norm on T.

The plan of this article is the following. After a brief description of the space
(T, III!), we will describe our algorithm. Finally, we will discuss some computational
results as well as storage and time considerations.

II. PRELIMINARIES AND EXAMPLES. Let To be the vector space of
all sequences X = (Xl, X2, ... , xn) of real scalars, such that Xj = ° for all big j.
We'll write X = (XI,X2, ... ,xn) for (XI,X2, ... ,Xn,O,O, .. .). For X as above and for ° :::; 10 < hi :::; n, write (lo, hi] for the "subvector" (0, ... ,0, X/o+b ... , Xhi, 0, 0, ...).
The definition of the norm for Tsirelson space which is used here is the one described
below: An admissible partition P of {l, 2, ... , n} is a set

P = {PI,P2, ... ,Pk+d

of integers with

k :::; PI < P2 < ... < PHI:::; n.

For example, the only admissible partition of {I, 2, ... ,6} having 4 elements is

P = {3,4,5,6}. For X E To, define IIXlio = maxjlxjl, and for m :.::: 1, IIXllm is
defined as

1"X"m_1
IIXllm = max I ~ lie]11 "2mpx ~ Pj,Pj+l m-l

where max is the maximum over all admissible partitions P of {I, 2, ... ,n}. Finally,
p

we let IIXII = limm IIXllm, and we let T be the completion of To with this norm.

'We give two simple examples to illustrate the computations involved, and also
to provide some motivation for the algorithm which follows:

Example 1. Let X = (0,0,0,1,1,1). So IIXllo = 1 and, taking the partition

P = {3,4,5,6} which was mentioned above, we see that IIXIIt :.::: ~[11(3,4]llo +
11(4,5)110 + 11(5,6)110) =~. In fact, it is easy to see that IIXII =~.

The next example, although still quite trivial, illustrates both the computations
involved and our method for finding the Tsirelson norm.

Example 2. Let X = (4,1,2,6,5,3). For each subvector Y = (lo, hi] of X, let's

calculate IIYllo, storing our answer in the (lo, hi) position of a 6 by 6 matrix. Thus,
we get the following half-matrix:

14

hi
10 1 2 3 4 5 6

0 4 4 4 6 6 6

2 6 6 6
2 2 6 6 6
3 6 6 6

4 5 5
5 3

To find IIXlh, we will use the 1lYllo's from this matrix. Similarly, to find IIXII2,
we will use the IlYlh's which will be displayed in a similar half-matrix. Observe that
once the half-matrix of IlYlh norms has been found, the preceding half- matrix, of
IlYllo norms can be discarded.

It is not difficult to see that in our calculation of IIYllm, we can omit the first
(10 = 0) row and hi = 1 column, substituting instead IlYllm-1 in the (n,n) position.
Thus, in this example, the half-matrix we will be dealing with is the more efficient,
albeit less aesthetic, one given below:

hi
10 2 3 4 5 6

1 2 6 6 6

2 2 6 6 6

3 6 6 6
4 5 5
5 3
6 6

III. THE ALGORITHM. The algorithm presented here works only on the
dense subspace To of T. In fact, there are two computer programs, NORM and
TRACE, which have been developed based on this algorithm. The TRACE algo­
rithm includes the code for NORM, but also allows the user the choice of tracing
intermediate results as they are generated. Both programs were written in standard
Pascal and tested on a VAX 11/780 running under UNIX (version 4.2 UCB). Details
concerning these programs, including the Pascal code and instructions on how to
use the programs, are given in the appendix of [11. As in Example 2, to calculate

IIXllm, we will first calculate and store 11Y11m-1 for all subvectors Y of X. present,
we assume that these values are all stored in an n X n matrix called OLDNORMS,

indexed by i,j, where 1 :::; i :::; n, 2 :::; j :::; n. The norm II(e, h111 m - 1 is stored at
position (e, h) of this matrix. Note that approximately half of the storage locations
are used. A more efficient storage is actually employed in our algorithm. However,
it is convenient to visualize storage in the above form in the algorithm description.
The storage scheme for an additional matrix, NEWNORMS, described below, is
the same as for OLDNORMS.

15

In the actual algorithm described below, the number k of subvectors in a par­
ticular partition P involved in the calculation of 1IYlim is called PARTS, and m
is called LEVEL. The amount of work required for the calculation of IIYII can be
significantly reduced by saving the values

k

Y(k, 10, hi) = max L II(Pi,Pi+Illlm-1
p. j=1

for successive values of k (k = 1,2, ... , L~ - 1 J). Here 0 ::; 10 < hi ::; n, L j J is the
greatest integer::; j, and Pk = {PI,P2,'" ,PHd ranges over all subsets of integers
satisfying

max{ k, lo} ::; PI < P2 < ... < PHI::; hi.

It is convenient to assume these values will be stored in the three dimensional
(Ln/2J -1) x n x (n-l) matrix NORMSUMS with Y(k, 10, hi) stored atlocation
NORMSUMS (k, 10, hi). For each fixed k, the values Y(k, 10, hi) are stored in the nx
(n-l) submatrix NORMSUMS(k,.,.) in the same manner as used for OLDNORMS
earlier in this section. These values can then be used to calculate the corresponding
values for the n x (n - 1) submatrix NORMSUMS(k + 1,., .), as indicated in step
13 of the following algorithm.

Again, at most half the storage locations are used. A more efficient storage
scheme will be introduced after the algorithm is described.

In describing the algorithm, it is convenient to introduce some procedures which
accomplish specific tasks. A brief description of these procedures together with
their nested structure is indicated below (i.e., indented procedures are called by the
preceding procedure which is less indented):

program NoRM(input,output);

procedure EnterVector: Handles input of the vector.

procedure ProcessVector: Calculates the m-norms of the current
vector entered and reports the value
of each m-norm as it is calculated.
If the m-norm values stabilize>,
terminate.

procedure NextLevel: Calculates the next level of m-norms for
the subvectors of the vector entered.

procedure Sums Of Norms: Calculates values for appropriate sums
of norms of subvectors and stores the
results in NoRMSUMS matrix.

procedure UpdateNorm: Updates the current calculation of the

End of NORM.

16

norms of subvectors using values in the
NORMSUMS x matrix. Results are stored
in the NEWNORMS matrix.

The following is a step-by-step outline of the control flow during execution of
the algorithm. The name of the procedure containing each step is stated prior to
the step. Variables and named constants in the code are introduced as needed and
are given in capitals.

1. (EnterVector) Prompt for vector, read it, and set DIM = length of vector
read.

2. (Norm) Set LEVEL to O.

3. (ProcessVector) Prompt user for highest level M permitted for m-norm and
assign this value to TOPLEVEL.

4. (ProcessVector) Set STABILIZED to FALSE.

5. (ProcessVector) { Begin loop to calculate m-norm for each level M succes­
sively, M = 0,1, ... , TOPLEVEL.} While LEVEL:::; TOPLEVEL and STA­
BILIZED is false, repeat steps (6) - (26).

6. (ProcessVector) Set STABILIZED to TRUE.

7. (NextLevel) { Initialize NEWNORMS matrix for zero level.} If LEVEL is
zero, execute steps (8) - (10), else go to (11).

8. (NextLevel) Calculate the sup-norm of the subvector from position (LO+l)
to position HI and store in the array location NEWNORMS[LO,HIJ for all
integers LO and HI with 0 :::; LO :::; HI :::; DIM.

9. (NextLevel) { Store the O-norm of original vector.} Set NEWNORMS[DIM,DIMJ
to sup-norm of the original vector.

10. (NextLevel) Copy values in NEWNORMS into OLDNORMS.

11. (NextLevel) { Begin calculations for the three dimensional matrix NORM­
SUMS for this level.} If LEVEL> 0, execute steps (12) - (25) , else go to
(26).

12. (NextLevel) Copy the values of the two dimensional array NEWNORMS into
the two dimensional submatrix NORMSUMS [1,., .J.

13. (SumsOfNorms) { Next, start calculating values for the two dimensional sub­
matrix NORMSUMS [PARTS+l,.,.J from the two dimensional submatrix
NORMSUMS [PARTS,.,. J.} For PARTS starting at 1 untillDIM/2J do steps
(14) - (24). { lDIM/2J denotes the greatest integer of DIM/2.}

17

14. (SumsOfNorrns) For LO starting at PARTS+1 until DIM-I-PARTS do steps
(15) - (16).

15. (SumsOfNorrns) For HI starting at (PARTS+1) + LO until DIM do step (16).

16. (SumsOfNorms) Set NORMSUMS[PARTS+l,LO,HI] to the maximum of the
values OLDNORMS[LO,MID] + NORMSUMS[PARTS,MID,HIj for all inte­
gers MID satisfying LO + 1 :S MID :S HI - PARTS.

17. (UpdateNorrn) { Steps (17) - (24) update the NEWNORMS matrix from m­
norms to (m + 1)-norrns, using the values calculated for the two-dimensional
submatrix NORMSUMS [PARTS+1,., .j.} For LO starting at 1 until DIM-1
do block (18) - (23).

18. (UpdateNorm) For HI starting at LO+l until DIM do steps (19) - (23).

19. (UpdateNorm) Initialize X to zero.

20. (UpdateNorm) { Calculate ASSIGNMENT A value for X.} If PARTS + 1 :S
LO and (PARTS + 1) + LO:S HI, let X be NORMSUMS[PARTS+l,LO,HIj.

21. (UpdateNorrn) { Calculate ASSIGNMENT B value for X.} If LO < PARTS
+ 1 and 2(PARTS+1):S HI, let X be NORMSUMS[PARTS+l,PARTS+1,HIj.

22. (UpdateNorm) { Update norm of vector (LO,HI] using contributions from
NORMSUMS[PARTS+1,., .j.} Replace NEWNORMS[LO,HIj with the larger
of its present value and X/2.

23. (UpdateNorm) Set STABILIZED to FALSE if the value ofNEWNORMS[LO,HIj
was increased in step (22).

24. (UpdateNorrn) { Update the norm of the original vector for this level.} Set
NEWNORMS[DIM,DIMj to be the larger of its present value and NEWNORMS[l,DIMj.

25. (NextLevel) Copy the values of the two dimensional array NEWNORMS into
the two dimensional array OLDNORMS.

26. (ProcessVector) Set LEVEL to LEVEL + 1 and return to (5).

IV. SPACE REQUIREMENTS. As mentioned earlier, the storage scheme
we presented for NEWNORMS and OLDNORMS is inefficient. Instead of using
two-dimensional arrays for NEWNORMS and OLDNORMS, we use one-dimensional
arrays. The norm information for the subvector (LO,HI] is stored at location (LO­
l)N - LO(LO+l)/2 + HI in the linear arrays. For the vector X = (Xl,X2,"" x n),

this leads to the following storage locations for the subvectors of X:

18

NUMBER OF SUBVECTORS
ARRAY INDEX SUBVECTOR MATRIX INDEX NUMBER OF VECTORS

(0, X2) (1,2)
2 (0, X2, X3) (1,3) n-1

n-1 (0, X2, X3, ... , xn) (1, n)
n (0,0,X3) (2,3)

n+1 (0,0, X3, X4) (2,4) n-2

2n - 3 (O,O,x3,i ... ,xn) (2, n)
2n - 2 (0,0,0,X4) (3,4)
2n -1 (0,0,0,X4,XS) (3,5) n-3

3n - 6 (0,0,0, X4, ... xn) (3,n)

n(n - 1)/2 (0, ... ,O,xn) (n-1,n) 1
n(n-1)/2+1 (Xl,X2, ... xn) (n,n)

The storage of the norm of the vector (Xl> X2, ..• , xn) was at (n, n) in the matrix
scheme. Under the new approach, we store it at the next location after the storage
location for (0,0, ... xn), i.e. at index n(n - 1)/2 + 1.

The storage of NORMSUMS is also inefficient. For a fixed index PARTS,
NORMSUMS[PARTS,LO,HI] is stored in a linear array with

INDEX = (LO-l)N - LO(LO+l)/2 + HI.

Thus, NORMSUMS can be regarded as a two-dimensional array and (PARTS,LO,HI)
can be stored at NORMSUMS[PARTS,INDEX]. However, one additional space sav­
ing scheme is used. After NORMSUMS[PARTS,.] is calculated, it is needed only in
the calculation of NORMSUMS[PARTS+l,.]. After this calculation is completed,
NORMSUMS[PARTS,.] can have its storage space used again. As a result, we need
only two values for the first component in the index for NORMSUMS. This is ac­
complished by replacing NORMSUMS[PARTS,INDEX] with NORMSUMS[PARTS
mod 2, INDEX].

The total number of storage locations in each array NEWNORMS and OLD­
NORMS is n(n - 1)/2 + 1. The number of storage locations for NORMSUMS is
2[n(n - 1) /2 + 1] = n(n - 1) /2. Also, n locations are required to store the vector X
entered by the user. Consequently, the total storage for arrays is 2n 2 - n + 4. Thus,
the storage required is O(n2), where n is the maximum length that is permitted for
the vector entered by the user.

19

V. TWO SWITCHES IN THE ALGORITHM. The variable STABI­
LIZED is a switch. It has an initial value of TRUE for each norm level calculated
(see step 6). As the norm values for subvectors are updated in step (22), the value
of STABILIZED is changed to FALSE if the norm of any subvector is increased. If
STABILIZED is still TRUE after the calculations of the NEWNORMS matrix, then
the NEWNORMS and OLDNORMS matrices are identical and the calculation for
the next level will also be identical. As a result, if STABILIZED is TRUE after the
calculation of a given level, the value of all m-norms for all m greater than this level
for each subvector will be the same as they are for this level. The norm value for
this level for the original vector entered by the user can be returned as the Tsirelson
space norm of the vector.

A variable SUMSGROW is used as another switch in the procedure SumsOfN orm
(but is not exhibited in our simplified description of the algorithm in section III).
It has an initial value of FALSE for each pass through the outer "parts" loop
(i.e., steps 13 to 24). If a larger value is found for the two-dimensional sub­
matrix NORMSUMS[(PARTS+l)mod 2, .,.J, i.e. with PARTS fixed, than for
the corresponding position in NORMSUMS[PARTS mod 2,., .j then SUMSGROW
has its value changed to TRUE. Otherwise, these two-dimensional submatrices of
NORMSUMS are equal and no values in the matrix NEWNORMS will be changed
by the procedure UpdateNorms. The calculations for NORMSUMS[(PARTS+2)
mod 2, ., .j will be the same as for NORMSUMS[(PARTS+l) mod 2, ., .j. Conse­
quently, NORMSUMS[k mod 2, ., . j need not be calculated for k 2': PARTS + 1
and the calculation of the norm for this level is complete.

VI. TIMINGS. Using the definition of the Tsirelson space norm, one can
use recursion to develop a more natural algorithm than the preceding algorithm.
Unfortunately, the recursive version runs much slower than the one presented here.
The timings chart given below includes timings for an implementation of the natural
recursive algorithm which was developed earlier by the authors.

The CPU timings given below were obtained on a VAX 11/780 running UNIX
(Version 4.2 UCB). The notation

3*1,2, ... ,9,0

means that the block 1,2,3,4,5,6,7,8,9,0, is repeated three times. The columns rep­
resent the following:

A The number of m-norm levels calculated using the recursive algorithm.

B The timing in CPU seconds for the recursive algorithm.

C The timing in CPU seconds for NORM.

D The level at which the m-norm stabilized.

E The norm value.

20

VECTOR A B C D E
7,7,7,7,4,4,4 4 24.45 .050 2 7.5
15,14,13, ... ,2,1 4 KILLED .534 3 23.75

after one hour of con-
nect time.

3*1,2, ... ,0 6.400 3 40.5
10*1,2, ... ,0 651.817 3 128.75

Observe that as the length n of the vector increases, the time required by NORM
to calculate the norm of the vector increases rapidly. (See column C.) In fact, it
is not difficult to show that the time complexity of NORM is exponential in n.
However, the time complexity of the natural recursive algorithm is exponential in
both nand m, the number of levels of the m-norm calculated. On the other hand,
with NORM, the time required to calculate the (m + 1)-norm after the m-norm
has been calculated is essentially the same as the time required to calculate the
(m + 2)-norm after the (m + I)-norm has been calculated. That is, the amount
of work required to calculate the m-norm of a vector using NORM is linear with
respect to m.

As the recursive algorithm did not provide an easy method of determining when
the m-norms stabilized, Column A gives the actual number of m-norm levels that
were calculated. As a result, this algorithm provided only information about the
m-norms of a vector. When the same value was obtained for the m-norm of a
vector for several successive values of m, it was natural to assume that the norm
of the vector equaled the repeated m-norm. However, this was only a guess, and
the recursive algorithm did not seem to lend itself to a method for calculating the
actual norm of a vector.

VII. STOPPING TIME QUESTION. Based on the problem cited in the
preceding paragraph, it might seem reasonable to believe that if a vector had the
same m-norm for two successive values of m, this m-norm value would be the norm
value of the vector. However, it is not difficult to find vectors with finitely many
nonzero terms which have an m-norm equal to an (m + I)-norm, but with this
m-norm value unequal to the norm value. It appears reasonable to believe that for
every pair of positive integers m and k, there exists a vector X = (Xl, X2, ••• , xm)
with IIXllm = IIXllm+1 for 1 ::; i ::; k, but IIXlim < IIXII. Therefore, if the same value
is obtained for two or more successive m-norms of a vector, one cannot automatically
assume this value is also the norm value of that vector. This leads to the following
question:

Problem 1. If X = (Xl, X2, .•• , xn) and k is a positive integer, find the minimal
value of k (as a function of n alone) such that if m is a positive integer with m+k ::; n

and IIxllm = IIXllm+1 for 1 ::; i ::; k, then IIXlim = IIXII.
The following easy to prove fact provides a partial answer to the preceding

problem.

21

Theorem. If X = (XI,X2, .•. ,xn), then IiXllm = IIXII for m ~ L(n -I)/2J ..

Based on this result, a sufficient condition on k in the preceding problem is to
take k = L(n - 1) /2 J. However, this is possibly not a minimal value for k.

A consequence of the preceding theorem is that there exists a positive integer

t such that IiXllo, IIXIIr, ... IIXlij, ... stabilizes at level j = t for all vectors X of
length n. Let j(n) be the minimal value of t above.

Problem 2. In the above setting,

(a) Find a reasonably tight upper bound for j(n) for each positive integer n.

(b) Determine a formula for j(n).

An answer to either part of Problem 2 would allow a user to estimate the time
required in the worst case to evaluate the norm of a vector. Recall, the time required
to calculate the (m + 1)-norm after the m-norm has been calculated is essentially
the same as the time required to calculate the (m + 2)-norm after the (m + 1)-norm
has been calculated for all m ~ O. Thus, if an upper bound for the value of j(n)
is k and r is the CPU time required to calculate the I-norm of a vector after the
O-norm is calculated using the NORM program, then kr is an approximate upper
bound for the CPU time needed to calculate the norm.

VIII. SOFTWARE.

The authors are interested in making a copy of the software available to potential
users, either by shipping a copy of the software to the users net address or by sending
a floppy disk or tape to the user. To make arrangements to secure a copy of the
software, please contact one of the authors.

REFERENCES

(1) P. G. CASAZZA AND T. J. SHURA, Tsirelson's Space (with an Appendix by J. Baker, o.
Slotterbeck, and R. Aron), Lecture Notes in Mathematics, Springer-Verlag, 1989.

(2) P. G. CASAZZA, Tsirelson's space, Proceedings of Research Workshop on Banach Space Theory
(Iowa City, Iowa, 1981), Univ. Iowa, 9 - 22.

(3) P.G. CASAZZA, W.B. JOHNSON, AND L. TZAFRIRI, On Tsirelson's space, Isr. J. Math., 47
(1984) 81-98.

(4) T. FIGIEL AND W. B. JOHNSON, A uniformly convex Banach space which contains no ip, Compo
Math., Vol. 29, Fasc. 2, 1974, 179-190.

(5) J .LINDENSTRAUSS AND L. TZAFRIRI, On the complemented subspaces problem, Isr. J. Math. 9,
263-269 (1971).

(6) B. S. TSIRELSON, Not every Banach space contains an embedding of ip or co, Functional Anal.
Appl., 8, 1974, 138-141. (Russian translation).

FLOATING-POINT SYSTEMS FOR THEOREM PROVING*

G. BOHLENDERt, J. WOLFF VON GUDENBERGt
AND W.L. MIRANKERj:

Abstract. There are a number of existing floating-point systems (programming languages and
libraries) which allow the computer user to produce computation with guarantees. These systems
may be conveniently used as a component in theorem proving. Following a brief description of
the methodology which underlies these systems, we tabulate them, indicating some properties and
noting where they may be obtained for use. A brief appendix supplies an introduction to the
formalism of the methodology.

§l. INTRODUCTION

Is the modern digital floating-point computer actually being used as a compo­

nent in theorem proving? Certainly many of the contributions in these proceedings
show that this is the case. Yet anyone familiar with these computers knows that

it is very difficult to learn what floating-point computers actually do. Their arith­
metic operations are usually not completely specified. Certainly not at a level of
care which a proof would require. These computers and their systems are sprinkled

with argument dependent exceptions which are often concealed. Moreover, even
ideal floating-point computation produces well-known pathological errors, some of

which are spectacular. (In fact, the spectacular errors are the more benign, since
they more readily show themselves than do the subtle errors.) These errors are due,
of course, to cancellations, i.e., a loss of information in the floating-point arithmetic

process.

We must make the distinction between fixed point and floating point and their
respective theorem proving capacities clear. As a fixed point or data (i.e., bit) pro­
cessor, the digital computer is a simpler device, usually rather completely specified.
(Indeed, a fixed point computer is, more or less, a Turing machine with a finite
tape.) In this form, the digital computer has a history of use as a theorem prover.

However, here, when we speak of a computer aided proof, we mean a floating­
point calculation. By means, which we can only view as heroic, these theorem
provers have actually penetrated into the system with which they compute (com­
puter and software) with a rigorous mathematical thoroughness. In this way they
make sure that their computation is as solid as any other logical part. of their proof
apparatus. Shall we say that they tame their own computer, by the sweat of t.heir

intellectual brows.

Independently of these roll-your-own floating-point aided theorem proving ef­
forts, a systematic body of work has developed which addresses the "floating-point
as mathematics" issue [17]. Theory, applications, systems, packages, and hardware;

*This manuscript was prepared in October, 1989 in Obsteig, Austria, at a \Vorkshop on Com­
puter Arithmetic organized by U. Kulisch.

tUniversity of Karlsruhe, Institut fur Angewandte Mathematik, D-7500 Karlsruhe, 'Vest Germany
tDepartment of Mathematical Sciences, IBM T.J. \Vatson Research Center, P.O. Box 218,

Yorktown Heights, NY 10598

23

even commercial products comprise this body of work. It is a vigorous and growing
subject [21, 23], but as it is set in the numerical analysis/systems area, it is more or
less unknown to mathematicians, in particular, to theorem provers. Indeed the ori­
entation of this subject has been toward scientific computation. As a result of this
work, the floating-point computer is now provided with a concise axiomatic speci­
fication. It may be employed by theorem provers with the reliability they require.
Moreover, the associated interfaces, being user friendly, make exploitation quite
straight forward. Let's refer to these systems as validating floating-point systems.

In §2 we give a concise and informal excursion through the development and
state of floating-point as it relates both to theorem proving and to the validating
floating-point systems. In §3 we tabulate the validating floating-point systems,
describing generic properties. We give references to where, when they are available,
copies of these systems may be obtained. Some of these systems are developmental,
but others are commercial products. Some of the development systems are available
from University sources. A brief appendix giving some technical details is also
included.

§2. FLOATING-POINT COMPUTATION

2.1 Historical Development. Floating-point arithmetic proceeds by replac­
ing the reals by a finite set (the floating-point numbers, usually normalized) and
by replacing the arithmetic operations by corresponding approximating operations
defined on this finite set. There is an immediate loss of information when floating­
point arithmetic is used. There is also a loss of a number of familiar critical laws and
properties of rings and fields, such as associativity of repeated addition, uniqueness
of the additive inverse, and the like. Cancellations adversely impact the accuracy
with which algorithms, especially iterative algorithms may be computed.

Over the years, a collection of ad hoc approximate methods and constructs
were devised to regain, in part, some of these basic lost properties. Constituents
of this collection are denormalized numbers/gradual underflow, symbols for rep­
resenting and computing with infinity, signed zeros, etc. The method of residual
correction was introduced to floating-point (this is often attributed to ·Wilkinson).
With residual correction came the need to compute ever more accurate residuals,
and this contributed to the introduction of double precision and higher precision
formats.

In the modern theory of computer arithmetic, most of the ad hoc fi:::;:es, just
referred to, are seen to be irrelevant. This theory simplifies and makes rigorous the
specification of floating-point arithmetic. It enables the digital computer to provide
floating-point computation with guarantees! This theory traces its origin to two
fundamental contributions. The first is interval arithmetic, started by R. Moore
[24]. The second is Kulisch/tvIiranker (K/M)-arithmetic [20,22].

Moore's interval arithmetic which is based on directed rounclings (rounding up­
ward/downward) broke the ground for floating-point computation with guaranteed
results. It allowed for representation of the continuum on a computer, and so,
opens the way to extend the computer (a tool of finite mathematics) to a tool of
real analysis.

24

At first, interval arithmetic quickly became discredited, because its naive use led
directly to rapidly expanding intervals of little value or interest. Today somewhat
more subtle techniques generate potenl contracting interval methods.

The K/M arithmetic, which includes directed roundings and intervals, provides
an axiomatic specification of floating-point numbers and operations. The operations
are defined by an algebraic mapping principle called semimorphism. Semimorphism
is used to define floating-point arithmetic in all common spaces of computation
(reals, matrices, vectors, complex versions, interval versions, etc.) The definition
is mathematically simple and always the same. For convenience to the reader. we
include an appendix which describes this process for the data types, Real and Real
Matrix. (We shall presently come to the use of semimorphism to define arithmetic
and other operations in computer versions of function spaces.)

An informal notion of semimorphism: A mapping (rounding) from the ideal
space (e.g. the reals) into its computer representable subspace (e.g. the normal­
ized floating-point numbers) is applied to the exact result of an operation between
elements in the subspace. This defines each computer operation with a loss of
information limited to the effect of a single rounding [20]. In the case of matrix
multiplication this means that an exact dot product with only one rounding is
necessary and must be provided by the computing system.

2.2 Implementations of the theory. In 1980, the first implementation of
these ideas was embodied in a compiler for a PASCAL extension called PASCAL-SC
[3]. The first commercial implementation was made by IBM in a software package
for 370 machines called ACRITH and released in 1983 [10]. Standard functions (sin,
exp, cosh, etc.) are implemented with high accuracy and in interval versions. 'Vith
intervals, the precision of standard function evaluation is controllable. The exact
evaluation of expressions containing standard functions requires standard functions
with dynamic precision, since precision decreases with arithmetic combining. This
process makes use of a so-called staggered correction format proposed by H. Stetter
[26].

ACRITH also includes E-methods, the name of a methodology for validating the
solution of numerical problems. These interval methods are an efficient computer
implementation devised by E. Kaucher and S. Rump [15] of computer versions of
contraction mapping processes initiated by R. Krawczyk [16] and others in the
late '60's. 'Vhen handled properly, E-methods provide existence and uniqueness
statements of mathematical problems as well as the numerically generated bounds.

Extension of all of these computational ideas (floating-point numbers, round­
ings, semimorphism, computer operations, interval methods, contracting mappings
for validations, etc.) to function spaces and function space problems is a develop­
ment made by E. Kaucher and W. L. Miranker [12, 13, 14]. Among other capabilities
this computational function space methodology provides a framework for extending
E-methods to IVP /BVP for differential equations and to integral equations. In the
Kaucher /Miranker development, approximation theoretic methods are recast into
computer arithmetic/data-type form called ultra-arithmetic [6]. This makes the
correspondence between function space problems and methods, on the one hand

25

and algebraic problems and methods, on the other hand transparent. It is this
correspondence which guides the development of the new computational function
space methods, including E-methods.

2.3 Floating-point in theorem proving. The collection of all these ideas
and methods provides an effective framework for computation. Since it is built
on an axiomatic basis, when faithfully implemented, the corresponding computer
system becomes a part of an analyst's mathematical repertoire. He may use the
computations with an absolute certainty, in the mathematical sense. A computation
so produced is the same as any other mathematical deduction. It may be used at
face value in a proof or derivation.

2.4 IEEE-norm. A collection of workers, including W. Cody and W. Kahan
[5], have proposed a standard for floating point formats, roundings, arithmetic preci­
sion etc. which is commonly called the IEEE-norm. It provides many of the special
ad hoc devices previously referred to, and this provision is found useful to many
computer users. It likewise provides a strong basis for residual correction meth­
ods by means of several layers of data format precision, some of enormous range.
The IEEE-norm is restricted to a special data format which is not required by the
KIM-theory. These special operations, however, fulfill the requirements of a semi­
morphism of the KIM-theory. The IEEE-norm falls short of including semimorphic
operations for the operations in the vector spaces and their interval correspondents
which are required by the KIM-theory. Specifically the IEEE-norm falls short of
including a semimorpic dot product. A computer equipped with KIM arithmetic is
a vector processor in a mathematical sense, providing all vector and matrix opera­
tions and their interval correspondents to full machine accuracy (by semimorphism)
while the IEEE-norm provides scalar operations only. Thus KIM arithmetic pro­
vides a powerful tool endowing a computer with mathematical properties usable in
theorem proving.

The major and indeed quite significant achievement of this norm is its support
of floating-point portability. For this reason it has achieved a wide acceptance and
constitutes a valuable contribution to computation.

While the IEEE-norm and the KIM theory are definitely not the same (neither
in category nor in detail), there are no conflicts between them.

2.5 Programming languages/libraries. The KIM theory and its associated
methodologies, thus far so briefly described, contains a large number of constituents.
How are they to be handled in a congenial (user-friendly) way. This is the role of a
programming language (such as FORTRAN-SC [8]) or a library (such as ACRITH).
These systems include user-friendly concepts and capabilities. Examples of such rel­
evant to a programming language are an operator concept and function overloading.
Roughly speaking, these terms are programming jargon for conventional mathemat­
ical notation. For instance, an operator concept means the use of the same symbol,
say the times sign, to denote the product a x b, no matter what a and b are. So
long as a and b are compatible in the expression a x b (say when a is a scalar and
b is a matrix) the expression is acceptable to the system which parses it correctly.

26

(This routine mathematical convention is a quite advanced programming language
construct!)

§3. VALIDATING FLOATING-POINT SYSTEMS

We summarize the existing software packages for floating-point verification meth­
ods in a table. The last column in the table, headed: availability, contains some
information for obtaining the package (as a book, a diskette, a commercial product).
The table heading: kind, specifies whether the package is a programming language
or a library. Programming languages generally provide operations with user speci­
fiable roundings (from among a specific set of roundings) and interval operations
as well by means of a user friendly operator notation. Libraries implement these
constructs as subroutines, but they are equivalently user friendly.

All of the packages listed provide an exact dot product (equivalently an exact
scalar product) which allows for the implementation of vector and matrix opera­
tions with maximum accuracy. In some implementations, a special data type for
scalar products is provided which facilitates the implementation of scalar product
expressions. (An example of the latter is Ax - b for vectors x and b and a matrix
A.) This feature is indicated in the column headed: "special properties" and with
a table entry: "data type for scalar products".

Some of the package compilers provide for the execution of such scalar product
expressions with a result equal to exact evaluation followed by a single rounding.
This is indicated in the column headed: "special properties" and with a table entry
"scalar product expressions".

The accuracy of the standard functions in these packages is usually better than
one unit in the last place (ulp). By usually, we mean that in exceptional cases only
2 ulp accuracy is delivered.

27

Floating Point Verification Packages

Name/kind problem solving special properties availability
routines

PASCAL-SC
A programming language, linear systems, extended set of Version I: available
extension of PASCAL, eigenvalues, standard functions as bnok including a
full compiler and nonlinear systems, (including complex floppy for IBM-PC
runtime system zeros of polynomials, and interval versions), [18], and Atari ST [19];

arithmetic expressions user defmed operators, Version 2: book [4],
in version 2 additionally: system on floppy: in
scalar product expressions, preparation on Atari ST,
multiple precision, planned on
dynamic arrays, MacIntosh II
modules

ACRITH
A FORTRAN 77 library, linear systems, extended set of IBM program product for
contains an online eigenvalues. standard functions IBM/370 machines
training component sparse systems, (including complex and under VM/CMS and MVS [10]

nonlinear systems, interval versions),

zeros of polynomials, datatype for scalar
arithmetic expressions, products, microcode/
linear programming hardware assists on

several computers

FORTRAN-SC
A programming language, same as ACRITH same as ACRITH, IBM/370 VM/CMS available
extension of dynamic arrays, from IBM Germany [2, 8, 29]
FORTRAN 77, user defmed operators,
full compiler and runtime scalar product expressions

system, based on
ACRITH

ARITHMOS
A FORTRAN 77 library, linear systems, datatype for scalar Siemens program product

eigenvalues. products, microcode for mainframes
zeros of polynomials, assist on several under BS 2000 [I]
arithmetic expressions computers

28

Namefkind prohlem solving special pr'operties availability
routines

Abacus
An interactive linear ~ystems, etc. extended sct of planned on IBM-PC (DOS),
programming environmen standard functions Unix [25], from
with programming (including complex, University of

capability vector and matrix Hamburg-Harburg,
versions), generic Prof. S. Rump
functions/operators

Hilicomp
A FORTRAN 77 library linear systems, hardware/microcode product for IBMjJ70 and

zeros of polynomials, assist on several IRM-PC from Bulgarian
interpolation, computers Academy of Sciences

Poisson equation, [25], Prof. S. Markov
statistical computation

Modula-SC
1\ programming language, linear systems, portable to any for IRM-PC and
extension of Modula-2, eigenvalues, computer with a Macintosh II from
precompiler to zeros of polynomials, Modula-2 compiler University of Basel,

Modula-2, runtime arithmetic expressions Prof. C. Ullrich [25]

support in Modula-2

NAG library
An Ada library ? portable to Ada planned for late 1989 [7]

systems

Turbo Pascal SC
A precompiler to linear systems, etc. planned on IBM-PC, from

Turbo Paseal University of
Ilamburg- Harburg,
Prof. S. Rump [25]

APL/PCXA
A programming language, linear systems multiple precision book and floppy [9]

A P L extension arithmetic for IBM-PC

29

Appendix. KIM arithmetic for the data-types, Real and Real Matrix.

In this appendix we sketch the KIM methodology for defining floating-point
arithmetic through use of rounding mappings and semimorphism. As an example,
we deal only with the reals and the real matrices. The extension to other data types
and intervals as well is entirely analogous. However, we omit this extension, and
refer to [20,22] for details.

A floating-point system R = R(b, £, el, e2) with base b, £ digits in the mantissa
and exponent range el..e2 consists of a finite number of elements. They are equally
spaced between successive powers of b and their negatives. This spacing changes
at every power of b. A floating-point system has the appearance of a screen placed
over the real numbers. Indeed, the expression floating-point screen is often used.

Next we turn to the arithmetic operations +, -, x, /. These operations for real

numbers are approximated by floating-point operations. If x and yare floating­
point numbers, the exact product x X y itself is not usually a floating-point number

of R(b, £, el, e2) since the mantissa of x X y has 2£ digits. For related reasons, the
exact sum of x + y is also not usually a floating-point number. Since a computer
must be able to represent the results of its own operations, the result of a floating­
point operation must be a floating-point number. The best we can do is to round
the exact result into the floating-point screen and take the rounded version as the

definition of the floating-point operation.

If * is one of the exact operations, +, -, x, I, let III denote the corresponding
floating-point operation. Then our choice of floating-point operations is expressed
by the following mathematical formula.

(RG) x lIly : = D (x * y) for all x, y E R and all * E {+, -, x, /} .

In (RG), D is a mapping D: R -+ R. D is called a rounding if it has the following
properties (Rl) and (R2).

(Rl) D x = x for all x E R,

that is, the screen R is invariant under the mapping D.

(R2) x ;;:; y =} D x ;;:; D y for all x, y E R,

that is, D is monotonic on the real numbers.

The three familiar roundings: to the nearest floating-point number, toward
zero or away from zero have properties (Rl) and (R2) and the following additional

property.

(R4) D (-x) = - D x for all x E R.

The mapping property expressed in (RG) for mappings which satisfy (Rl), (R2),
and (R4) is called, semimorphism.

30

The monotone upwardly and the monotone downwardly directed roundings are
denoted by /'c, and V. These two roundings, which are used to define interval
arithmetic, are characterized by (Rl), (R2) and the additional property

(R3) Vx ;;; x and x ;;; /'c,x for all x E R.

Thus, V rounds to the left and /'c, rounds to the right. However, the roundings V
and /'c, do not have the antisymmetry property (R4).

All operations· defined by (RG) and a rounding with the properties (Rl) - (R2)
produce results of maximum accuracy in a certain sense which is rounding depen­
dent. In particular, between the correct result (in the sense of real numbers) and
the approximate result x [!]y (in the sense of the screen of floating-point numbers)
no other floating-point number in the screen can be found.

For convenience, we shall refer to the class of roundings which satisfy (Rl), (R2),
and (R4) along with the special roundings /'c, and V as admissible roundings. We
may summarize this discussion by saying that admissible roundings generate max­
imally accurate floating-point arithmetic through use of (RG).

The same formulas (RG), (Rl) - (R4) can be used to define arithmetic for other
spaces occuring in numerical computations. For example, operations for floating­
point matrices !vIR can be defined by applying the laws of semi morphism to the real

matrices MR, i.e. in the above formulas Rand R have to be replaced with AiR and
M R respectively. Rounded addition and subtraction are performed componentwise,
whereas (RG) for matrix multiplication reads

X [!]Y: = D(txik * Yk j)

k=l

for all matrices X, Y, E MR. Floating-point matrix multiplication is implemented
as if an exact scalar product were computed which is then rounded only once onto
the screen of floating-point matrices.

At first sight it seems to be doubtful that formula (RG) can be implemented
on computers at all. In order to determine the approximation x [!]y, the exact

but unknown result x * Y which is, in general, neither computer specifiable nor
computer representable seems to be required in (RG). It can be shown, however,

that whenever x * Y is not representable on the computer, it is sufficient to replace
it by an appropriate and representable value x ;;; y. The latter has the property
D (x * y) = D (x ;;; y) for all roundings in question. Then x ;;; y can be used to define

x[!]y by means of the relations

x[!]y = D(x *y) = D(x;;; y)

for all x, y E R, respectively for all x, y E MR.

31

REFERENCES

[1) ARITHMOS (BS 2000), Kurzbeschreibung, SIEMENS AG, Bereich Datentechnik, Post­
fach 83 09 51, D-8000 Munchen 83.

[2) BLEHER, J.H., KULISCII, U., METZGER, M., RUMP, S.M., ULLRICH, CH., WALTER, \V.,
FORTRAN-SC: A Study of a FORTRAN Extension for Engineering I Scientific Computation
with Access to ACRITH, Computing 39 (November 1987) pp. 93-110.

[3) BOHLENDER, G., ET AL, PASCAL-SC: A PASCAL for Contemporary Scientific Computation,
RC9009, IBM Research Center, Yorktown Heights, NY (1981).

[4) BOHLENDER, G., RALL, L.B., ULLRICH, CH., WOLFF V. GUDENBERG, J., PASCAL-SC: A
Computer Language for Scientific Computation, Academic Press (Perspectives in Comput­
ing, vol. 17), Orlando (1987) (ISBN 0-12-111155-5).

[5) COONAN, J., ET .AL., A Proposed Standard for Floating-Point Arithmetic, SIGNUM Newslet­
ter (1979).

[6] EpSTEIN, C., MIRANKER, \V.L., RIVLIN, T.J., UItra-Arthmetic Part 1: Function Data
Types pp. 1-18, Part 2: Intervals of Polynomials pp. 19-29, Mathematics and Computers
in Simulation, Vol. 24 (1982).

[7] ERL, M., HODGSON, G., KOK, J., \VINTER, D., ZOELLNER, A., Design and Implementation
of Accurate Operators in Ada, ESPRIT-DIAMOND, Del 1-2/4 (1988).

[8] FORTRAN-SC: FORTRAN for Scientific Computation. Language Description and Sam­
ple Programs, Institute for Applied Mathematics, University of Karlsruhe, P.O. Box 6980,
D-7500 Karlsruhe, West Germany (1988).

[9] HAHN, W., MOHR, K., APLIPCXA: Erweiterung der IEEE Arithmetik fur Technisch Wis­
senschaftlisches Rechnen. Hanser Verlag, Munchen (1988) (ISBN 3-446-15264-4).

[10] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), General Informa­
tion Manual, GC 33-6163-02, 3rd Edition (April 1986).

[11] KAUCHER, E., KULISCH, U., ULLRICH, ClI. (EDS), Computer Arithmetic, Scientific Computa­
tion and Programming Languages, B.G. Teubner Verlag, Stuttgart (1987) (ISBN 3-519-02448-9).

[12] KAUCHER, E., MIRANKER, W.L., Self- Validating Numerics for Function Space Problems,
Academic Press (1984) (ISBN 0-12-402020-8).

[13] KAUCHER, E., MIRANKER, \V.L., Residual Correction and Validation in Functoids, Comput­
ing Supplementum 5, Defect Correction Methods-Theory and Application, eds. K. Boehmer
and H. Stetter, Springer-Verlag (1984).

[14] KAUCHER, E., MIRANKER, \V.L., Validating Computation in a Function Space, Proceed­
ings of the Conference, International Computing-the Role of Interval Methods in Scientific
Computing, R. Moore, ed., Academic Press (1987).

[15] KAUCHER, E., RUMP, S.M., E-Methods for Fixed Point f(x)=x, Computing Vol. 28 (1982)
pp.31-42.

[16] KRAWCZYK, R., Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,
Computing Vol. 4 (1969) pp. 187-201.

[17] KULISCH, U., Grundlagen des Numerischen Rechnens, Bibliographisches Institut. (Reihe
Informatik, Nr. 19), Mannheim/Wien/Ziirich (1976) (ISBN) 3-411-01517-9).

[18) KULISCH, U. (ED.), PASCAL-SC: A PASCAL Extension for Scientific Computation; Informa­
tion Manual and Floppy Disks; Version IBM PCI AT; Operating System DOS, B.G. Teubner
Verlag (Wiley-Teubner series in computer science), Stuttgart (1987) (ISBN 3-519-02106-4 /
0-471-91514-9) .

[19] KULISCH, U. (ED.), PASCAL-SC: A PASCAL Extension for Scientific Computation; In­
formation Manual and Floppy Disks; Version ATARI ST., B.G. Teubner Verlag Stuttgart
(1987) (ISBN 3-519-02108-0).

[20] KULISCII, U., MIRANKER, 'V.L., Computer Arithmetic in Theory and Practice, Academic
Press, New York (1981) (ISBN 0-12-428650-x).

[21] KULISCII, U., MIRANKER, W.L.(EDS.), A New Approach to Scientific Computation, Aca­
demic Press, New York (1983) (ISBN 0-12-428660-7).

32

[22] KULISCH, U., MIRANKER, \v.L., The Arithmetic of the Digital Computer: A New Approacb,
SIAM Review, Vol. 28, No.1 (March 1986) pp. 1-40.

[23] KULISCH, U., STETTER, H.J. (EDS .), Scientific Computation with Automatic Result Verifi­
cation, Computing Supplementum 6. Springer Verlag, Wien / New York (1988).

[24] MOORE, R.E., Interval analysis, Prentice Hall (1966).

[25] SCAN 89: Abstracts of the International Symposium on Computer Arithmetic and Self-Validating
Numerical Methods, Basel (1989), proceedings to be published by Academic Press.

[26] STETTER, H.J., Sequential Defect Correction for High-Accuracy Floating-Point Algorithms,
Lect. Notes Math., vo!' 1006 (1984) pp. 186-202.

[27] ULLRICH, CH., WOLFF V. GUDENBERG, J. (EDS.), Accurate Numerical Algorithms, A Col­
lection of Research Papers, ESPRIT Series, Springer Verlag (1989).

[28] "VALLIS, P.J.L., Improving Floating-Point Programming, J. Wiley (to appear 1989).

[29] WALTER, W., FORTRAN-SC, A FORTRAN Extension for Engineering / Scientific Com­
putation with Access to ACRITH: Language Description with Examples, In: Moore, R.E,
Reliability in Computing. The Role of Interval Methods in Scientific Computing, Academic
Press, New York (1988) pp. r43-62.

COMPUTER ALGEBRA AND INDEFINITE INTEGRALS

MANUEL BRONSTEIN*

Abstract. We give an overview, from an analytical point of view, of decision procedures for
determining whether an elementary function has an elementary antiderivative. We give examples
of algebraic functions which are integrable and non-integrable in closed form, and mention the
current implementation status of various computer algebra systems.

1. Introduction. Consider the following two indefinite integrals:

I -J dx 1 - .
x~

Although the integrands look similar, it turns out that

11 = log(x) - ~ log(x3 - 2~ - 2)
3

while 12 cannot be expressed in closed form using the elementary functions of cal­
culus. Two questions that arise are

(1) Why? i.e. what is the difference between the above functions that makes
one integrable in closed form and not the other?

(2) How? i.e. can we always determine whether the antiderivative of a given
elementary fllllction is also an elementary function, and can we find it if it
is?

As far as the second question is concerned, there are now algorithms that,
given an elementary function, either compute an anti derivative or prove that no
elementary antiderivative exists. These algorithms use a purely algebraic approach
to the problem and have been described extensively in the literature ([3, 4, 7, 8,
lOD, so we do not detail them in this note. We look however at the mathematical
quantities that those algorithms compute with, and outline how they determine
whether the integral is elementary.

Informally, we define the elementary functions to be the functions built from
the rational functions by the successive adjunctions of a finite number of (nested)
logarithms, exponentials, and roots of llllivariate polynomials. Since we can add a

root of t 2 + 1, the usual trigonometric fllllctions and their inverses are elementary
functions. We will give a formal definition later in this paper.

*IBM Research Division, T.J.Watson Research Center, Yorktown Heights, NY 10598.

34

2. Rational Functions. We begin by reviewing the traditional partial frac­
tions algorithm for integrating rational functions, since it provides the theoretical
foundations for the other algorithms. Let f E C(x) be our integrand, and write f
as

f=P+ ~~ aij
Lt Lt (x - bi)j
.=1 J=l

where aij, bi E C and the ei's are positive integers. Computing J P poses no
problem (it will for any other class of functions), and we have:

J aij . = { (1 _ j)(:i~ b;)j-1' if j > 1

(x - bi)J ai1 10g(X - bi), if j = 1.

It is clear that computer integration algorithms do not perform such a factor­
ization, and in fact, they work over an arbitrary field J{ of characteristic 0 not
necessarily algebraically closed. However, we refer the reader to [4] for an algebraic
description of the models used, and let our base field be C in this paper, since the
mathematical quantities we are interested in appear more clearly. As we see from
the above formulae, f has an elementary integral of the form

where v, Ui E C(x), and Ci E C. Over C, f(x) has a finite pole of order ei at x = bi

for i = 1, ... ,n. Expanding f into a Laurent series at x = bi, we get

j= aiei + ... + ai2 +~+ ...
(x - bi)e; (x - bi)2 (x - bi)

Integrating the term of order -1 gives ail loge x - bi) so we get Ci = ail and U1 =
x - bi. We note that Ci is the residue of f at x = bi. Integrating the terms of order
less than -1 gives us the principal parts of the Laurent expansions of v at x = bi:

aiei -ai2 v= + ... +---+ ...
(1 - ei)(x - bi)e;-l (x - bi)

We view the polynomial part P of f as the principal part of the Laurent expansion
of f at infinity. Then, J P is the principal part of the expansion of v at infinity.
After proving that v has no other poles, we only have to interpolate for v. For
rational functions this just means summing all its principal parts together, so

n J ""(aie; -ai2)
v= P+ ~ (l-ei)(x-bi)e;-l + ... + (x-bi) .

Thus, we can view the integration of rational functions as a four-step process:

(i) Compute the principal part.s of the Laurent series of f at its poles including
at infinity,

35

(ii) Integrate these principal parts termwise, except the terms with exponents
-1,

(iii) Interpolate, i.e. find a function v E C(x) whose principal parts are the
series found in step (ii), and with no other poles. Since differentiation and
expansion into power series commute, j - v' can have only simple poles,

(iv) Since the residue at a point a E C of the logarithmic derivative of g E C(x)
is the order of g at x = a, find constants Ci E C and functions Ui E C(x)

such that residuex=a(J - VI) = clorderx=a(UI) + ... + cnorderx=a(un) at
any a E C. Then, the integral of j dx is given by (*).

In the case of rational functions, all those steps can be carried out (for step
(iii) we sum the principal parts together, and for step (iv) we choose U a = x - a,
Ca = residuex=a(J -v')), so rational functions are always integrable in closed form.
However, these four steps can be applied to any subclass of elementary functions,
and we describe them in the next sections. If any of those steps fail, then it is
possible to prove that the integrand does not have an elementary antiderivative. It
turns out that steps (iii) and (iv) can fail for purely algebraic functions, and steps
(ii) and (iv) can fail for purely transcendental elementary functions, so steps (ii),
(iii) and (iv) can fail for arbitrary mixed elementary functions.

3. Liouville's Principle. We now present the basic principle that allows the
previous algorithm to apply to larger classes of functions. We have seen that the
integral of a rational function can always be expressed as a rational function plus
a linear combinations of logarithms of rational functions with constant coefficients.
While this is not necessarily true for other classes of functions (e.g. J eX' dx),
Liouville's principle informally states that if a function j has an elementary an­
tiderivative, then it has one of the form given by (*).

A formal statement and proof of Liouville's theorem can be found in [7, 9], but
the following informal version is sufficient to motivate the four-steps approach:

THEOREM (LIOUVILLE). Let j be an elementary function of a variable x, and

F be a field of characteristic zero such that j, x E F and ~; E F for any g E F.

If J j dx is an elementary function, then there exist v E F, CI,'" , Cn E K, and
UI, ••• ,Un E KF such that

n duo
jdx = dv + LCi-'

i=l Ui

where K = {c E F such that :~ = O} and K is an algebraic closure of K.

Thus algorithms can look for an integral in that specific form, and Liouville's
theorem guarantees that if no integral is found in that form, then there is no elemen­
tary antiderivative. In the algorithm we used for rational functions, step (iii) finds
the potential v of (t) by interpolating from the multiples poles of j, while step (iv)
finds the Ci'S and Ui'S by looking at the residues of j. This separation is possible
since dv can have only multiple poles (except at x = 00) while du / U has only simple

36

poles. Those basic facts will remain true for higher elementary functions once we
have the adequate framework for poles and residues.

It should be noted that Liouville's principle does not state that any elementary
integral must be of the form (t), but that there must be one of that form, which
may not always be the most natural one. For example, with F = C(x), we have

dx . R R+x J -1--2 = arctan(x), but It can also be expressed as --loge R). + x 2 -1- x

4. Algebraic Functions. We now describe how Risch ([8]) generalized the
four-step algorithm to algebraic functions. Let f E C(x,y) be our integrand where
x is the integration variable and y is a function satisfying F(x, y) = ° for a given
irreducible polynomial F E C[X, Y]. Any algebraic function can be viewed in this
way, for example, VI E C(x, y) with y2 - x = 0, while some algebraic functions
may not be expressible in terms of radicals.

In order to define the notions of poles and series around a point, we first need a
precise notion of a point. Since algebraic functions are n-valued almost everywhere
where n = degy(F(X, Y)), elements of C do not define precise points. For example,
it is undefined whether 1j(y - 1) has a pole or a zero at x = 1 where y2 - x = 0.
In order to eliminate this multiple-value problem, we consider f as a function on
the Riemann surface of F(X, Y) (see [1] for a definition). Intuitively, this surface
can be seen as an n-sheet covering of the Riemann sphere (i.e. C U{ oo}), with
only finitely many points where two or more sheets intersect. At any point on the
Riemann surface, f is either single-valued or has a finite pole, and there exists a local
series expansion of elements of C(x, y). Those series, called Puiseux expansions, are
similar to Laurent series with the exponents being of the form ijr for i = a . .. 00,

and r the number of sheets intersecting at that point (the ramification index of the
point). Those expansions can be computed using the algorithm in [11]. Since they
are series in x±l/r with complex coefficients, their principal parts can be integrated
with respect to x which completes part (ii).

However, interpolating v from its principal parts is harder than for rational
functions: those principal parts give us all the zeros and poles PI, . .. ,Pm of v

on the Riemann surface and the orders Vi of v at those points. The formal sum
2::::1 ViP; is called a divisor of C(x, y). Using the Bliss-Coates algorithm ([2, 6]),
we compute a basis for the finite C-vector space L(D) of functions having order
greater than or equal to Vi at Pi and no poles at any other point. Computing the
Puiseux expansions of a generic element of L(D) at PI, . .. ,Pm and pquating with
the expansions of v yields a system of linear equations over C. If it has no solution,
then step (iii) fails and f has no elementary integral, otherwise we get v such that
f - v' has only simple poles.

i,From Liouville's theorem, if h = f - v' has an elementary integral, it must
have one ofthe form CI loge Ul) + ... en loge un). where Ci E C and U; E C(x, y). The
residues of hdx can be computed from its puiseux expansions at its poles. Since the
residue of duju at any point on the Riemann surface is the order of u at that point,
we must have

37

at each pole Pi of hdx. Let (ql, ... , qr) be any basis for the Z-module generated
by the residues of hdx and, at each pole Pi of hdx, write

with ai,j E Z. We are then looking for functions Uj E C(x, y) with orders exactly
ai,j at the P;'s and 0 everywhere else. If there exists such a function Uj for a given
j, then we say that the divisor D j = 2::i ai,jPi is the divisor of Uj and that Dj

is principal. Using the Bliss-Coates algorithm ([2, 6]), we can test whether the
Dj's are principal. If we find Ur, ... ,Ur such that the divisor of Uj is D j , then

w = hdx - ql dUl - ... - qr dU r is a differential of the first kind, so either w = 0, in
Ul Ur

which case

or w i= 0 and it can be proven that hdx has no elementary antiderivative.

A new difficulty arises if some Dj is not principal. Suppose then that for each
j, there exist a positive integer bj and Uj E C(x,y) such that bjDj is the divisor of
Uj. The order of Uj at Pi is then ai,jbj so we have

hd ql dUl qr du r . d'"" . 1 f h fi k' db' h so W = x--b -- -" '--b - IS a luerentJa 0 t erst 'In so, as a ove, elt er
1 Ul r Ur

2::j=1 ii log(U i) is an integral of hdx, or hdx has no elementary antiderivative.
J

Thus the problem is not to determine whether D is principal for a given divisor
D, but to determine whether bD is principal for some positive integer b. Risch
([8]) completes his algorithm by describing how reducing the curve F(X, Y) = 0 to
curves over finite fields determines a bound B such that if mD is not principal for
m = 1 ... B, then mD is not principal for m > B, in which case we say that D
has infinite order. We then test whether any of the Dj's has infinite order. If this
is a case for some j, it can be proven that hdx has no elementary antiderivative,
otherwise, we get a differential of the first kind as explained above.

Examples. 1. Consider

J f dx = J 3x8 + X - 1 dx.
x2 Jx 8 + 1

f E C(x, y) with F(x, y) = y2 - x 8 - 1 = O.

(i) The integrand has potential poles above x = 0, x = 00 and x = Wi =

e(2i+1)1l'/8 for i = o ... 7, and the principal parts of its Puiseux expansions at those

38

points are:

_X-2 +X-I + .. . at (x = O,y = 1)
X-2 _ X-I + .. . at (x=0,y=-1)

3x2 +OX +0 + ... at
y

(x = 00, - = 1) x4

-3x2 + Ox + ° + ... at (x = 00, Y4 = -1)
x

at (x =W;,Y = 0)

(ii) Integrating them yields the expansions

X-I + ... at (x = O,y = 1)

_x- I + ... at (x=0,y=-1)

x 3 + Ox2 + Ox + ... at (x = 00,.JL = 1) X4

_x3 + OX2 + Ox + ... at (x = 00, Y4 = -1)
x

(iii) A basis over C for the vector space of functions which have order greater
than or equal to -1 above x = 0, greater than or equal to -3 above x = 00 and no
other pole is

{VI, V2, V3, V4, V5, V6} = {1, x, x 2, x 3,.!., J!..}
x x

and the Puiseux expansions of a generic element I:~=I CjVj at those points are

(C5 + C6)X- I + .. .
(C5 - C6)X- I + .. .

(C4 + C6)X3 + C3X2 + C2X + .. .

at

at

at

at

(x = O,y = 1)

(x = O,y = -1)

(x = 00,.JL = 1) x4
y

(x = 00, 4" = -1)
x

Equating terms with the expansions found in step (ii), we get the following
system of linear equations for the c;'s:

C5 + C6 = 1

C5 - C6 = -1

q+c6=1

C4 - C6 =-1

C3 = C2 = °
CI arbitrary

which has (c, 0, 0, 0, 0, 1) for solution for any C E C (c is arbitrary since it is the
y y

coefficient of a constant). So we get V = -, and h = f - v' -9-- has only
x x +x

simple poles.

39

(iv) From the expansions of step (i), we find that hdx has residues 1 at P =
(x = O,y = 1), -1 at Q = (x = O,y = -1), and 0 everywhere else, so we look for a
function U E C(x, y) which has a simple pole at Q, a simple zero at P, and no other
zero or pole, i.e. we test whether D = P - Q is principal. No such function exists
in C(x, y), so D is not principal, and iD is not principal for i = 2,3. However,

x4
U = -1-- has order 4 at P, -4 at Q, and 0 everywhere else, so 4D is principal, so

+y

w = hdx - du is a differential of the first kind. Since w = 0, we have
4u

so

j fdx=j3xB+X-1dx= ~ +~log(x4).
x 2JX 8 + 1 x 4 1 + JxB + 1

2. Consider

j J xdx
[2 = 9 dx = r::;---:;:

v1- x 3

9 E C(x,y) with F(x,y) = y2 + x 3 -1 = O.

(i) The integrand has potential poles above x = Wi = e2i7r / 3 for i = 0,1,2, and
the principal parts of its Puiseux expansion at those points are:

W' ~
-------"---_...,..~ (x - Wi) 2 + ...
fINi (Wj - Wi) 2

at (x = Wi,y = 0).

(ii) and (iii) We see from those expansions that 9 has only simple poles, so we
choose v = O.

(iv) From the above expansions, gdx has residue 0 everywhere, so if it has an
elementary derivative, it must be of the form clog(u) where u E C(x, y) has order

o everywhere, so u E C, so du = 0, and since w = gdx - c du = gdx is nonzero, gdx
u

has no elementary antiderivative.

5. Elementary Functions. Let f be an arbitrary elementary function. In
order to generalize the four-step algorithm, we build an algebraic model in which f
behaves like either a rational or algebraic function. For that purpose, we now need
to formally define elementary functions.

A differential field is a field k with a given map a a' from k into k, satisfying

(a + b)' = a' + b' and (ab)' = a' b + ab'. Such a map is called a derivation on k. An
element a E k which satisfies a' = 0 is called a constant. The constants of k form a

subfield of k.

A differential field [{ is a differential extension of kif k <;:; X, and the derivation
on K extends the one on k. Let [{ be a differential extension of k, and () E K. We

40

say that () is an elementary monomial over k, if () is transcendental over k, k(()) and
k have the same subfield of constants, and there exists 1] E k such that either

(i) ()' = t in which case we say that () is logarithmic over k, and write () =
1]

loge 1]), or

(ii) ()' = 1]'(), m which case we say that () is exponential over k, and write
() = exp(1]).

A differential extension I< of k is an elementary extension of k, if there exist
()1, ... ,()m E I< such that I< = k(()1, ... , ()m) and for each i = 1 ... m, either

(i) ()i is algebraic over k(()l, ... , ()i-I) , or

(ii) ()i is an elementary monomial over k(()1, ... ,()i-l).

A function f is called an elementary function in x over a field k if da = 0 for
dx

any a E k, and there is an elementary (w.r.t 1 = d/dx) extension I< of k(:r) such
that f E K.

Elementary extensions are useful for modeling any function as a rational (or
algebraic) function of one main variable over the other variables. Given an elemen­
tary integrand fdx, an integration algorithm constructs first a field k containing
all the constants appearing in f, then the rational function field k(x), and finally
builds a tower L = k(x)(()1, ... ,()m) where the ()i'S are all the elementary monomi­
als and algebraic functions needed to express f. The derivation used at every step
• 1 d
IS = dx.

If t = ()m is transcendental over E = k(x)(()1, ... ,()m-l), then f E E(t) so f
can be seen as a univariate rational function over E, the major difference with the
complex case being that E is not constant with respect to I. The notion of Laurent
series remains however well defined at points ofE (an algebraic closure of E), so step
(i) can be carried out. Integrating their principal parts can be done in a similar way
than in the rational function case. However, since the coefficients are not constants,
this may require recursively integrating elements of E (this process must terminate
since E has a lower transcendence degree than E(t) over k) or finding whether some
linear first order differential equation with coefficients in E has a solution in E. If
the recursive integration fails (i.e. proves that there is no elementary antiderivative),
then it can be proven that f has no elementary antiderivative. The interpolation
step ((iii)) is exactly as for rational functions, i.e. an element ofE(t) is the sum of
its principal parts (up to an element of E). Once we are reduced to an integrand h
with at most simple poles, its residues can be defined in terms of its Laurent series,
and step (iv) is similar to the rational function case, with the additional criterion
that if one of the residues of hdx is not a constant (w.r.t. d/dx), then hdx has no
elementary anti derivative. See [4, 7] for the detailed algorithms.

If y = ()m is algebraic over E = k(x)(()1, ... ,()m-l), then, by the primi­
tive element theorem, we can ensure that t = ()m-l is transcendental over E =

I«X)(()l, ... ,()m-2). Thus, f E E(t,y) so f can be seen as a univariate algebraic
function over E, with F(t, y) = 0 where F E E[T, Y]. We view f E L as an
algebraic function over E in the same way than we viewed a transcendental elemen-

41

tary function as a rational function over E, and the algebraic function integration
procedure described earlier can be generalized to this case. The notions of points
of the Riemann surface defined by y, and of Puiseux expansions at those points
remain well defined over E ([5]), so step (i) can be carried out. Integrating them
may require integrating the coefficients recursively as above, so we may prove that
f has no elementary antiderivative at this stage. Otherwise, step (iii) and (iv) are
similar to the algebraic function case, with the difference, as above, that if one of
the residues is not a constant, then the integrand has no elementary antiderivative.

6. Implementations in Computer Algebra. It should be noted that the
algorithms presented here, while conceptually simple, are not very well suited for
efficient implementations since they require a lot of superfluous computations in the
algebraic closures of arbitrarily complicated fields. Although Davenport ([6]) has a
partial implementation in the computer algebra system REDUCE of an algorithm
essentially similar to the one we describe here for algebraic functions, there are no
reported implementations of those techniques in the general case.

However, many so-called "rational algorithms" have appeared in the last decade,
which are more efficient and easier to implement. While based on Liouville's theo­
rem and on a similar analysis of poles and residues, those algorithms compute only
in a minimal algebraic extension necessary to express the integral if it exists. The
transcendental and rational function cases of those algorithms are now implemented
in most computer algebra systems, and in addition, the complete algebraic case, and
part of the general case are now implemented in the Scratchpad computer algebra
system. We refer the reader to [3, 4, 10] for descriptions of those algorithms.

7. Acknowledgements. This paper is based on a talk presented at the work­
shop on Computer Assisted Proofs in Analysis in Cincinnati from March 22 to
March 25 1989. I would like to thank the organizers for their invitation to present
these results there.

REFERENCES

[1] AHLFORS, L. V." Complex Analysis, International series in pure and applied mathematics,
McGraw-HilI, New York, 1966.

[2] BLISS, G. A., Algebraic Functions, Dover Publications, New York, 1966.
[3] BRONSTEIN, M., Integration of Elementary Functions, Ph.D. thesis, Dpt. of Mathematics,

Univ. of California, Berkeley, 1987. To appear in the Journal of Symbolic Computation.
[4] BRONSTEIN, M., Symbolic Integration: towards Practical Algorithms, in Proceedings of

CADE '88, Academic Press, 1989. In Press.
[5] CHEVALLEY, C., Algebraic Functions of One Variable, Math. Surveys Number VI, American

Mathematical Society, New York, 1951.
[6] DAVENPORT, J. H., On the Integration of Algebraic Functions, Lecture Notes in Computer

Science No. 102, Springer-verlag, New York, 1981.
[7] RISCH, R., The Problem of Integration in Finite Terms, Transactions American Mathemat­

ical Society, 139 (1969), pp. 167-189.
[8] RISCH, R., The Solution of the Problem of Integration in Finite Terms, Bulletin American

Mathematical Society, 76 (1970), pp. 605-608.

42

[9] ROSENLICHT, M., Integration in Finite Terms, AnlPrican Mathematical Monthly, 79 (1972),
pp. 963-972.

[10] TRAGER, B., Integration of Algebraic Functions, Ph.D. thesis, Dpt. of EECS, Massachusetts
Institute of Technology, 1984.

[11] WALKER, R. J., Algebraic Curves, Springer-Verlag, New York, 1978.

A COMPUTER-ASSISTED APPROACH TO SMALL-DIVISORS
PROBLEMS ARISING IN HAMILTONIAN MECHANICS

ALESSANDRA CELLETTIt AND LUIGI CHIERCHIAt

One of the most powerful and versatile tools in the study of invariant surfaces
for conservative dynamical systems relies upon KAM theory ([14], [1], [16], [17J,
[7], [19], [12], [20]). However, because of the apparently stringent quantitative
requirements, such theory has been (and often still is) considered not too well
suited for concrete applications. Nevertheless, in [3], [5], [6J, [21J and especially in
[4], [18], [9], [2], it has been shown how refinements and implementations of KAM
theory may yield quantitative rigorous results that are in good agreement with the
numerical expectations.

The most satisfying among the above quoted results have been obtained with
the aid of computers used to perform long perturbative calculations whose numerical
errors were controlled by means of the so called interval arithmetic (see Appendix
B for a short review of the basic concepts involved in interval arithmetic).

Here we want to discuss, with special emphasys on the role of computers, some
new results in this area. In particular we will see that, event hough mechanical
computations allow to establish rigorous results, there are intrinsic difficulties in
proving computer-assisted theorems whose proofs are based on algorithms involving
a lot of divisions by small quantities.

In [4] we provided a rigorous technique for constructing analytic invariant ho­
motopically non trivial tori and circles for certain classes of Hamiltonian systems
(with any number of degrees of freedom) and of area preserving twist maps. On
these surfaces, called KAM surfaces, the time evolution is linear with rationally
independent frequencies. Applying our technique to the so-called standard map
([11]),
(1)
F : (x, y) E TxR ---t (x', y') = (x+y+c: sin x, y+c: sin x), , (T == R/27l'Z) ,

and to a forced pendulum ([10]) with Hamiltonian (in standard symplectic coordi­
nates)

(2) H(x,t,y;c:)
y2
"2 + c: [cos x + cos(x - t)] , (x,t,y) E T2 X R ,

we established in [4], with the aid of computer-assisted estimations, the existence
of the "golden-mean" KAM tori (namely the surfaces with rotation numbers w =
(V5 - 1)7l' and w = 1\-1, respectively) for 1c:1 ::; Po, with Po given, respectively,

tForschungsinstitut fur Mathematik, ETH-Zentrum, CH-8092 Zurich. Supported by Istituto
Nazionale di Alta Matematica.

tDipartimento di Matematica, II Universita' di Roma, 00173 Roma, Italia.

44

by 0.65 and 0.015. We recall that, for such surfaces, the (numerically) expected
"breakdown thresholds" (i.e. the numerical value £c > 0 immediately above which
such surfaces cease to exist) are, respectively, 0.971 and 0.027. We also showed that

such surfaces are actually analytic in £ in the full disk 'Dpo == {£ E C : 1£1::; Po},

and provided explicit polynomial approximations in such regions.

A similar result, concerning a rigorous lower bound of £c for the standard map,
has been announced by De la Llave and Rana ([9], see also [18]). However, their
method, event hough is not completely unrelated to ours, seems not to yield much
information about £-analyticity properties ([8]). For a more general introduction
on this subject and for further references see [4].

In the rest of this note we shall present the results for the standard map (1)
and we refer to the Appendix C for the results on the forced pendulum (2).

As in [4], we relate the existence of w-KAM tori for (1) to (smooth) solutions
of the equation

(3) 1 + un i=- 0 ,

where u(a) = u(aj£) is periodic in a, Du(a) == u(a + w/2) - u(a - w/2) and u is
normalized by fixing the a-average, (u), to be zero. It is easy to see that u solves (3)
if and only if the curve a -> r w(a) = (x, y) = (a + u(a), w + u(a) - u(a - w)) (which,
since 1 + un i=- 0, is a graph) is F-invariant with Fn(x, y) = r w(a + nw), n E Z.

To solve equation (3), we construct a polynomial approximate solution of (3),
which is used as initial guess of the Newton-KAM algorithm of [4]. The initial
guess is obtained as follows: Consider the £-power expansion of u near £ = 0,
U = 2: Uk(a)£kj we take as approximate solution of (3) the No-truncation, VNo ==

k2:!
No
2: UkCa)£k. The functions U!(a), ... ,UNo(a) can be constructed explicitly, via the
k=!
recursive procedure presented in Appendix A.

The efficiency of the KAM algorithm depends of course on the choice of the
initial approximation v No j namely, one should take No as large as possible since

vNo N~oo u. In [4] we constructed explicitly VNo up to No = 38 for the standard
map (and up to No = 24 for the forced pendulum). The formulae used in [4] for
the computation of v No, though being very general, present serious combinatorial
problems if No is large (see Appendix A) and require a large amount of computer
time.

However in [4] we were left with the doubt that using faster machines or more
efficient formulae for the computation of v No, one might obtain rigorous results
much closer to the numerical threshold.

In this note we implement a new procedure that we learned in [13] for the

recursive computation of the functions U! (a), ... , UNo(a). Such formulae allow to
construct a higher order approximation VNo with a reasonable amount of computer
time. For example, the construction of V38 requires now ~ 2 seconds of CPU time
(on a VAX 8650), despite the 6 minutes of the computer program used in [4].

45

However, in [4] we did not realize that even if we have at hand much powerful
formulae one cannot control the computer errors for more than the order No = 40.
To illustrate this new hindrance, let us write the Fourier representation of the
function vNo(8;c;) as

No

vNo(8;c;) == L~>k(8)C;k
k=1

No

2:: 2:: ih,j sin(j8)c;k
k=1 jE1¥h

for some real coefficients Uk,j and for a suitable set of integers Jv(k. Since the number
of Fourier coefficients Uk,j at the order No = 40 is 420, the explicit computation of
VNo requires the use of a computer. However since the computer works with a finite
precision, one has to control the round-off and propagation errors introduced by the
machine implementing the interval arithmetic procedure which is shortly described
in Appendix B.

Roughly speaking to take care of the computer errors, we first reduce every
computation to elementary operationB (i.e. sum, subtraction, multiplication and
division). Around each result of an elementary operation we construct an inter­
val which certainly contains the real result. Subsequent operations are performed
between intervals rather than between real numbers. Let us call (u p'jwn, U ~,j) the
interval around the coefficient Uk,j. During the computation of VNo the relative am-

~Up -Down

plitude I Uk.~;:!~ I of the Fourier coefficients corresponding to the small divisors
Uk,j

(namely the approximants j = 1,3,5,8, ... of the golden ratio) becomes remarkably
large. The effect of the propagation of such enlargement produces (around the order
No = 40) a relative amplitude of the order of unity, making impossible a careful
computation of VNo with No > 40.

Starting with V40 as initial approximant we are able to state the following result.
(Notice that the program without interval arithmetic runs in ~ 2 seconds of CPU
time on a VAX 8650, while the program with interval arithmetic requires about 15
seconds of CPU time).

THEOREM (on the standard map). Let w = (J5 - 1) 7r and let e = 0.1.2-8 (~
3.906· 10-4), PI = 0.66. Then equation (3) has a unique real-analytic (bOt1l in e
and c;) solution u with vanishing mean-value on T. For such a function one has

lule,p, < 0.2586, 0.3641 < IUe(7r; 0.66)1 < IUele,p, < 0.3807. Furthermore, if
No

No = 40 and v == VNo == 'L Uk(8) c;k, (Uk) 0, one has
k=1

IU - vle,p, < 1.415· 10-5 ,

Let us stress again that while the computational limits of the work in (4] were
dictated by the (relatively) large numbers of operations involved in the compu­
tation of V38, in the theorem above the limit came in because of the blowing up
of the interval arithmetic: The small-divisors appearing in the c; - 8 expansion of

46

the (golden-mean) invariant curve produce a (constant) growth of the "controlling­
intervals" (produced by the interval arithmetic as described in appendix B per­
formed over double-precision operations) leading to a relative round-off error of size
one for terms of the series corresponding to orders (in 6) larger than ~ 40.

However we do believe that this hindrance is of pure technical nature and we cer­
tainly believe that using more sophisticated computations (like arbitrary precision
evaluation) our theoretical method would yield much better (possibly "optimal")
results.

Our belief is based on the following facts. We had the Vax 8650 of the ETH­
Zurich evaluate (without controlling round-off errors) the first 340 coefficients in the
c:-expansion U(B,6) = 2::= uk(B)c:k (such a computation took about 1h13m of CPU

k>1
time). Now, assuming that the automatic round-off errors do not propagate in a
catastrophyc way (e.g. assuming that all the quantities computed are exact up to
an error of order 10-9), then our computer-assisted KAM algorithm (cfr. [4]) would
yield the following

PSEUDO-THEOREM (on the standard map). Let w = (v'5 - 1) 7r and let
~ = 0.014.2-9 (~ 2.734.10-5), PI = 0.875. Then equation (3) has a unique real­
analytic (both in B and c:) solution u with vanishing mean-value on T. For such a

function one has lule,Pl < 0.4185,0.8824 < IUB(7r; 0.875)1 < IUBle,Pl < 0.8933.
No •

Furthermore, if No = 340 and v == VNo == 2::= uk(B) 6k , (Uk) = 0, one has
k=1

Iu - vle,Pl < 1.3731· 10-10 , IU8 - v8le,Pl < 3.9003· 10-8 .

Notice that the pseudo-result is in agreement of the 90% with the numerical
expectation.

From the point cf view of computer-assisted techniques, it is certainly a chal­
lenging and interesting problem to try to implement further the above ideas in an
efficient way and to actually prove the above "pseudo-theorem". At this regard it
seems likely that the use of parallel-computations might be of significant help.

Appendix A: Series expansion for the solution and estimate of the error term.

As mentioned before the existence of a KAM torus with rotation number w for
the standard map (1) is related to solutions of the equation

w w
(A.l) D2 u - 6sin(B+u) = 0, I+U87~O, Du(B)==u(B+2')-u(B-2')'

To find a solution of (A.l) we expand u in power series around 6 = 0 as u(B;c:) ==
2::= Uk(B)6k • As approximate solution we take the No-truncation v(O) == v No

k2::1
No
2::= uk(B)6k. Then v(O) will satisfy (A.l) up to a small error term e(O) == eNo:

k=1

(A.2)

47

where e(O) ~ O(c:No+1). To solve equation (A. 1) we apply the Newton iteration
procedure presented in [4]: under suitable hypotheses, starting with v(O) one can
construct a new approximation v O) satisfying D2 v (1) -c: sine II+V(l)) == e(l), with an
error term le(1) I ~ O(le(O) 12). The iterative application of the Newton step provides
a sequence of approximants {vU)} (with relative error bounds eCi)), provided the

condition 1 + v ~j) i= 0 holds for every j.

To control the sequences {veil}, {e(j)} we apply a KAM algorithm, which given
upper bounds V(j), E(j) on the norms of v(j) and eCi) provides upper bounds on
the norms of v Ci+l) and eU+1). If the algorithm converges, namely if the conditions

lim EU) = 0
j-co

are satisfied, then a solution of (A.l) is obtained as a uniform limit of the v(j) 'so

To implement such scheme we need to know as input data the norms of v(O) ==
) ~

VNo' v~o and e(O). The size of the initial approximation v(O) == VNo == 2: uk(II)c: k

k=l

(and hence of v~O)) can be obtained by a recursive construction of the functions
Uk (II).

In [4] the Uk'S, which are odd trygonometric polynomials of degree k, were
computed according to the formula (obtained inserting 2: Ukc: k in (A.l))

k hi

D2 -" (alhl . B) II Ui
Uk+1 - ~ e sm . hi!'

hEX. .=1

Such a formula is very general (the sinus could be replaced by any real analytic
periodic function) but, in actual computations, it presents serious combinatorial
problems if k is large.

A much faster way which we learned in [13] is the following. Let 2: qCII)c:k

k2:0

denote the c:-power series expansion of exp(i(II + u)). By differentiation w.r.t. c: one
obtains the relations

k

(A.3) kL
n=l

nUn Ck-n ,

One can compute recursively the Ck'S and Uk'S (and hence vNo

(A.l) implies that

(A.4)

No
2: Ukc: k) since
k=l

where, as usual, Ck denotes the complex analytic function II -+ q(e). Notice that in
these formulae there is no combinatorics involved so that the computing time will
all be spent in the Fourier analysis of (A.3), (AA).

48

Our next task is the estimate of the error term relative to the initial approximant

v(O) == VNo

ieNole,p == sup leNo(O;c)l,
IIm81~e, lel~p

where eNo == e(O) is defined by the 1.h.s. of (A.2).

If a(z) is a z-power series L: akzk, we set Pz,No(a) == L: ak zk and P~,No =
k>O k>No

id. - Pz,No. Then the following-simple lemma (which substitutes Lemma 7 of [4])
holds.

LEMMA. For any positive~, p and any No E Z+, one has

No
where VNo == L: Ukpk and Uk = Uk(O is an upper bound on IUkie == sup IUk(O)I.

k=l IIm81~e

Proof.

IPe,No(sin(O + vNo))1 IsinO Pe,No(COS VNo) + cosO Pe,No(sin vNJI

~ [lPe,No(COS VNoW + IPe,No(sin VNoWP/2 .

Now, expanding in power series one obtains

The point of this Lemma is that the r.h.s. of (AA) can be exactly calculated
in terms of U}, ... , UNo. In fact, since PNo acts linearly, it is enough to look at

Pp,No(exp(±VNo)) = exp(±VNo) P;,No(exp(±VNo-d). But

No-l

L a,/:/, a~==l,
k=O

where such a formula is proved as before by setting exp(±VNo)

differentiating w.r.t. p.

Appendix B: Interval arithmetic.

In floating point notation real numbers are represented by the computer with

a sign-exponent-fraction representation. Since the number of digits in the fraction
and exponent is fixed, the result of any operation is usually an approximation of
the real result. To take care of the round-off and propagation errors introduced by
the machine we perform the so-called interval arithmetic technique ([15]).

49

The first step consists in the reduction of any expression of our programs into a
sequence of elementary operations, i.e. sum, subtraction, multiplication and division

(eventually using a truncated Taylor expansion for the functions sin, exp, etc.).

In double precision a real number is represented by 64 bits and the result of
an elementary operation is guaranteed up to 1/2 of the last significant bit of the

mantissa ([22]).

The idea of the interval arithmetic is to produce an interval around each result
of an elementary operation and to perform subsequent computations on intervals.
For example, along the line of [15] let us add [aI, bl] to [a2' b2]; the result of such

operation is the interval [aa, baJ == [al + bl , a2 + b2J such that if x E [aI, blJ and
y E [a2' b2 J then x + y E [aa, baJ. However, since the endpoints aa, b3 are the result
of an elementary operation one has to link the subroutines for operations on intervals

to a procedure which constructs strict lower and upper bounds, say aa, ha, on a3, b3

respectively. The new extrema of the final interval [a3, h3] are obtained decreasing

or increasing by one unit the last significant bit of aa and ba.

Appendix c: Results on the forced pendulum.

In this appendix we describe the results of the application of KAM theorem to
the forced pendulum system described by the Hamiltonian

y2
(C. 1) H(x,i,y;E) == "2 + E [cos X + cos(x -i)J , (x,i,y) E T2 x R

The equation to be solved to find the w-KAM torus for (C.1) is given by

(C.2) D2 u - E [sin(B+u)+sin(B+u-i)] = 0, 1 +ue # 0, ((u) = 0),

where u(B, i) = u(B, i; E) is periodic in (B, i), Du == wue + Ut, (.) == (B, i)-average. A
solution of (C.2) yields an H-invariant torus r w(B, i) == (x, i, y) = (B +u, i, w + Du)
and the H-fiow at time s is given by :fH(x, i, y) = r w(B + ws, i + s).

The formulae presented in the Appendix A for the standard map concerning
the recursive construction of the approximant v No and the estimate of the error

term eNo transpose easily to the Hamiltonian case. For the forced pendulum the
maximal order we are able to reach is No = 40 (requiring'" 5 Ininutes of CPU time
for the program without interval arithmetic and '" 55 Ininutes for the program with

interval arithmetic).

THEOREM (on the forced pendulum). Let w = (.)5 -1)/2 and let e = 0.08·
2-10 ('" 7.812 . 10-5), PI = 0.018. Then equation (C.2) admits a unique real­
analytic solution u with vanishing mean-value on T2. For such solution one has

lule,Pl < 0.2325, 0.3161 < IUe(7r, 0; 0.018)1 < luele,Pl < 0.3370. Furthermore, if
No

No = 40 and v == VNo == I: Uk(B, i) Ek , (Uk) = 0 ,one has
k=1

lu - vle,Pl < 1.672· 10-5 , IUe - Vele,Pl < 9.208 . 10-4 .

50

Analogously to the standard map the opening of the intervals around the Fourier
coefficients of VNo does not allow to construct rigorously a higher order approxima­
tion. However, let us call again pBeudo-theorem the result obtained constructing
a higher order approximant without interval arithmetic. Starting with V60 (which
requires ~ 54 minutes of CPU time for the non-rigorous program) we obtain the
following

lu - vle,Pl < 4.2192.10-6 , luo - vole,Pl < 3.1563.10-4 •

Notice that in this case the result is in agreement of the 72% with the numerical
expectation.

REFERENCES

[1] ARNOLD V.I., Proof of a Theorem by A.N. Kolmogorov on the in variance of quasi-periodic
motions under small perturbations of the Hamiltonian, Russ. Math. Surveys 18, 9 (1963).

[2] CELLETTI A., Analysis of resonances in the spin-orbit problem in Celestial Mechanics, Ph.D.
Thesis, ETH Zurich (1989).

[3] CELLETTI A., CHIERCHIA L., Rigorous estimates for a computer-assisted KAM theory, J.
Math. Phys. 28, 2078 (1987).

[4] CELLETTI A., CHIERCHIA L., Construction of analytic KAM surfaces and effective stability
bounds, Commun. Math. Phys. 118, 119 (1988).

[5] CELLETTI A., FALCOLINI C., PORZIO A., Rigorous numerical stability estimates for the ex­
istence of KAM tori in a forced pendulum, Ann. lnst. Henri Poincare' 47, 85 (1987).

[6] CELLETTI A., GIORGILLI A., On the numerical optimization of KAM estimates by classical
perturbation theory, J. Appl. Mathern. and Phys. (ZAMP) 39, 743 (1988).

[7] CHIERCHIA L., GALLAVOTTI G., Smooth prime integrals for quasi-integrable Hamiltonian
systems, Nuovo Cimento 67 B, 277 (1982).

[8] DE LA LLAVE R., private communication.
[9] DE LA LLAVE R., RANA D., Proof of accurate bounds in small denominators problems,

preprint (1986).
[10] ESCANDE D.F., DOVEIL F., Renormalization method for computing the threshold of the

large-scale stochastic instability in two degrees of freedom Hamiltonian systems, J. Stat.
Physics 26, 257 (1981).

[11] GREENE J .M., A method for determining a stochastic transition, J. of Math. Phys. 20, 1183
(1979).

[12] HERMAN M., Sur le courbes invariantes par le diffeomorphismes de l'anneau, Asterisque 2,
144 (1986).

[13] HERMAN M., Recent results and some open questions on Siegel's linearization theorems of
germs of complex analytic diffeomorphisms of en near a fixed point, preprint (1987).

[14] KOLMOGOROV A.N., On the conservation of conditionally periodic motions under small per­
turbation of the Hamiltonian, Dokl. Akad. Nauk. SSR 98, 469 (1954).

[15] LANFORD III O.E., Computer assisted proofs in analysis, Physics A 124, 465 (1984).
[16] MOSER J., On invariant curves of area-preserving mappings of an annulus, Nach. Akad.

Wiss. Gottingen, Math. Phys. Kl. II 1, 1 (1962).
[17] MOSER J., Minimal solutions of variational problems on a torus, Ann. lnst. Henri Poincare'

3, 229 (1986).

51

[18] RANA D., Proof of accurate upper and lower bounds to stability domains in small denomi­
nators problems, Ph.D. Thesis, Princeton (1987).

[19] RUSSMANN H., On the existence of invariant curves of twist mappings of an annulus, Springer
Lecture Notes in Math. lOOT, 677 (1983).

[20] SALAMON D., ZEHNDER E., KAM theory in configuration space, Comment. Math. Helvetici
64,84 (1989).

[21] WAYNE C.E., The KAM theory of systems with short range interactions I, Comm. Math.
Phys. 96, 311 (1984).

[22] (no author listed), Vax Architecture handbook, Digital Equipment Corporation (1981).

ON A COMPUTER ALGEBRA AIDED PROOF IN
BIFURCATION THEORY

CARMEN CHICONEtAND MARC JACOBSt

Abstract. Some bifurcation theory for the zeros of an analytic function depending on a vector
of parameters is presented. The emphasis is on problems for which the Weierstrass Preparation
Theorem is not applicable and where the techniques require the analysis of ideals in rings of
convergent power series. Several examples are given to illustrate the methods of this analysis. In
particular, the utility of the Grobner basis algorithms which are currently implemented in several
computer algebra packages is explained. Several problems for future research which arc natural
candidates for computer assisted proofs are also given.

Key words. period function, center, bifurcation, quadratic system, Hamiltonian syst.en1, lin­
earization

AMS(MOS) subject classifications. 58F14, 58F22, 58F30, 34C15

1. Introduction. There are a number of ways that computer algebra can
assist in the analysis of bifurcation problems. Here we are going to describe a class
of bifurcation problems where computer algebra is not only useful to handle the
complexities of the computations involved but, more importantly, where it can be
used to aid in the proofs of bifurcation theorems. Two of our main goals are to
demonstrate how the analysis of ideals in rings of convergent power series arise
naturally in bifurcation theory and to describe how some portions of this analysis
can be carried out with the currently available computer implemented algorithms;
especially, Buchberger's algorithm [3] for the computation of Grabner bases.

Usually we begin with a differential equation model of a physical phenomenon
where we wish to observe the behavior of a certain observable quantity which can
be represented by the zeros of a function ~ f-7 F(O, where ~ is the coordinate for
some subspace of the state space of the dynamical system defined by the differential
equation. In realistic situations the model equations will depend on a number of
parameters given by a vector A = (A1' A2, ... ,AN) of real numbers. The problem is
to consider, for the changing values of A, the number and position of the solutions of

the equation F(~, A) = O. Since F may be nonlinear, it is often extremely difficult to
obtain the solutions for the equation in the full domain of the function F. However,
as a step in this direction, there may be some values of the parameter A where the
number of zeros can be determined. If A. is such a point, then we may ask for the
number of zeros of F when A is very close to A., i.e., we may ask for the number
of local zeros of F(~, A) = 0 near the point (~., A.). More precisely, we say F has a
bifurcation to K-local zeros at (~., A.) if for each € > 0 and 8 > 0 there is a point
A such that IA - A. I < 8, and F(~, A) = 0 has K solutions ~1, 6, ... ,eJ(satisfying
lek - ~. I < € for k = 1,2, ... ,K. If, in addition, there is some choice of € and 8
such that for each A with IA - A.I < 8, F(e, A) = 0 has at most K local zeros, then

tDepartment of Mathematics, The University of Missouri, Columbia, MO 65211. This research
was sponsored by the Air Force Office of Scientific Research under grant AF-AFOSR-89-0078.

53

we say F has K local zerOil at ce*, >'*), cf. [1]. When F is analytic in both e and
>., we can always translate the point e* to the origin of the coordinate system and
consider the power series development of F to have the form

Fce, >.) = fo(>') + h(>.)e + fz(>.)e +

It is the number of zeros of this power series which lie near e = ° which we wish to
determine.

Two fundamental examples which lead to a bifurcation problem of this type are
the bifurcation of limit cycles from a center or a weak focus and the bifurcation of
critical points of the period function from a weak center. For these examples, we
begin with an autonomous differential equation in the plane depending on a vector
>. of parameters

x = f(x,y,>'), y = g(x,y,>')

where we have the following hypotheses: (1) f and 9 are both analytic, (2) f(O, 0, >.)
and g(O, 0, >.) vanish identically, (3) the linear part ofthe vector field (j, g) is (-y, x)
when>. = 0, and (4) the origin of the phase plane is, for the limit cycle case, either
a center or a focus and, for the case of the critical points of the period function, a
center for all values of the parameter >.. We consider a transverse section B to the
flow of the vector field through the origin of the plane which, for simplicity, we will
always assume is an interval [0, w) of the positive x-axis and we let e denote the
distance coordinate along B.

For the limit cycle bifurcation problem we define e f--> h(e, >.) to be the Poincare
return map on Band d(e,>') := h(e,>') - e, the associated succession function.
Under our assumptions d is analytic and can be developed into a power series of
form

The zeros of d correspond to periodic trajectories of the differential equation.

For the case of the bifurcation of critical points of the period function we consider
instead of the return map the derivative of the period function e f--> P~ (e, >.). Here
P assigns to the periodic trajectory through (e,O) its minimum period. The series
representation of P(e, >.) has the form

Thus, in this case, the bifurcation function is

and the zeros of p~(e, >.) are the critical points of the period function.

In both of the examples just described the bifurcation function can not be
obtained in closed form except in special cases. However, the coefficients of the
power series expansions can be obtained, in principle, to any desired order. Thus,
in each case, our problem is to determine the number of local zeros from knowledge

54

of a finite number of explicitly computed Taylor coefficients and from the qualitative
analysis of the differential equation.

In §2 we give some of the basic bifurcation theory useful in the analysis of
problems of the type just described. In §3 we will show how this bifurcation theory
can be applied to the problem of bifurcation of critical points of the period function
of the quadratic systems which have centers. While, in §4 we will show how the
same methods can be used to study the bifurcation of critical points of the period
function for Hamiltonian systems of the form

U+g(U,A)=O

where 9 is a polynomial in u and A is again a vector of parameters. Vife will also
mention in this section some problems for further research which offer promising
applications for computer algebra assisted proofs.

2. Bifurcation Theory. The basic tool for the analysis of the local zeros of
a power series is provided by the following theorem.

WEIERSTRASS PREPARATION THEOREM. Let (~, A) ,.... F(~, A) be all analytic
function for (~, A) E R X RN and suppose F has the series representation

near the point (~.,A.). If 10(A.) = !I(A.) = ... = iK-l(A.) = 0 but h(>.*) f 0,

then

F(~, A) = [(~ - ~*)K + aK-l(A)(~ - ~.)K-l + ... + ao(A)] u(~, A)

with ai(A) and u(~, A) analytic, ai(A.) = 0 for i = 0,1, ... ,K -1 and u(~., A.) f o.

In other words, under the hypotheses of the theorem, F has at most K local
zeros at (~., A.). If additional conditions are satisfied by the coefficients G;(/\) so
that the polynomial

has K real roots near ~* for some choice of A in each interval centered at A., then
F has K local zeros at (~., A.).

In order to illustrate a typical situation and the application of the Preparation
Theorem we consider an abstract example. Suppose we start with a differential
equation model for which we have defined our analytic bifurcation function ~ ,....,
F(~,Al,A2) and that we are able to compute:

By the Preparation Theorem the only local zero when A2 - Ai f 0 is ~ = O. To
investigate the number of local zeros near points on the curve A2 - Ai = 0 we
compute another term of the power series. Suppose we find

55

Now, if A2 - Ai = 0 but A2 i= 0 there is at most one other local zero aside from
~ = o. The only remaining point from which we do not know the local bifurcations
is the origin of the parameter space. The bifurcation analysis at this point of the
parameter space can be quite subtle. It is often the case in the examples that, as a
consequence of the definition of F, we have F(~,O, 0) == O. This implies that all the
Taylor coefficients of the bifurcation function vanish at the origin of the parameter
space. In particular, at this point of the parameter space the Preparation Theorem
is not applicable. If the bifurcation problem were generic so that perturbations have
to be considered in the direction of an arbitrary smooth vector field, any number
of local zeros can be obtained. But, since the bifurcation problem arises from a
specific vector field with the dependence on the parameters given from the outset,
the number of local zeros is restricted. It is perhaps tempting to conjecture that,
since the bifurcation function degenerates to the zero function at just one point,
that there remains at most one nontrivial local zero. However, this may not be the
case. In fact, suppose we compute further and find

Consider the polynomial

and its evaluation for t 2: 0 along the path given by

We have

and it follows that there are two local zeros; they are given by ~ = ±Jt. Now,
under the assumption that F(~, 0, 0) == 0, we conclude that for each k = 1,2, ... ,
the Taylor coefficient of order k can be represented in the form

where ak and bk are analytic. Formally, we then have

Thus, for small ~, the analytic function F appears to behave like the polynomial

and there should be at most two nontrivial local zeros. These remarks would be
a proof that there are at most two local zeros for the bifurcation problem if the
convergence of the representation of F in its rearranged form were established.
Fortunately, this can be done. In fact, we have the following theorem, cf. [4].

56

INFINITE ORDER BIFURCATION THEOREM. H

F(~, >..) = fo(>") + II (>..)(~ - e.) + h(>")(~ - ~.)2 + ...

is analytic and the ideal I generated by the set of all the Taylor coefficients fi(>"),
for i = 0,1, ... , in the ring R {>..1, ... ,>"N h.. of convergent power series expanded
at >... is generated by the finite set {fO(>")Jl(>"), ... ,fK(>")}, then F has at most
K local zeros at (~., >...).

In the example, it is clear that the ideal in R{ >"1, >"2}0 of all the Taylor coefficients
is generated by the polynomials >"2 - >..i, >"2, and >"1 corresponding to the first
three Taylor coefficients. However, in practice, the first few Taylor coefficients may
well be nontrivial polynomials (or power series) where it will not be at all obvious
whether or not they generate the ideal of all Taylor coefficients. There is another
aspect of this which is illustrated by the example. Note that the variety of all
the Taylor coefficients was apparent from the assumption F(e, 0, 0) == ° after the
computation of the second coefficient, since the variety of the ideal (>"2 - /\i, /\2) is
already just the origin of the parameter space. Thus, the variety of the sequence of
ideals (fo), (fo, II), (fo, II, h), ... may stabilize before the sequence of ideals itself
stabilizes. Of course, in a ring of convergent power series, we are assured, by an
extension of the Hilbert Basis Theorem cf. [2, p. 345], that a tower of ideals as
above will stabilize at a finite height. Computer algebra is usually essential in the
computation of the Taylor coefficients of the bifurcation function F in a realistic
problem. However, it is in the application ofthe Infinite Order Bifurcation Theorem
where we find computer algebra assisted proofs of bifurcation theorems arc feasihle.
In the next section we describe an example where the bifurcation analysis can be
completed with this aid.

3. Critical Points of the Period Function. In a classic paper, N.N. Dautin
[1] considered the bifurcation of local limit cycles from a weak focus or center of
a quadratic system as described in the introduction. Here one begins with the
quadratic differential equation in the Bautin normal form

i: = >"IX - Y - >"3X2 + (2)''2 + >"5)XY + >"6y2

if = x + >"IY + >"2X2 + (2)''3 + >"4)XY - >"2y2.

This normal form is chosen so that the conditions for the stationary point at the
origin to be a center are expressed as reasonably simple polynomial relations in
the coefficients. In fact, the origin will be a center, i.e., every trajectory of the

differential equation starting near the origin is periodic, provided >"1 = ° and one
of the following conditions holds: (1) >"4 = ° and >"5 = 0, (2) >"3 = >"6 , (3)

>"5 = 0, >"4 + 5>"3 - 5>"6 = ° and >"3 >"6 - 2>"~ - >..~ = ° , or (4) >"2 = 0, and /\:; = 0.
When >"1 = ° the origin is called a weak focus. Recall that for Bautin the succession
function is defined on a segment of the positive x-axis and he considers the series
representation

57

Using the Preparation Theorem we have at most one limit cycle bifurcating from
a weak focus of order one (d1 = 0, d3 (>.) =1= 0), at most two bifurcate from a weak
focus of order two (d1 = d3 = 0, ds =1= 0), and at most three from a weak center
of order three (d l = d3 = d5 = 0, d7 =1= 0). When d l = d3 = ds = d7 = 0 all
the Taylor coefficients vanish and we have a center. In particular, the conditions
listed above are satisfied. This fact can be shown by finding an integral for the
differential equation in each such case. The theorem of Bautin determines the local
bifurcations from one of these centers; it is the prototype theorem for the infinite
order bifurcation problems where the Preparation Theorem is not applicable.

BA UTIN'S THEOREM. The first nonvanishing coefficient dk of the series for the
succession function is the coefficient of an odd order term. The first four odd order
coefficients are

d1 = e27rA1 - 1,
71"

d3 = -"4>'5(>'3 - >'6) (mod (>'1»,
71"

d5 = 24 >'2>'4(>'3 - >'6)(>'4 + 5>'3 - 5>'6) (mod (>'1, d3 »,
2571" 2 2 2

d7 = -3"2>'2>'4(>'3 - >'6) (>'3>'6 -2>'6 - >'2) (mod (>'I,d3 ,ds»,

where (>'1, d3 , ••• , dk) denotes the ideal in the polynomial ring R[>'1, >'2, ... , /\6J. If
k > 7, then dk is in the ideal (>'1, d3 , d5 , d7). In particular, at most three local limit
cycles bifurcate from a center of a quadratic system.

We now describe the problem of bifurcation of critical points of the period
function from a quadratic isochrone. This was previously discussed by us [4J; here we
outline the most important features of the analysis. We will be especially interested
in those aspects of this analysis which lead to applications of computer algebra.

For the bifurcation problem as described in the introduction, we will consider
the bifurcation of critical points for the period function of a quadratic system.
Recall that we insist that the differential equation have a center at the origin of the
phase space for all values of the parameters in the problem. For quadratics, the
centers are determined from the Bautin normal form. In [4J we show that no critical
points of the period function bifurcate from a weak center, i.e., a center where the
second order period coefficient vanishes, when the center occurs at a parameter
value corresponding to the first three cases for a center in the Bautin normal form.

For the fourth case, where >'2 = >'s = 0, a linear change of coordinates transforms
the differential equation to the Loud system [7J:

x = -y + Bxy, if = x + Dx2 + Fy2.

This system has a center at the origin of the phase plane for all values of the
parameters and the positive x-axis is a section for the flow of the differential
equation for all values of the parameters.

In order to apply the theory we have developed we must obtain the series ex­
pansion of the period function. It is computationally efficient to first consider the

58

dehomogenized Loud system

i: = -y + xy, if = x + Dx2 + Fy2.

In the case when B # 0 this system is obtained from the Loud system by a simple
rescaling of the coordinates. The period coefficients of the Loud system can be
obtained subsequently by homogenization. To compute the period coefficients we
express the dehomogenized Loud system in polar coordinates

iJ = 1 + r,B(B,..\)

to obtain the integral representation of the period function

P(~ ..\) = f2rr dB
, 10 l+r(B,~,..\),B(B,..\)

where
dr r2 a(B, ..\)
dB = 1 +r,B(B,..\)'

r(O,~,..\) = (

Using the differential equation for r(B,~,..\) we expand the solution with initial
condition r(O,~,..\) = ~ in powers of ~. This series is substituted into the integrand
of the integral representation of P and the resulting series is integrated term by

term to obtain

P(~,D,F) = 27r + P2(D,F)e + P3(D,F)e + ...

where

P2(D, F) = ;2 (10D2 + 10DF - D + 4F2 - 5F + 1),

P4(D, F) = 1~2 (1540D4 + 4040D3 F + 1I80D3 + 4692D2 F2 + 1992D2 F + 2768DF3

+ 453D2 + 228DF2 + 318DF - 2D + 784F4 - 616F3 - 63F2 - 154F + 49),

P6(D, F) = 7r (4142600D6 + 17971800D5 F + 6780900D5 + 34474440D4 F2
1244160
+ 22992060D4 F + 4531170D4 + 37257320D3 F3 + 28795260D3 F2

+ 10577130D3 F + 1491415D3 + 24997584D2 F4 + 14770932D 2 F3

+ 7686378D2 F2 + 2238981D2 F + 339501D2 + 10527072DF5 + 367584Dpl

+ 1400478DF3 + 598629DF2 + 228900DF - 663D + 2302784F6

- 1830576F5 - 213972F4 - 126313F3 - 53493F2 - 1I4411F + 35981).

Since we are interested in the critical points of the period function we must
work with the bifurcation function Pee ~,B, D, F). From symmetry considerations
it is not difficult to see that the first nonzero period coefficient is the coefficient of
an even power of ~ and, after the computation of the period coefficients, we see that
if B = 0 then the origin is a weak center only if both D and F vanish. Of course,
in this case, the system is linear and the center is isochronous. When B # 0 we

59

can apply the Preparation Theorem to obtain the following results: If pz CD, F) = 0
and P4(D, F) # ° at most one critical point of the period function bifurcates from
the origin. If pz(D, F) = 0, P4(D, F) = ° and P6(D, F) # ° then (D, F) is one of
the three points

C -~ ~) C -11 + v'105 15 - v'105) (-11 - v'105 15 + v'105)
2' 2 ' 20 ' 20 ' 20 ' 20

and, at these points, at most two critical points of the period function bifurcate from
the origin. It turns out that in all cases the maximum number of critical points

can be obtained by an appropriate bifurcation. If pz (D, F) = 0, P4 (D, F) = ° and
P6(D, F) = 0, then (D, F) is one of the four points

and, at these points, Pk(D,F) = ° for all k = 2,3,4, ... [7]. In other words, these
four points correspond to the nonlinear isochrones, the full set being those points
(B,D,F) where the ratios CD/B,F/B) give one ofthe four listed points. It is at
these points and at the origin of the parameter space that the Preparation Theorcm
does not apply. However, we have a theorem analogous to Bautin's Theorem.

QUADRATIC ISOCHRONE BIFURCATION THEOREM [4]. The kth Taylor coefE­
cient of P€ce, B, D, F) is a homogeneous polynomial of degree k in R[B, D, F] and
this polynomial is in the ideal

Cp2(B, D, F),P4(B, D, F),P6(B, D, F)).

In particular, at most two critical points of the period function bifurcate from an
isochrone of a quadratic system.

Here, it turns out that the maximum number of critical points which can bi­
furcate from a nonlinear isochrone is only one while the maximum number which
can bifurcate from the linear isochrone is two. This difference is accounted for by
a stronger version of the theorem which states that the ideal of all the Taylor co­
efficients in the ring of convergent power series at a given nonlinear isochrone is
actually generated by the polynomials pz and P4; this is proved in [4].

While we will not give a formal proof of this theorem here we will give an
outline of the proof which contains the important ideas. We begin with the deho­
mogenized Loud system. Our strategy is to find an ideal membership theorem for
the polynomial ideal

1:= (pz(D, F), P4(D, F), P6(D, F))

and to show that each of the Taylor coefficients meets this ideal membership tcst.
Then, we will use this result to obtain the same conclusion for the homogenized
ideal.

The basic ideal membership theorem for the dehomogenized ideal is the content
of the following theorem.

60

IDEAL MEMBERSHIP THEOREM. If p is a polynomial in R[D, F], then p E I if
and only if (1) p vanishes at each isochrone and (2)

d 1 1 I -p(t--,--t) =0.
dt 2 2 t=o

The proof of this result uses some interesting algebra and, in particular, the
theorem of M. Noether [9, p. 163]. For this, recall that the maximal ideal Ma,b at
a point (a, b) E R [x, y] is the ideal generated by { x - a, y - b }. N oether's theorem
states: If I is a polynomial ideal whose zero set contains only a finite number of

zeros (ai, bi), then if, for each i, CTi is the smallest exponent such that the m!Lxim!LZ

ideal at the itk zero (denoted by M; for short) satisfies the condition

M" C (I M"+l)
I '1 ,

then

1= n(I,Mt).

In the present case, the values of these exponents can be readily calculated with a
computer algebra system which includes the standard Grabner basis procedures [3].
In fact, this is just a problem in the repeated testing of monomials for membership
in a polynomial ideal, and such procedures are provided in many of the standard
computer algebra packages such as MACSYMA, MAPLE, and REDUCE. Now, the
first condition of the Ideal Membership Theorem states that the polynomial p van­
ishes on the variety of I. Ordinarily, the variety will contain both real and complex
zeros of the polynomial generators. However, it turns out that in the present case
we can remain in the field of real numbers because the union of the four isochrones
is exactly this variety. The derivative condition is derived from Noether's theorem.

The key facts are that at the isochrone (-1/2,1/2) the three polynomials generating
I have second order contact, while at the remaining isochrones they meet pairwise
transversally. In particular, at the isochrone (-1/2,1/2), the Noether exponent has
value two, while at the other isochrones the value is one. The derivative condi­
tion of the ideal membership theorem derives from the second order contact at the
isochrone (-1/2,1/2) and this condition requires the verification of the identity

for the coefficients of the period function of the system

x = -y + xy,

Since all the trajectories starting at (e,O) are periodic, for e in the domain of the
period function, we have y(P(e, A), e, A) == O. After differentiation of this identity
with respect to A we compute

y(P(e, 0), e, O)P-x(e, 0) + Y-x(p(e, 0), e, 0) == O.

61

But, p(e,O) == 27r because when>. = 0 the system is an isochrone. Thus, p%(O) = 0
exactly when y>-(27r,e, O) == O. Using the variational equations for the system one
can show

/

00 fee, t)
y>-(27r,e, 0) = -(I:)dt

-oogt"t

where

and

A computer check using the residue calculus shows the integral vanishes identi­
cally. This establishes that the ideal of all the Taylor coefficients in the case of the
dehomogenized Loud system are in the ideal I.

Now define the ideal

J:= (p2(B,D,F), P4(B,D,F), P6(B,D,F))

for the homogenized system which corresponds to I. In order to establish the ideal
membership result for this case we first consider the homogenization of the ideals

(I, Mr). These are

Q1 :=(D,F-B), Q2 :=(D,4F-B)

Q3 := (2D + B, F - 2B), Q4:= (D + F, (2D + B)2).

It is not difficult to show using some standard theorems in ideal theory [8, pp. 64-65]
and the results for the dehomogenized ideal that, with

4

J1 := n Qi,
i=l

we have for each k = 2,3,4, ... , Pk E h. However, this is not sufficient to establish
the desired result since, unfortunately, J1 =I J. At this point the crucial steps using
computer algebra are made. If we define a new ideal

then, using a Grabner basis computation, we can show by checking inclusions of the
generators that

Finally, by another Grabner basis computation we can check that every homoge­
neous monomial of degree seven belongs to Jo. This implies that the homogeneous
polynomials Pk for all k = 2,3,4, ... , belong to Jo. Then, since all the Taylor co­
efficients belong to both Jo and J1, it follows that they belong to J. This gives the
desired result.

62

4. Polynomial Potential Functions. In this section we examine the bifur­
cation of critical periods for conservative second order scalar differential equations
of the form

U+g(U,A)=O

when A f-+ g(u, A), A E RN is linear, and u f-+ g(u, A) is a polynomial. In fact, if we
denote the potential energy by V(U,A), then

V(U,A):= i U
g(s,A)ds

and the total energy is given by the Hamiltonian

H(U,V,A):= ~v2 + V(U,A), where v = u.

We will assume that the polynomial potential function has the form

For such potential functions we have the fundamental

POLYNOMIAL POTENTIAL ISOCHRONE THEOREM [4]. The second order scalar
differential equation u+g(u, A) = 0 with A := (A3, A4, ... ,AN), and potential energy

N-2
VN(U, A) = ~U2 + ~ Ai+ZUi+Z

has an isochronous center at the origin if and only if A = o.

In order to use our bifurcation results we need to obtain a series expansion for
the period function in a neighborhood of e = o. One can show [4] that for any
potential function V(u) which is analytic on R with V'(O) = 0 and VI/(O) = 1 the
function h defined by

x = h(u):= sgn(u)j2V(u)

when V(u) 2: 0, is analytic on each connected component of {ulV(u) 2: O} which
contains the origin. Moreover, the inverse function X f-+ h-!(X) is defined and
analytic on the connected component of {u I h'(u) > O} which contains u = 0, and
its MacLaurin series has the form

00

h-!(X) = X + LdkXk.
k=Z

Once the coefficients dk in this expansion are known, the Maclaurin series for the
period function X f-+ P(X) is determined by

00

P(X) = 27r + LPZkXZk
k=!

63

where
1·3·5···(2k+l)

P2k = 27r 2 .4. 6 .. . 2k d2 k+I. k ~ 1.

Returning now to the case of a polynomial potential function of the form

we define a function <f; by the relation

N-2

<f;(u) = 2 L Ai+2Ui .

i=1

Next we need the power series for the analytic solution u = u(X) of the equation

x = h(u) = u-/l + <f;(u)

for IXI sufficiently small. Most computer algebra systems have a series reverszon

procedure available which can be used to obtain the power series for u(X). For our

purposes we can formulate this result as follows.

SERIES REVERSION LEMMA. Let f : R ~ R be analytic at 0 with f(O) 1,
and let P E R[t] have the form

pet) = PIt + P2t2 + ... + Pntn.

Tllen the function t f-+ Z := tf(p(t)), t E R, and its inverse Z f-+ t := F(z), are
analytic at O. Moreover, the power series expansion for F(z) has the form

An algorithm for calculating the coefficients Fk is given in [5,6]. One first obtains
the coefficients Vk in the expansion

and then the coefficients Fk can be calculated from the

Lagrange-Henrici Series Reversion Algorithm:

Input: n max and Vk, for k = 2,3, ... ,nmax , and Uo = 1.
Output: Fk, for k = 2,3, ... ,nrnax .

for n = 2 until n max step 1 do
begin

for m = 1 until n - 1 step 1 do

1 m

Urn := m L [(1 - nlk - m] U rn -kV k+l;

k=1

Fn := ~Un-l;
end;

64

If we define J(t) := v'f+1, then we can apply the Lagrange-Henrici Series
Reversion Algorithm to calculate the coefficients in the power series expansion of
the solution

of

x = h(u) = uv'l + ¢>(u).

As we pointed out earlier, the period function for this problem has the form

and

m:= (P2,P4,P6,"') = (d3,d5,d7, ...).

To simplify the notation we define

for m 2: 1. While the ideal (d2 , d3 , d4 , .•.) is very easy to analyze, since it is radical
in R[A3, A4, . .. , AN], the ideal m = (d3, d5, d7, . ..) which we must study is gener­
ally substantially more difficult to understand. The next lemma will assist us in
detecting the structure of the ideal m.

POTENTIAL REVERSION COEFFICIENT LEMMA [4]. The following relations are

valid:
8qm 182m _'mt3 il

-8" = --(2)'8 2m(1+¢>(u)) , U ,
",+2 m. u u=o

and in general, if A = (A3, A4,'" , AN), k = (k3, k4, k5"'" kN), and JkJ = Li2:3 ki ,
then

2nl±2!kltl 1 ' uk3+2k4+3k5+··-+(N-2)kN ,

11=0

where

flm,lkl = (-1)lkl(2m + 1)(2m + 3)··· (2m + 2JkJ- 1).

Moreover,

and for JkJ 2: 2 we have

n 1kl I flm,lkl b
.\ qm .\=0 = 2m + 1 k3 +2k.+3k5+---+(N-2)kN,2m-

Using the Potential Reversion Coefficient Lemma one can prove the

65

EVEN POTENTIAL THEOREM [4]. Assume that the polynomial potential func­
tion V(u) is even, i.e., let

n-l

V() 1 2 '" >. 2i+2
U ="2u + ~ 2i+2U •

Then n - 1 is the smallest integer k such that mk = (ql, q2, ... ,q k) = mover
the polynomial ring R [>'4, >'6, ... ,>'2n]' The differential equation it + g(u, >.) = 0
corresponding to the potential function V has at most n - 2 local critical periods
which bifurcate from the origin. Moreover, there are perturbations with exactly k
local critical periods for each k ::; n - 2.

Application of the Infinite Order Bifurcation Theorem requires the calculation
of K = K(N), the smallest positive integer k such that

For a general polynomial potential function of the form

it is easy to prove with the aid of the Potential Reversion Coefficient Lemma that
K(N) must be at least as large as the number of unknowns, i.e.,

K(N):?: N - 2.

Unfortunately when N :?: 6, this inequality is strict. Obtaining a precise formula
for K(N) remains a difficult unsolved problem. However, some rather extensive
computer algebra computations suggest the following conjecture:

If N = deg VN :?: 3, then the complex variety of the ideal mN-2 is

{OJ, and

where

[N -4] K(N)=N-2+ -2- ,

[
largest integer ::; x if x > 0

[x] = o otherwise.

For the cases 3 ::; N ::; 6 the following theorem gives a full account of the

possibilities.

THEOREM [4]. The differential equation it + g(u, >.) = 0 corresponding to the
potential V6 can have at most four critical periods bifurcating from the origin.
There are perturbations which will produce k critical periods for k ::; 3. For the
potential V5 at most two critical periods bifurcate from the origin, and there are

66

perturbations with k critical periods for k ~ 2. Finally, for the potential V4 at most
one critical period bifurcates from the origin, and there are perturbations with one
critical period.

While we are not yet able to prove the general conjecture, we do have the tools
to analyze the ideal membership problem for any particular N. We illustrate the

procedure for calculating K(N) for the cases N = 5 and N = 6 which are mentioned
in the preceding Theorem. Consider the four parameter potential function

Since K(6) ~ 4, we use series reversion to calculate d3 , ds , d7 , and d9 , or equivalently,

q!, q2, q3, and q4 to obtain

In order to prove that K(6) = 5 we will show that qj E m4 := (q!, q2, q3, q4) if j ~ 6,
and that qs f{. ffi4. Before proving this we first observe (for any N ~ 3) that the
Potential Reversion Coefficient Lemma implies that the polynomials qj(>'3,' .. ,AN)
are weighted homogeneous polynomials [2] of degree 2j with weighting pattern
(1,2,3, ... ,N - 2). To assist in the analysis of the ideal m := (q!, q2, Q3, ...) we
introduce a weight preserving polyomorphism

with inverse

This transformation maps the weighted homogeneous polynomials Qj(A3' A4, A5, A,d
of degree 2j into weighted homogeneous polynomials in (L!, L2 , L 3 , L4) of degree

67

2j with weight pattern (1,2,3,4). Using the same notation for the polynomials qj
in the new coordinates we have

ql(L1 ,L2,L3,L4) = L2,

q2(L1 ,L2,L3,L4) = L4 ,

6 3 9 2 4 45 2 2
q3(L1 , L2, L3, L4) = 36LIL2 L3 + 954L1 - 222LI L3 + "2L3 - 621L1 L2 - 2 L1 L2

- 15L~ + 27Li L4 + 9L2L4

q4(L1, L2, L3 , L4) = 66LIL3L4 + 341LIL~L3 + 561LiL2L4 - 5214L{L2L3 - 11704L~
5 2 2 6 21021 4 2 + 4136L1L3 - 374LI L3 + 25146L1L2 - -2-L1L2

_ 1639 L2 L3 143 L L2 _ 187 L4 _ 407L4 L 33L2 L ~L2
2 1 2 + 2 2 3 2 2 1 4 + 2 4 + 2 4·

It is now easy to verify that the complex variety of the ideal ffi4 is {O}. Thus by
the Hilbert Nullstellensatz [9] there is a smallest positive integer v such that every
monomial L~' L;2 L;3 L!4 with il + 2i2 + 3i3 + 4i4 :::: v is in ffi4. This observation will
guide our proofthat K(6) = 5. Each ofthe polynomials qj in the new indeterminants
L1, L2, L3, L4 is a linear combination of monomials v = L;' L;2 L;3 L~4 with i 1 + 2i 2 +
3i3 +4i4 = 2j. We will show that every such monomial v is in ffi4 if j :::: 6, and this will
be sufficient to prove that qj E ffi4 for j :::: 6. We define qjO (Ll , L3) : = qj (L1 , 0, L3, 0)
for j = 1,2,3, ... , and let ffi40 be the ideal

over R[LI,L3]. Since L2 and L4 are in ffi4, it follows that for j:::: 5 we have qj E ffi1
over R[L1,L2,L3,L4] if and only if qjO E ffi40 over R[L1,L3]. This observation
considerably reduces the amount of work necessary to analyze the ideal m1. The
following identities can be verified

5 2 2 133 2) 159 () 319L1 L3 - 72Ll L3 = 4s Ll q30 (L1, L3 + 704 q40 L 1, L3 ,

L2L3 - (5417 L2L _ 42427 L5) (L L) (~L _ 4611 L3) (L L)
1 3 - 15324 1 3 15324 1 q30 I, 3 + 224752 3 20432 1 q40 1, 3,

L4 - (~L2_ 60541 L3L _ 47215 L6) (L L)_(99623 L L 18815 L4) (L L)
3 - 9 3 45972 1 3 11493 1 q30 I, 3 674256 1 3+56188 1 q40 1, 3,

L11 - (1037 L2 L _ 1643 L5) (L L) (183 L _ 2041 L3) (L L)
1 - 245184 1 3 61296 1 Q30 }, 3 + 3596032 3 899008 1 Q40 1, 3·

From these relationships one can also deduce that L~L3 and L~L~ are both in ffi40.

Therefore every monomial Vo = L;' L;3 which has weighted degree i1 + 3i3 = 11

belongs to the ideal ffi40. Since every monomial Vo of weighted degree 2j :::: 12 is
either a multiple of a monomial of weighted degree 11 or a multiple of Lj which
has weighted degree 12, it follows that each such monomial Vo E ffi40. Now the qjO

68

are weighted homogeneous polynomials of degree 2j with weight pattern (1,3) in

(Ll,L3). Consequently qjO E ffi40 if j :::: 6. Next we show that q50 ~ ffi40, and this
will complete the proof that I« 6) = 5. We calculate a Grabner basis [3], \5, for nllO

using the lexicographic ordering L3 -< L1 ,

\5 = {636L~ - 148Li L3 + 3L~, 319L~ L3 - 72Li L~, 957 L~ - 1420Li L~, - Li L~, - Lj}

In the original coordinates (A3, A4, >'5, A6) the polynomial q5 is

If we transform this polynomial using the weight preserving polyomorphism con­

structed above, and then put L2 == 0 == L4 , then we see that

Then the normal form algorithm in [3] can be used to show that q50 is not reduced
to 0 relative to the Grabner basis \5. Hence qso ~ ffi40.

Next we show that I«5) = 3. In this case the potential function has the form

Since I«5) :::: 3, we again use series reversion to calculate d3 , ds , and d7 or equiva­
lently qb q2, and q3 and obtain

We will show that qj E ffi3 for j = 1,2,3, Since I«5) :::: 3, this will show
I«5) = 3. Again we introduce a weight preserving polyomorphism

69

with inverse
5 2

L1 = A3, L2 = "2 A3 - A4, L3 = A5.

This transformation maps the weighted homogeneous polynomials qj(A3, A4, A5) of
degree 2j into weighted homogeneous polynomials in (LI, L2, L3) of degree 2j with
weight pattern (1,2,3). Using the same notation for the polynomials qj in the new
coordinates we have

As in the case N = 6 we consider only the polynomials qjO, and we show that

over R[L1 ,L3]. The following identities can be verified

2 132 3 11 8)
L1 L3 = (161 L1 + 161 L3)q2o(LI, L3) + 69 L1 q3o(L1, L3 ,

3 638 2 484 5 (2 88 3) ()
L3=(483L1L3-161L1)q2o(L1,L3)+ 9L3-207L1 q30 L1,L3 .

It follows easily from these observations that L1 and L1 L3 are also in ffi30. Conse­
quently every monomial Vo = L~' L;a with weighted degree i1 + 3i3 = 7 belongs to
ffi30. Since L~ E ffi30 it follows that every monomial in the two variables L 1, L3 of
weighted degree 2j ;::: 8 also belongs to m30, and we can conclude that K(5) = 3.

The case N = 6 gives the polynomial potential of smallest degree where there
is a "jump" in K(N), i.e. where K(N) > N - 2. It is perhaps worth noting that
this "jump" cannot be removed by passing to the larger ring of convergent power
series as was done in the remark following the Quadratic Isochrone Bifurcation
Theorem. It is also easy to prove that K(3) = 1 and that K(4) = 2 so that the
conjectured formula for K(N) is valid for 3 ::; N ::; 6. Moreover, Grabner basis
computer calculations prove that the conjectured formula for K(N), viz.,

[N -4] Kc(N):= N - 2+ -2- ,

is a lower bound for K(N) and that qJ(c(N)+1 E mJ(c(N) for 7 ::; N ::; 11, but we
have not shown that K(N) is actually equal to Kc(N) for these N (note that our
use of the greatest integer function requires [x] = 0 when x ::; 0). Also one can show
that the complex variety of mk is not {O} when k < N - 2 so that K(N) :::: lV - 2
for all N :::: 3. Part of our conjecture is that for the general polynomial potential VN

70

of degree N (of the form we have been considering) the complex variety of mN -2 is
{a}. This conjecture has been proved for 3 ::; N ::; 11, but as yet we are lacking a
proof for the general case. It is also worth noting that from the Potential Reversion
Coefficient Lemma one can prove that there are weight preserving polyomorphisms
L ~ A such that the indeterminants of odd weight are unchanged, i.e., Ll = A3,
L3 = A5, etc. and such that the indeterminants of even weight L 2 , L 4 , ••• are all
in the ideal mN -2, If such a transformation is made, as in the cases N = 5 and
N = 6 above, then the ideals mN-Z and mover R[).3, A4, ... , AN-2] can be under­
stood by studying the ideal mN-2,O over R[Lb L 3 , ..• , L 2v+1] and the polynomials
qjO (Ll , L 3 , .•. , L Zv+1) where 21/ + 1 is the largest odd integer not exceeding N - 2.

REFERENCES

[1] N. N. BAUTIN, On the number of limit cycles which appear with the variation ofcoeflicients
from an equilibrium position of focus or center type, Amer. Math. Soc. Trans!., 100 (1954),
pp. 1-19.

[2] E. BRIESKORN AND H. KNORRER, Plane Algebraic Curves, J. Stillwell translator, Birkhiiuser
Verlag, Boston, 1986.

[3] B. BUCHBERGER, Grabner bases: An algorithmic method in polynomial ideal theory, in
Multidimensional Systems Theory, N. K. Bose, Ed., D. Reidel, Boston, 1985.

[4] C. CHICONE AND MARC JACOBS, Bifurcation of critical periods for plane vector fields, Trans.
Amer. Math. Soc., 312 (1989), pp. 433-486.

[5] P. HENRICI, Applied and Computational Complex Analysis, Wiley-Interscience, New York,
1974.

[6] D. KNUTH, The Art of Computer Programming, Addison-Wesley, Reading, 1981.
[7] W. S. LOUD, Behavior of the period of solutions of certain plane autonomous systems near

centers, Contributions to Differential Equations, 3 (1964), pp. 21-36.
[8] B. L. VAN DER WAERDEN, Algebra, F. Ungar, New York, 1950.
[9] B. L. VAN DER WAERDEN, Algebra, F. Ungar, New York, 1970.

MACSYMA PROGRAM TO IMPLEMENT AVERAGING USING
ELLIPTIC FUNCTIONS

VINCENT T. COPPOLA AND RICHARD H. RAND*

Abstract. The method of averaging is applied to the system:

,," + a(r)" + .8(r),,3 + <g(",,,',r) = 0

where r = <t is slow time, and where < < < 1. This involves the laborous manipulation
of Jacobian elliptic functions, a process which is most easily and accurately accomplished using
computer algebra. We present the listing of a MACSYMA program which implements the method
to O(f), as well as the results of a run for which g(", x', r) is taken as a general cubic polynomial
in x and x,,

Introd uction. In this paper we treat a class of problems which involve perturb­
ing off of the Jacobian elliptic function solution of the strongly nonlinear oscillator

(1) x" + a x + (3 x3 o

In particular, we investigate the following nonautonomous perturbation of eq. (1):

(2) x" + a(7) x + (3(7) x3 + € g(X,X',7) o

where 7 represents "slow time" ,

(3) 7 €t, €«1

and where primes represent differentiation with respect to t. The functions a(7),
(3(7), and g(X,X',7) must be specified for a particular problem but are otherwise
arbitrary.

We shall use the method of averaging implemented on the computer algebra
system MACSYMA to obtain approximate equations governing the solutions to eq.
(2).

Although the method of averaging has been treated in numerous references (e.g.

[13-15, 17-19, 21-23)), most treatments deal almost exclusively with perturbations
off of the simple harmonic oscillator. A few authors have considered perturbations

*Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853

72

off of nonlinear systems using elliptic functions. Kuzmak [16] looks for periodic so­
lutions in eq. (1) using a multiple scale method, where a and (3 are slowly varying
parameters. Garcia-Margallo and Bejarano [9] find limit cycles in a generalized van
der Pol oscillator using generalized harmonic balance. Davis [8] investigates second
order ordinary differential equations using elliptic functions. Cap [2] applies the
method of averaging to perturbations of the mathematical pendulum. Pocobelli
[20] studies the slowly varying pendulum. Greenspan and Holmes [12] and Guck­
enheimer and Holmes [13] apply the Melnikov method to perturbations of eq. (1)
where a < 0. Nayfeh [18], Kevorkian & Cole [15] and Sanders & Verhulst [22] also
treat such problems.

Perturbations of eq. (1) with a = ° (a purely nonlinear oscillator) have
appeared in the literature. Chirikov [3] studies resonance overlap under multiple
harmonic excitations. Garcia-Margallo and Bejarano [10] employ generalized har­
monic balance in order to approximate limit cycles. Yuste and Bejarano [24] use first
order averaging as a means to find transitory behavior as the motion is attracted
to a limit cycle.

In most of these references the authors have obtained general expressions for
approximate equations of motion in terms of integrals. Although the problem is
thus reduced to the evaluation of these integrals, little use has been made of these
treatments because the evaluations require complicated algebraic manipulations of
Jacobian elliptic functions. By using the computer algebra system MACSYMA, we
have been able to efficiently evaluate the associated integrals.

Variation of Parameters. In preparation for the method of averaging, we
use the method of variation of parameters to express the influence of the slowly
varying and order € terms in eq. (2) on the solution of the unperturbed eq. (1).
In contrast to the method of averaging, the computations presented in this section
are exact. However, the results are intractable and unenlightening. The method
of averaging (introduced in the next section) replaces the results obtained in this
section by more useful equations, which are, however, approximate (valid in the
small € limit.)

The unperturbed solution (the general solution to eq. (1) for T fixed and €

= 0) is expressed in terms of Jacobian elliptic functions. A brief summary of
elliptic functions is given in Appendix A, which also gives the notation we use for
elliptic functions and elliptic integrals. We are interested in systems (2) in which
the unperturbed system (1) is oscillatory. It can be shown [4] that the unperturbed
solution for such systems can be expressed as:

(3.1) x j.l r cn(u,k)

(3.2) X' -j.l r a sn(u,k) dn(u,k)

73

where

at + U o

l' :::: 0, a :::: 0, J.L = ± 1

In eqs. (3), l' and U o are arbitrary constants of integration. As usual in the
method of variation of parameters, we look for a solution to eq. (2) in the form of
eqs. (3), where the two arbitrary constants l' and U o are allowed to vary in time.
This results in first order differential equations on ret) and uo(t). Unfortunately
the resulting expression for duo(t)/dt is not periodic, and is thus unsuitable for
averaging. This may be remedied by replacing U o by <p, the angle variable of action­
angle variables [11], where

(4) u = 4K(k)<p

The proportionality factor 4K(k) in eq. (4) takes into account the dependence of
frequency on amplitude in eq. (1), thus eliminating "phase shear". The resulting
equations on l' and <p then become:

(5.1)

(5.2)

dr sn dn
dt = - € g-vra=+===:;(3=r:;C2

d<p
dt

Ja + (31'2
4K

where en = en(4 K <p,k), sn = sn(4 K <p,k), dn = dn (4 K <p,k), and
Z = Z(4 K <p, k). Eqs. (5) are periodic in <p and are thus in the proper form for
averaging.

74

The Method of Averaging. In order to explain the method of averaging, we
write eqs. (5) in the abbreviated form:

(6.1) r'

(6.2)

The method is based on positing a near-identity transformation from (r, 'P) to (1',0):

(7.1) r

(7.2)

where the generating functions WI, VI, and W2 are to be chosen so as to simplify
the resulting equations. Substituting eqs. (7) into eqs. (6) and co llecting terms
gives equations of the form:

The transformation functions WI, w2, and VI are chosen so that eqs. (8) are in
averaged form, i.e.,

(9.1)

(9.2)

75

where FI , F2, and iiI are the means of FI, F2, and HI taken over one period in the
periodic variable 'P.

Computer Algebra. We have written a computer algebra (MACSYMA) pro­
gram that implements the averaging procedure (6)-(9) for eqs. (5). The user first
inputs expressions for a, f3 and g, which may contain symbolic parameters. The
computer then generates FI, F2 , and n from eqs. (5) (where eqs. (3) are substi­
tuted for x and x' in g). Using an elliptic function integration subroutine that we
developed, the program finds FI , F2, WI, and W2 (which completes the first order
averaging).

The listing for this first order averaging program is given in Appendix B, and a
sample run is given in Appendix C.

This program was then extended to include second order averaging of the .,.
equation. We found it essential to proceed in several steps in order to prevent
excessive intermediate expression swell. First, HI is computed and its terms are
divided up among several pre-identified categories. These categories group together
terms whose means are computed in like manners. The mean of HI is then computed
category by category. After this second order averaging is completed, the program
outputs the averaged system and the first order transformation.

The second order averaging program consists of 460 lines of code. Typical runs
on a Symbolic 3670 computer take from one to six hours. For a = (3 = 1 and
g consisting of three ter ms (x', X X'2, X'3), there are 497 second order terms to be
averaged. For more information on the program, see [4 - 7] which contains many
applications. Electronic copies of both programs are available from the authors via
BITNET. Our current BITNET addresses are:

DUGY@CRNLVAX5 (for VTC), RHRY@CRNLVAX5 (for RHR)

Results.

In order to illustrate the use of the program, we present the results of applying
it to eq. (2) when g(x,x',r) takes the general form:

(10) g(X,x',t) aoo(r) + aIo(r) x + aOI(r) x' + a20(r) x 2 + all(r) x x'

+ a02(r) X'2 + a30(r) x3 + a2I(r) x 2 x' + a12(r) x X'2

+ a03(r) X'3

The averaged eqs. (9) become, to lowest order in t (dropping the bars on .,. and
'P for convenience):

(11.1) .,.'= € da _1_ (E _ 1) _ € d(3 _1_ [(3.,.2 + 4 a (KE _ 1)]
dr (3.,. K dr 6 (32 .,.

76

+E a03(T) --(- - 1) + - - r (16 - - 15) + - (16 - - 23) - - r 5 [
8 a3 E 2 a2 E a r3 E fJ]

35 fJ2 r K 35 fJ K 35]{ 7

(11.2) ({i'
Ja + fJ r2

4]{ + O(E)

where H(k2 -1) is the Heaviside step function with argument k2 - 1, i.e., H(k2-
1) = 1 when the system point has k2 > 1 and H(k2 - 1) = 0 otherwise. In
(11.1), K and E respectively represent complete elliptic integral s of the first and
second kinds.

The generality of the foregoing example may obviate the need for the pro gram
in many cases. Consider, for example, the system

(12) x" + x + x 3 + 0.035 x' - 0.6 x 2x' + 0.1 X,3 o

This system may be cast in the form (2) by choosing € 0.1 and

(13) aCT) 1, fJ(T) 1, g(X,X',T)

Then we find from eq. (11.1)

(14) r' [769 1 ErE r3 E r 5]
E - - (- - 1) + - (2400 - - 2089) + - (20 - - 13) - -

210 r]{ 420]{ 7]{ 7

77

Numerical evaluation of the right hand side of eq. (14) shows that it has two zeros
at about r = rl ~ 1.12675 and r = r2 ~ 0.83984, and thus that the original
system (12) is predicted to have two limit cycles of approxim ate amplitudes rl and
r2. This result is in agreement with numerical integration of eq. (12).

It is interesting to note that the usual approach to averaging (based on per­
turbations off of the simple harmonic oscillator) fails to give correct predictions for
this examp Ie. In order to use such an approach, we first write the example (12) in
the form:

(15) o

such that

(16) 1, eli 0.035, €P -06, E''I 0.1

Eq. (15) may be averaged using previously published computer algebra programs
in [21]. This involves assuming a solution of the form

(17) x = ret) cos [t + B(t)]

and results in the following slow flow for ret), valid to 0(€2):

If we keep only O(€) terms in (18), and use (16), we obtain

(19)
r

r' = - - (0.14 - 0.3 r2)
8

which results in the incorrect prediction of only one limit cycle at r ~ 0.68. If, on
the other hand, we keep both O(€) and 0(€2) terms in (18), we obtain

(20) r'
r

- - (0.14 - 0.3 r2 + 0.225 r4)
8

78

the right hand side of which has no real roots. Thus both O(E) and O(E2) approxima­
tions based on trigonometric averaging fail to give qualitatively correct limit cycle
results for example (12).

Appendix A: Jacobian Elliptic Functions

Jacobian elliptic functions involve a collection of identities which are similar
to those for trigonometric functions but are more complicated algebraically. The
use of computer algebra makes manipulation of these identities easier, permitting
investigations to proceed on problems which were previously avoided because of
the large quantities of algebra involved. All formulas and conventions concern­
ing Jacobian elliptic functions in this paper are taken from Byrd and Friedman's
Handbook of Elliptic Integrals for Engineers and Physicists [1].

For the reader's convenience, we offer a brief comparison of elliptic functions
with the more familiar trigonometric functions. Corresponding to sin(u) and cos(u)
are three fundamental elliptic functions sn(u,k), cn(u,k), and dn(u,k). Each of the
elliptic functions depends on the modulus k as well as the argument u. These reduce
to sin(u), cos(u), and 1 respectively, when k = O. The sn and sin functions share
common properties as do cn and cos. These are summarized in Table A. The dn
function has no trigonometric counterpart. Note that the elliptic functions sn and
cn may be thought of as generalizations of sin and cos where their period depends
on the modulus k.

The argument u is identified as the incomplete elliptic integral of the first kind
which is usually denoted F((), k). This identification shows that u also depends on
k. The value of k normally ranges from 0 to 1, but we allow k2E[-00, 00]. For the
interpretation of the elliptic functions on this range, see [4] or [1].

Table A. Properties of Jacobi elliptic functions

Function f

Property sn(u.k) sin(u) cn(u,k) cos(u) dn(u,k)

Max. value 1 1 1 1 1

Min. value -1 -1 -1 -1 (1 - k2)1/2

Period 4K(k) 21l" 4 K(k) 21l" 2 K(k)

Odd/Even Odd Odd Even Even Even

df/du cn dn cos -sn dn -sin _k2 sn cn

Ilk = 0 sm sin cos cos 1

Ilk = 1 tanh sech sech

K(k) complete elliptic integral of the first kind

K(O) = 1l"/2, K(l) = +00

79

The elliptic functions also satisfy the following identities which correspond to
sin2 + COS 2 = 1:

(AI)

(A2)

(A3)

In addition to the sn, cn, and dn functions, there are three other frequently
encountered elliptic functions. First, there is the amplitude function am(u,k) (= B)
which is the inverse of F(B, k) (= u). This function maps the elliptic argument u
onto a trignometric argument B so that the period 4 K(k) in u equals the period 2"
in B.

Second, there is E(B,k), the incomplete elliptic integral of the second kind. It
is often written in abbreviated notation as E(u) since B depends on u (via the am
function) and the dependence on k is understood. Both E(u) and u are not periodic
in u. The complete elliptic integral of the second kind is denoted E(k).

Finally, there is the Jacobi Zeta function Z (B, k), a linear combination of E(u)
and u:

(A4) Z(B,k) E(B,k) - E(k) F(B k)
K(k) ,

This function is periodic in u with period 2 K(k) and has zero mean. It is often
written in abbreviated notation as Z(u) in the same manner as E(u).

80

Appendix B: MACSYMA Program Listing

1* Averaging using Elliptic Functions *1

1* x" + alpha(tau) x + beta(tau) x-3 + e g(x,x',tau) = 0 *1

1* ~here tau = eps t and g is polynomial in x and x' *1

1* Variable names and their meanings *1
1* *1
1* X variable in differential equation *1

1* y dx/dt *1
1* T time *1
1* TAU = eps*t *1
1* G = g(x,x' ,tau) = g(x,y,tau) is a perturbation *1

1* AL alpha(tau) *1
1* BE beta(tau) *1
1* RR amplitude *1
1* AA instantaneous time frequency *1
1* UO phase angle constant *1
1* K = modulus of the elliptic functions *1
1* U = argument of elliptic functions *1
1* CN(U,K) = a Jacobi elliptic function *1
1* CN'(U,K) = - sn(u,k) dn(u,k) = derivative of cn(u,k) ~.r.t. argument u *1
1* zz
1* KC

1* EC

jacobi zeta function *1
complete elliptic integral of the first kind *1
complete elliptic integral of the second kind *1

1* PHI = angle variable [~here u = 4 kc phi] *1
1* MU = +1 or -1 depending on ~hether the system point is ~ithin left(-1) *1
1* or right(+1) separtrix loop ~hen k-2 > 1 *1
1* WITHINSEP = H(k-2-1) ~here H is the Heaviside step function *1
1* = a flag telling ~hether an orbit is ~ithin the double *1
1* homoclinic loop separtrix (+1) or not (0) *1

1* The 2nd order differential equation is ~ritten as 21st order equations: *1
1* *1

y *1
- eps g(x,y,tau) - alpha(tau) x - beta(tau) x-3 *1

1* For alpha and beta fixed *1
1* [and proper interpretation of elliptic variables *1
1* for k bet~een -infinity and infinity] *1
1* the differential equation is solved exactly by: *1
1* *1
1* x = mu rr cn(u,k) y = mu rr aa cn'(u,k) u = aa t + uO *1

1* *1
1* ~here initial conditions determine the values of rr and uO *1

1* But, ~e must use slo~ flo~ equation for phi [rather than uO or u] *1

81

1* vhere initial conditions determine the values of rr and uO *1

1* But, ve must use slov flov equation for phi [rather than uO or u] *1

1* The Variational equations to be averaged are: *1
1* *1
1* diffCrr,t) = eps F[l] + OCeps-2) *1
1* diffCphi,t) = aa/4/kc + eps F[2] + OCeps-2) *1

1* Averaging uses a near-identity transformation as follovs: *1
1* *1
1* rr=rbar+eps*W[l]Crbar,phi) *1
1* phi=phibar+eps*W[2]Crbar,phi) *1

1* Symbols used in the computation *1

1* xx cn function *1
1* yy cn' function *1
1* ZZ Jacobian zeta function */

1* SS arcsinCk*snCu,k» = arcsinCk*sqrtCl-xx-2» *1
1* SO integral of SS vith respect to u *1
1* S2 integral of SS*XX-2 vi th respect to u *1
1* UU argument *1
1* TH LNCTHETACU)/THETACO» *1

1* Symbols used on output *1

1* *1
1* CNF cn elliptic function *1
1* CNP cn' elliptic function = - sn dn *1
1* SNF sn elliptic function *1
1* ZETA = jacobi zeta function *1
1* THETA = an elliptic theta function *1
1* SO see above *1
1* S2 see above *1

AVERAGEC):=BLOCKC[X,Y,XX,YY,F,FI,W,DPHIW,H,V,FBAR,W1MEAN,W1INT,W1C,K,AL,BE,

RR,XX,YY,ZZ,SS,UU,TH,TAU,KC,EC,EPS,RBAR,KBAR,PHI,CNF,SNF,CNP,

THETA ,ZETA ,ARCSIN] ,

1* Input problem *1

PRINTC"AVERAGING OF X" + ALPHACTAU) X + BETACTAU) X-3 + EPS GCX,X',TAU) 0")

PRINTC" WHERE TAU = EPS T AND G IS POLYNOMIAL IN X AND X'''),

PRINTC" "),ALVAL:READC"ENTER ALPHACTAU):"),

PRINTC" "),BEVAL:READC"ENTER BETACTAU): "),

PRINTC" "),PRINTC"ENTER GCX,X',TAU) USING Y=X':"),

G:READ() ,

PRINTC" ,,),

PRINTC"UNPERTURBED SOLUTION IS: X RR CNCU,K) AND X' = Y RR AA CN'CU,K)"),

PRINTC"WHERE RR = AMPLITUDE AND U 4 KC PHI = PHASE"),

PRINTC" "),PRINTC"AVERAGING WILL USE A NEAR-IDENTITY TRANSFORMATION FROM"),

PRINTC"CRR,PHI) TO CRBAR,PHIBAR) AS FOLLOWS:"),

PRINT(" "),

PRINT("RR=RBAR+EPS*II [1] (RBAR, PHI) ") ,

PRINT("PHI=PHIBAR+EPS*II[2] (RBAR,PHI)"),

/* Kill variables used by the routine */

82

KILL(K,AL,BE,RR,XX,YY,ZZ,SS,UU,TH,TAU,KC,EC,EPS,RBAR,KBAR,PHI,

CNF,SNF,CNP,THETA,ZETA,ARCSIN,IIITHINSEP,FF),

/* Set AL and BE dependency and check for numeric k value */

DEPENDS([AL,BE] ,TAU),

IF ALVAL = 0 THEN K:SQRT(1/2),

IF BEVAL = 0 THEN K:O,

/* Set IIITHINSEP flag to zero if no double homoclinic loops exist */

/* in unperturbed system */

IF SCALARP(ALVAL) AND ALVAL>=O THEN IIITHINSEP:O,

/* Create REDUC routine that reduces an expression involving YY (cn') */

/* into its even and odd components and apply the identity */

/* (cn')-2 = (1-cn-2)*(1-k-2+k-2*cn-2) */

REDUC(EXPR):=BLOCK([EVEN,ODD,VAL],

EVEN:EXPAND«EXPR+EV(EXPR,YY=-YY))/2),

) ,

ODD: EXPAHD«EXPR-EVEN)/YY),

ODD:YY*EXPAND(EV(ODD,YY=SQRT«1-XX-2)*(1-K-2+K-2*XX-2)))),

EVEN:EXPAND(EV(EVEN,YY=SQRT«1-XX-2)*(1-K-2+K-2*XX-2)))),

VAL: EVEN+OOD

/* Substitute x = r cn and y = r a cn' into g */

/* Compute F[1] and F[2] */

F[1]:-REDUC(YY*G)/SQRT(BE*RR-2+AL),

IF DIFF(ALVAL,TAU)#O THEN

F[1]:F[1]+DIFF(AL,TAU,1)*RR*(XX-1)*(XX+1)/(2*(BE*RR-2+AL)),

IF DIFF(BEVAL,TAU)#O THEN

F[1] :F[1]+DIFF(BE, TAU, 1)*RR-3*(XX-1)*(XX+1) *(XX-2+1) /(4*(BE*RR-2+AL)) ,

F[2]:-REDUC(G*(2*AL*BE*RR-2*YY*ZZ+2*AL-2*YY*ZZ-AL*BE*RR-2*XX-3

-BE-2*RR-4*XX-2*AL*BE*RR-2*XX-2*AL-2*XX))

/(4*RR*(BE*RR-2+AL)-(3/2)*(BE*RR-2+2*AL)*KC),

IF DIFF(ALVAL,TAU)#O THEN

F[2]:F[2]+DIFF(AL,TAU,1)*(AL*XX-2*ZZ-BE*RR-2*ZZ-2*AL*ZZ+AL*XX*YY)

/(4* (BE*RR-2+AL)*(BE*RR-2+2*AL)*KC),

IF DIFF(BEVAL.TAU)#O THEN

F[2]:F[2]+DIFF(BE.TAU.1)*(AL*BE*RR-2*XX-4*ZZ+AL*BE*RR-2*ZZ+2*AL-2*ZZ

+AL*BE*RR-2*XX-3*YY+BE-2*RR-4*XX*YY+2*AL*BE*RR-2*XX*YY)

/(8*BE*(BE*RR-2+AL)*(BE*RR-2+2*AL)*KC).

83

1* If k=O then simplify above by setting be=O and zz=O *1

IF SCALARP(K) AND K = 0 THEN

F[1] :EV(F[1] ,BE=O),

F[2]:EV(F[2],ZZ=O,BE=O)

) ,

1* Integrate F[ii] w.r.t. phi (GENINT) and find mean FBAR[ii] *1

FOR 11:1 THRU 2 DO (

) ,

FI[II]:GENINT(F[II],K),

FF[II]:EV(FI[II],XX=O,YY=O,ZZ=O,TH=O),

FBAR[II]:RATCOEF(FF[II],UU)+WITHINSEP*RATCOEF(FF[II],SS)*%PI/2/KC

1* Find transformation or not *1

KILL(W,W1MEAN,WlINT),PRINT(" "),

Q1:READ("DO YOU WISH TO FIND THE TRANSFORMATION? (YIN)"),

1* If q1<>n then find transformation by computing w[1] and w[2] *1

IF Q1#N THEN (

) ,

1* Compute W[1] and integrate w.r.t. phi (GENINT). Find mean of W[1] *1

W[1]:1/SQRT(AL+BE*RR-2)*(EV(FI[1],UU=O)

-WITHINSEP*RATCOEF(FF[1],SS)*%PI/2/KC*UU)),

W1INT:GENINT(W[1],K),

W1MEAN:RATCOEF(W1INT,UU,1)+WITHINSEP*RATCOEF(W1INT,SS)*%PI/2/KC,

/* When withinsep=1 then ss-%pi/2/kc*uu has zero mean.*1

1* Make mean of W[1]=O by adding a constant *1

W[1]:W[1]-W1MEAN,

1* Find diff(w[1] ,phi) *1

DPHIW[1]:4*KC/SQRT(AL+BE*RR-2)*(F[1]-FBAR[1]),

1* Find W1C=diff(aa/4/kc,rr) and simplify if possible *1

W1C:SQRT(BE*RR-2+AL)* (BE*RR-2*KC+2*AL*KC-2*AL*EC)

1(4*RR*(BE*RR-2+2*AL)*KC-2),

IF ALVAL=O THEN (W1C:EV(W1C,AL=O),W1C:EV(W1C,ABS(RR)=RR»,

IF BEVAL=O THEN W1C:O,

1* Find diff(w[2] ,phi) *1

DPHIW[2]:4*KC/SQRT(AL+BE*RR-2)*(F[2]-W[1]*W1C-FBAR[2]),

1* Find W[2] *1

W[2]:1/sQRT(AL+BE*RR-2)*(EV(FI[2],UU=O)

-WITHINSEP*RATCOEF(FF[2],SS)*%PI/2/KC*UU

-W1C*(W1INT-W1MEAN*UU)

1* W[2] has not been set to have zero mean *1

84

1* Create a list of substitution rules for output *1

IF SCALARP(K) AND K = 0 THEI

PF:[XX=COS(2*r~I*PHI),YY=-SIN(2*%PI*PHI),UU=2*%PI*PHI,ABS(RR)=RBAR,

RR=RBAR,KC=%PI/2,AL=ALVAL,BE=BEVAL]

ELSE

PF:[XX=CNF(4*KC*PHI),YY=CNP(4*KC*PHI),ZZ=ZETA(4*KC*PHI),

TH=LOG(THETA(4*KC*PHI)/THETA(O»,SS=ARCSII(KBAR*SNF(4*KC*PHI»,

UU=4*KC*PHI,ABS(RR)=RBAR,RR=RBAR,AL=ALVAL,BE=BEVAL],

IF NOT SCALARP(K) THEN PFK:[K=SQRT(BEVAL*RBAR-2/2/(BEVAL*RBAR-2+ALVAL»]

ELSE PFK: [] ,

1* Change results to output form *1

FOR 11:1 THRU 2 DO FBAR[II]:RATSIMP(EV(FBAR[II] ,PF,PFK,DIFF»,

1* Save averaged system into Rfloq and Phifloq *1

RFLOW:EPS*FACTOR(FBAR[l]),

PFLOW:EV(1/4/KC*SQRT(AL+BE*RR-2) ,PF) +EPS*FACTOR(FBAR [2]),

1* Print avg. eqns, kbar-2, kc, ec (VAL contains this list of output) *1

DERIVABBREV: TRUE ,

VAL: [DIFF(RBAR(T) ,T)=RFLOW,DIFF(PHIBAR(T) ,T)=PFLOW,

'KBAR-2=FACTOR(BEVAL*RBAR-2/2/(ALVAL+BEVAL*RBAR-2»],

IF K=O THEN VALCOMP:[KC=%PI/2,EC=%PI/2] ELSE VALCOMP:[KC=KC(KBAR),EC=EC(KBAR)]

VAL: APPEND (VAL,VALCOMP),

PRINT("THE AVERAGED EQUATIONS ARE"),PRINT(" "),PRINT(VAL),PRINT(" "),

1* If q1<>n then simplify transformation *1

IF Q1#N THEN (

)$

1* Change to output form *1

PRINT("SIMPLIFYING TRANSFORMATION"),

FOR 11:1 THRU 2 DO W[II]:EXPAND(EV(W[II] ,PF,PFK,DIFF»,

1* Save transformations into Rtrans and Phi trans (TRANSF contains both) *1

RTRANS:RR=RBAR+EPS*MAP(FACTOR,W[l]),

PTRANS:PHI=PHIBAR+EPS*MAP(FACTOR,W[2]),

TRANSF:[CTRANS,PTRANS],

1* Input to see transformation *1

Q2:READ("DO YOU WISH TO SEE THE TRANSFORMATION? (YIN)"),

IF Q2#N THEN (

1* Print transformation *1

PRINT("THE TRANSFORMATION IS :"),PRINT(" "),PRINT(TRANSF)

)

85

1* F1,F2,W1,W2 integrator *1

1* Routine to integrate integrands of the form: *1

1* (a) xx-m (b) xx-m yy (c) zz xx-m (d) zz xx-m yy *1
1* (e) ss xx-m (f) ss xx-m yy *1

1* Symbols *1

1* xx cn function *1
1* YY cn' function (derivative of cn w.r.t. argument) *1
1* ZZ

1* SS

1* SO

1* S2

~W

1* TH

Jacobian zeta function *1
arcsin(k*sn(u,k)) = arcsin(k*sqrt(1-xx-2)) *1
integral of SS with respect to u *1
integral of SS*XX-2 with respect to u *1
argument and hence 1st elliptic integral *1
In(theta(u)ltheta(O)) *1

1* KC,EC = complete elliptic integrls of 1st,2nd kinds *1
1* K = modulus *1

1* V contains the expression to be integrated. *1
1* Expressions are integrated w.r.t u. *1
1* For integrations w.r.t. phi, multiply by 1/4/kc *1

GENINT(V,K):=BLOCK([TEMP,STERMS,XTERMS,ZTERMS,XYT,XT,SYT,ST,ZYT,ZT,

VALX,VALZ,VALS,VAL] ,

TEMP:EXPAND(V),

1* V is assumed to be in REDUC form, ie., V is linear in YY *1

1* Separate V into categories: *1
1* *1
1* XT contains terms in V of the form (a) *1
1* XYT contains terms in V of the form (b) *1
1* ZT contains terms in V of the form (c) *1
1* ZYT contains terms in V of the form (d) *1
1* ST contains terms in V of the form (e) *1
1* SYT contains terms in V of the form (f) *1

STERMS:EXPAND (DIFF(TEMP,SS)),

ZTERMS:EXPAND(DIFF(TEMP,ZZ)),

XTERMS:EXPAND(TEMP-SS*STERMS-ZZ*ZTERMS),

XYT:EXPAND(DIFF(XTERMS,YY)),

XT:EXPAND(XTERMS-YY*XYT),

SYT:EXPAND(DIFF(STERMS,YY)),

ST:EXPAND«STERMS-YY*SYT)),

ZYT:EXPAND(DIFF(ZTERMS,YY)),

ZT:EXPAND(ZTERMS-YY*ZYT),

1* Create XYINT function to integrate form (b) *1

XYINT(VV):=BLOCK(VV:EXPAND(VV),EXPAND(INTEGRATE(VV,XX))),

1* Integrate forms (a) [using CNINT routine] and (b) *1

86

VALX:CNINT(XT,K)+XYINT(XYT),

/* Integrate torm (d) by integration by parts */

ARG:XYINT(ZYT),

VALZ:ZZ*ARG-CNINT(ARG*(1-K-2-EC/KC+K-2*XX-2),K)

Integrate torm (f) by integration by parts */

ARG: XYINT(SYT),

VALS:SS*ARG-CNINT(ARG*K*XX,K),

/* Create a general Integration By Parts routine tor forms (c) and (e) */

INTBYPARTS(VV,K,TYPE):=BLOCK([ARG,UUT,ZZT,SST,YYT,XXT,VALP],

) ,

/* VV just contains the XX terms of forms (c) and (e) */

/* TYPE indicates either torm (c) or (e) */

/* Find DERIV, the derivative of TYPE v.r.t. u */

IF TYPE ZZ THEN DERIV:l-K-2-EC/KC+K-2*XX-2,

IF TYPE SS THEN DERIV:K*XX,

/* Set ARG = integral of VV v.r.t. u [using CNINT routine] */

ARG:CNINT(VV,K),

/* Separate ARG into categories: */

/* */
/* UUT contains UU terms in ARG */

/* ZZT contains ZZ terms in ARG */

/* SST contains SS terms in ARG */

/* YYT contains terms in ARG of the form (b)

/* XXT contains terms in ARG of the form (a)

UUT:DIFF(ARG,UU),

ZZT:DIFF(ARG,ZZ),

SST:DIFF(ARG,SS),

YYT:DIFF(ARG,YY),

XXT:EXPAND(ARG-UU*UUT-ZZ*ZZT-SS*SST-YY*YYT),

/* Perform integration by parts */

*/

*/

IF TYPE = ZZ THEN

VALP:EXPAND(UUT*(UU*ZZ-TH)+ZZT*(ZZ-2/2)+EV(SST*SO*DERIV,XX=SQRT(S2/S0))

+XYINT(YYT*DERIV)+CNINT(XXT*DERIV,K)),

IF TYPE = SS THEN

VALP:EXPAND(UUT*(UU*SS-SO)+ZZT*(ZZ*SS-K-2*S2-(1-K-2-EC/KC)*SO)

+SST*(SS-2/2)+XYINT(YYT*DERIV)+CNINT(XXT*DERIV,K)),

VALP:EXPAND(TYPE*ARG-VALP)

/* Integrate forms (c) and (e) using INTBYPARTS */

VALZ:VALZ+INTBYPARTS(ZT,K,ZZ),

VALS:VALS+INTBYPARTS(ST,K,SS),

/* Add together */

VAL:EXPARD(VALX+VALZ+VALS)

)$

/* CN function integrator */

87

/* Routine finds the integral of g(xx) where g is polynomial in XX */

/* and XX stands for the cn function */

/* Symbols */

/* XX = cn function */

/* YY cn' function (derivative of cn w.r.t. argument) */

/* ZZ Jacobian zeta function */

/* SS arcsin(k*sn(u,k)) = arcsin(k*sqrt(1-xx-2)) */

/* UU argument and hence 1st elliptic integral */

/* KC,EC = complete elliptic integrls of 1st, 2nd kinds */

/* K = modulus */

CNINT(V,K):=BLOCK([TEHP,HI.IC.VAL].

/* Find highest power of cn in V and kill integration function IC */

TEHP:EXPAND(V).

HI:HIPOW(TEHP.XX).

KILL(IC).

/* IC[II] = integration function array that defines the integral of xx-ii */

/* It is defined recursively */

/* If k=O. then cn=cos so set the IC to use cosine routine */

IF SCALARP(K) AND EV(K) = 0 THEN (

IC[O]:UU.

IC[1]:-YY.

IC[II]:=RATSIHP«II-1)/II*IC[II-2]-1/II*XX-(II-1)*YY)

ELSE (

) .

IC[O]:UU.

IC[1]:SS/K.

IC[2]:1/K-2*(ZZ+(EC/KC-(1-K-2))*UU).

IC[3]:1/2/K-3*«2*K-2-1)*SS-K*YY).

IC[II]:=RATSIHP«II-2)*(2*K-2-1)*IC[II-2]+(II-3)*(1-K-2)*IC[II-4]

-XX-(II-3)*YY)/K-2/(II-1)

/* Set VALue of the integral to zero */

VAL:O.

/* For each xx-ii expression found in V, substitute its integral IC[ii] */

FOR 11:0 THRU HI DO VAL:VAL+RATCOEF(TEHP.XX,II)*IC[II].

VAL:EXPARD(VAL)

)$

88

Appendix C: Sample Run of MACSYMA Program

AVERAGEO$

AVERAGING OF X" + ALPHA(TAU) X + BETA(TAU) X-3 + EPS G(X,X',TAU) 0

WHERE TAU = EPS T AND G IS POLYNOMIAL IN X AND X'

ENTER ALPHA(TAU):

A (TAU) ;

ENTER BETA(TAU):

1 ;

ENTER G(X,X',TAU) USING Y=X':

DEL*Y;

UNPERTURBED SOLUTION IS: X = RR CN(U,K) AND X' = Y = RR AA CN'(U,K)

WHERE RR = AMPLITUDE AND U = 4 KC PHI = PHASE

AVERAGING WILL USE A NEAR-IDENTITY TRANSFORMATION FROM

(RR,PHI) TO (RBAR,PHIBAR) AS FOLLOWS:

RR=RBAR+EPS*W[1] (RBAR,PHI)

PHI=PHIBAR+EPS*W[2] (RBAR,PHI)

DO YOU WISH TO FIND THE TRANSFORMATION? (yiN)

N;

THE AVERAGED EQUATIONS ARE

D 2

[-- (RBAR(T))

DT

- EPS (2 KC A(TAU) DEL - 2 EC A(TAU) DEL + KC RBAR DEL

D D

+ 3 KC (---- (A(TAU))) - 3 EC (---- (A(TAU))))/(3 KC RBAR) ,

DTAU DTAU

2 2

D SQRT(A(TAU) + RBAR) 2 RBAR

(PHIBAR(T)) -------------------- KBAR = ------------------
DT 4 KC

KC = KC(KBAR), EC = EC(KBAR)]

[SYMBOLICS 3670 time = 211 seconds]

2

2 (A(TAU) + RBAR)

89

REFERENCES

[1] BYRD, P. AND FRIEDMAN, M., Handbook of Elliptic Integrals for Engineer and Scientists,
Springer-Verlag, Berlin, 1954.

[2] CAP, F. F., Averaging Metbods for tbe Solution of Non-linear Differential Equations witb
Periodic Non-barmonic Solutions, International Journal of Non-Linear Mechanics, vol. 9,
1973, pp.441-450.

[3] CHlRIKOV, B. V., A Universal Instability of Many Dimensional Oscillator Systems, Physics
Reports, vol. 52, 1979, pp.263-379.

[4] COPPOLA, V. T., Averaging of Strongly Nonlinear Oscillators Using Elliptic Functions, Ph.D.
dissertation, Cornell University, 1989.

[5] COPPOLA, V.T. AND RAND, R.H., Symbolic Computation and Perturbation Metbods Using
Elliptic Functions, Transactions of the Sixth Army Conference on Applied Mathematics and
Computing (1989), pp. 639-676.

[6] COPPOLA, V.T. AND RAND, R.H., Averaging Using Elliptic Functions: Approximation of
Limit Cycles, Acta Mechanica (1989) (to appear).

[7] COPPOLA, V.T. AND RAND, R.H., Cbaos in a System witb Periodically Disappearing Sepa­
ratrix, in preparation.

[8] DAVIS, H.T., Introduction to Nonlinear Differential and Integral Equations, Dover, NY,
1962.

[9] GARCIA-MARGALLO, J. AND BEJARANO J., Stability of Limit Cycles and Bifurcations of
Generalized van der Pol Oscillators, preprint.

[10] GARCIA-MARGALLO, J. AND BEJARANO, J., A Generalization of tbe Method of Harmonic
Balance, Journal of Sound and Vibration, vol. 116(3), 1987, pp. 591-595.

[11] GOLDSTEIN, H., Classical Mechanics, second edition, Addison-Wesley, Reading, Mass., 1980.
[12] GREENSPAN, B. AND HOLMES, P., Repeated Resonance and Homoclinic Bifurcation in a

Periodically Forced Family of Oscillators, SIAM Journal of Mathematical Analysis, vol. 15,
no.l, 1983, pp 69-97.

[13] GUCKENHEIMER, J. AND HOLMES, P., Nonlinear Oscillations, Dynamical Systems, and Bi­
furcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, NY,
1983.

[14] HAGEDORN, P., Non-Linear Oscillations, Oxford University Press, NY, 1982.
[15] KERVOKIAN, J. AND COLE, J.D., Perturbation Methods in Applied Mathematics, Applied

Mathematical Sciences, vol. 34, Springer-Verlag, NY, 198!.
[16) KUZMAK, G.E., Asymptotic Solutions of Nonlinear Second Order Differential Equations with

Variable Coefficients, P.M.M. (English translation), vol. 23, no. 3, 1959, pp. 515-526.
[17) MINORSKY, N., Nonlinear Oscillations, Van Nostrand, NY, 1962.
[18) NAYFEH, A., Perturbation Methods, Wiley-Interscience, NY, 1973.
[19) NAYFEH, A. AND MOOK, D.T., Nonlinear Oscillations, John Wiley and Sons, NY, 1979.
[20) POCOBELLI, G., Electron Motion in a Slowly Varying Wave, Phys. Fluids, vol. 24(12),1981,

pp.2173-2176.
[21] RAND, R.H. AND ARMBRUSTER, D., Perturbation Methods, Bifurcation Theory and Com­

puter Algebra, Applied Mathematical Sciences, vol. 65, Springer-Verlag, NY, 1987.
[22] SANDERS, J.A. AND VERHULST, F., Averaging Methods in Nonlinear Dynamical Systems,

Applied Mathematical Sciences, vol. 59, Springer-Verlag, NY, 1985.
[23) STOKER, J.J., Nonlinear Vibrations, Wiley, NY, 1950.
[24) YUSTE, S. AND BEJARANO, J., Construction of Approximate Analytical Solutions to a New

Class of Nonlinear Oscillator Equations, Journal of Sound and Vibration, vol. 110(2), 1986,
pp. 347-350.

VALIDATED ANTI-DERIVATIVES

GEORGE F. CORLISS*

Abstract. We present an overview of two approaches to validated, one dimensional indefinite
integration. The first approach is to find an inclusion of the integrand, then integrate this inclusion
to obtain an inclusion of the indefinite integral. Inclusions for the integrand may be obtained from
Taylor polynomials, Tschebyscheffpolynomials, or other approximating forms which have a known
error term. The second approach finds an inclusion of the indefinite integral directly as a lineal'
combination of function evaluations plus an interval-valued error term. The second approach can
be applied to any quadrature formula such as Gaussian or Newton-Cotes quadrature with a known
error expression. In either approach, composite formulae improve the accuracy of the inclusion.

The result of the validated indefinite integration is an algorithm which may be represented
as a character string, as a subroutine in a high level programming language such as Pascal-SC
or Fortran, or as a collection of data. An example is given showing the application of validated
indefinite integration to constructing a validated inclusion of the error function, erf (xl.

Key words. Indefinite integration, validation, differentiation arithmetic, Taylor polynomials,
Gaussian quadrature, error function, interval analysis

AMS(MOS) subject classifications. 65D30

1. Indefinite integration. Consider the problem of finding an anti-derivative

(Ll) g(x) = l x f(t)dt, for a ~ x ~ b.

If the problem is easy, one uses the rules of calculus to write down a formula for g.

If the problem is somewhat more complicated, one uses a symbolic processor like
MACSYMA [14], Maple [2], REDUCE [6], or Scratchpad [17] to derive a formula
for g. However, if the problem is non-elementary, or if its solution is too complex,
one resorts to a numerical approach. For example, a high quality suite of numerical
quadrature routines like QUADPACK [12] accepts a value of x and returns an ap­
proximation for g(x). However, the numerical approach is not suitable for symbolic
computation because it does not provide a formula for g.

This paper examines two methods for obtaining approximate, validated formulae
for g. The formulae are approximate in the sense that there may be no closed form
for g, so an approximation for g is the best that can be expected. The formulae are
validated in the sense that an interval-valued function G(x) := [Q(x), G(x)] is given
which satisfies

Q(x) ~ g(x) ~ G(x), for every x E [a, b].

Furthermore, we seek formulae which are accurate in the sense that wide G(x))
G(x) - Q(x) is as small as possible.

*Department of Mathematics, Statistics and Computer Science, Marquette University, Milwau­
kee, WI 53233. This work was supported in part by IBM Deutschland, GmbH, and in part by the
National Science Foundation under Grant No. CCG-8802429. The Government has certain rights
to this material.

91

The first approach is discussed in Section 2. We compute a Taylor polynomial
enclosure F(t) of the integrand J(t), and then integrate F. The result is a formula

for G as a polynomial with interval coefficients.

The second approach is discussed in Section 3 where we enclose 9 directly, with­
out first enclosing the integrand J. This is illustrated using Gaussian quadrature

because of its accuracy, but any other numerical quadrature rule with a known error

expression could also be used.

Both of the Taylor polynomial and the Gaussian quadrature approaches are

semi-numeric. Like a symbolic processor, they produce an algorithm (a formula)

which is executed to evaluate g. The difference is that the algorithms are constructed

by numerical tools (Taylor polynomials or Gaussian quadrature).

Validated indefinite integration extends the scope of a symbolic processor. Cur­
rent symbolic processors are very clever at solving problem (1.1) when there is a

closed form expression for g. They find an expression which is mathematically cor­

rect (not approximate) which can be used for further manipulation. Caviness [1]
includes a survey of the history and applications of the Risch integration algo­

rithm [15, 16]. Cherry [3] discusses the integration of classes of transcendental

elementary functions in terms of elementary functions and error functions. How­

ever, the approaches described in this paper are intended for integrands for which

such symbolic approaches fail and a symbolic processor faces two undesirable alter­
natives:

Alternative I. Admit failure - the correct answer cannot be returned.

Alternative II. Return a numerical approximation, perhaps with a warning.

We provide a third alternative:

Alternative III. Return an interval-valued formula which is validated to contain

the mathematically correct result.

A validated inclusion of g(x) by G(x) allows processing to continue with an approx­

imation (not the mathematically correct result) which still supports a guarantee.

This paper summarizes results appearing in [4].

2. Taylor polynomial with error term.

THEOREM 1. Let J{p) be a continuous function on X = [a, b], and let

g(x) E G(x):= J(a)(x - a) + f'(a)(x - a)2/2! + f"(a)(x - a)3/3!+

(2.1) ... + J{p)(a)(x - a)p+l /(p + I)! + Lp+l(X - a)p+2 /(p + 2)!

The proof appears in [4].

The formula for G in equation (2.1) is a polynomial in (x - a) of degree p + 2.
The coefficients of (x - a), (x - a)2, ... , (x - a)p+l are all real numbers, and the

92

coefficient of (x - a)p+2 is an interval. Viewed another way, G(x) = [.£l(x),G(x)],
where

.£l(x) := f(a)(x - a) + f'(a)(x - a? /2! + f"(a)(x - a)3/3!+

... + f{p)(a)(x - a)p+l /(p + I)! + Lp+1(x - a)p+2 /(p + 2)!

G(x) := f(a)(x - a) + f'(a)(x - a)2/2! + f"(a)(x - a)3/3!+

(2.2) .. , + f{p)(a)(x - a)p+I /(p + I)! + Lp+1(x - a)p+2 /(p + 2)!

are real-valued polynomials in x - a of degree p + 2 which satisfy

.£l(x) S g(x) SG(x), for all x EX.

For example, let g(x) = fox e- t2 dt. Then for x E [0,2]'

(2.3) g(x) E G(x) = x - x3/3 + x5 /10 + [-1.5449, 1.3819]x 7 •

In order to achieve the inclusion of 9 in a practical implementation, all the opera­
tions in equation (2.1) are performed as interval operations [10, 11]. The derivatives
f(a), fl(a), ... , f{p)(a) which appear in equation (2.1) are computed using differen­
tiation arithmetic [13]. Differentiation arithmetic uses recurrence relations derived
from the expression for f to compute the Taylor coefficients f(a), f'ea), f"(a)/2!,
... , f{p)(a)/p! accurately and efficiently. The recurrence relations are computed
using interval operations in order to capture the Taylor coefficients in tight interval
inclusions. The calculations in equation (2.1) are easily arranged to take advantage
of the accurate scalar product provided by Pascal-SC for micro-computers [8] or the
IBM product ACRITH [7] for IBM 370 class mainframe computers.

The output from the pre-processor consists of an algorithm for the evaluation
of G as expressed in equation (2.1). This output may take several different forms,
depending on its desired use.

The pre-processing can be designed to return p + 2 interval-valued coefficients
for the polynomial G or to store the coefficients in an internal work area accessible
to an evaluation routine. The client program can use these coefficients to evaluate
G, or to manipulate G in any manner it desires.

Alternatively, the pre-processing can be designed to return or to print a char­
acter string containing the textual form of the expression for G. This output is in
the style of a symbolic processor, except that a numerical algorithm constructed
the expression. For our example, the text of equation (2.3) is returned.

Finally, the pre-processing can be designed to write a subroutine which can be
called at run-time to evaluate G. Either Pascal-SC or Fortran is an attractive lan­
guage for the output routine because these two languages provide access to libraries
for interval arithmetic.

3. Gaussian quadrature. Our second approach computes an inclusion of 9

directly without first computing an inclusion of f. We illustrate this approach using
the n-point, one panel Gaussian quadrature formula

(3.1) l x n x-a
g(x) = f(t)dt = -2- L W;f(ti) + en' ~(x)· (x - a?n+l,

a i=l

93

where Wi are the Gaussian weights on [-1,1], ti are the Gaussian nodes on [-1,1]'

and Cn = (2n~1)!' [~;~~~r is the Gaussian error coefficient. The function ~(x):=
j(2n)(O.

THEOREM 2. Let j(2n-l) satisfy a Lipschitz condition on X = [a, b]:

Then

x - a n (x - a x + a) 2n 1
(3.2) g(x) E G(x) := -2- t; Wi' j -2-7i + -2- + Cn · L2n · (x - a) +.

Theorem 2 gives an indefinite integral as a linear combination of function eval­
uations plus an interval-valued error term. The attractiveness of equation (3.2) is
its accuracy. An n-point Gaussian quadrature formula and a Taylor polynomial of
degree 2n - 1 both have error terms involving the same Lipschitz interval, L 2n , and
the same factor (x - a ?n+l. However, the Gaussian error coefficient is much smaller
than the corresponding Taylor coefficient, so equation (3.2) usually yields a much
narrower interval than equation (2.1). In addition, the widths of the rule portions
of each formula are usually narrower for Gaussian quadrature.

The output from the pre-processing for the Gaussian quadrature approach con­
sists of an algorithm for the evaluation of G as expressed in equation (3.2). This
output may take several different forms.

The pre-processing can be designed to retum the Gaussian weights, nodes, and
error coefficient or to store them in an internal work area accessible to an evaluation
routine. Since the weights and nodes are not machine numbers, they are returned
as intervals whose endpoints differ by only one unit in the last place (ULP). Alter­
natively, weights and nodes can be given as rational numbers for use in symbolic
systems which support exact rational arithmetic. An interval inclusion for L 2n is
computed at pre-processing time for retum to the client program. With this infor­
mation, the client program can evaluate or manipulate G in any manner it desires.

Altematively, the pre-processing can be designed to return or to print a char­
acter string containing the textual form of the expression for G. One can either
assume that Jet) is a function whose definition is known to the symbolic proces­
sor, or else one can textually substitute the expression for each point of evaluation
for each occurrence of the character "t" in j. The resulting expression contains a
combination of n evaluations of j plus an error term. This may be rather lengthy,
but this is a common concem with symbolic processors. For the example given in
equation (2.3), 3-point Gaussian quadrature gives the expression

x [5 (fg x x) 8 (x X) 5 (fg x x)] G(x)=- -.j - -.-+- +_.j 0·-+- +_.j -.-+-
29 5229 229 522

(3.3)
[-10.8138,9.6729] 7

+ 2016000 x .

94

Finally, the pre-processing can be designed to write a subroutine which can be
called at run-time to evaluate G.

We have illustrated the ideas of this section using a Gaussian quadrature for­
mula, but any other quadrature formula similar to equation (3.1) could also be
employed, provided only that an expression for the error is known in terms of
derivatives of f. For example, Newton-Cotes or Gauss-Kronrod [12] formulae could
be used, as could formulae with weight functions or formulae for special types of
singularities.

4. Composite formulae. Often, the inclusion for G computed either by
Taylor polynomial quadrature (Theorem 1) or by Gaussian quadrature (Theorem 2)
is not sufficiently accurate in the sense that the width of the interval [Q(x), G(x)] is
too wide for some values of x. When this happens, a composite formula is employed,
either with fixed subintervals, or with subintervals which are determined adaptively
by an algorithm such as SVALAQ [5].

Let a = Xo < Xl < ... < Xl(= b be a partition of [a,b]. Let X E [xJ,xJ+d.
Then

g(x) ="f l X
i+

1 f(t)dt+ l x
f(t)dt.

j=O ~ XJ

The composite formula for the anti-derivative consists of definite integrals for which
inclusions are computed in advance, and the final indefinite integral is handled by
either Theorem 1 or Theorem 2. The corresponding algorithm for G is a sum of
J intervals plus the expression given either by equation (2.1) or by equation (3.2).
G(x) is continuous, provided that the algorithm used for the evaluation of J:J f(t) dt
for x E (XJ,XJ+I] is the same as the one used to compute each J:i+ 1 f(t)dt.

J

The output from the preprocessing using composite rules is lengthier than be-
fore. The listing below shows portions of the output for the example given in
equation (2.3) using 8 subintervals on [0,2] and an inclusion of f of degree 10.

Ifx is in [O.OOOOOOOOOOOE+OO, 2.50000000000E-01] then

g(x) is in 0.0

+ [9.99999999999E-01, 1.00000000002E+00] * (x - 0.0)" 1

+ [O.OOOOOOOOOOOE+OO, O.OOOOOOOOOOOE+OO] * (x - 0.0)" 2

+ [-3.33333333340E-01, -3. 33333333333E-01] * (x - 0.0)" 3

+ [O.OOOOOOOOOOOE+OO, O.OOOOOOOOOOOE+OO] * (x - 0.0)"10

+ [-7.57575757597E-04, -2.38191714233E-04] * (x - 0.0)"11

Subinterval 2

If x is in

g(x) is in

2.50000000000E-01,

[2.44887887178E-01,

5.00000000000E-01] then

2.44887887308E-01]

+ [9.39413062813E-01, 9.39413062814E-01] * (x - 0.25)" 1

95

+ [-1.64301228451E-03, -1.64301228445E-03] * ex - O.25)~10

+ [-5.24520727410E-04, 1.08208205213E-03] * ex - O.25)~11

Subinterval 8

If x is in

gex) is in

1.75000000000E+OO,

[8.74414994279E-01,

2.00000000000E+OO] then

8.74415009146E-01]

+ [4.67706223839E-02, 4.67706223840E-02] * ex - 1.75)~ 1

+ [-3.92377413881E-04, -3.92377413514E-04] * ex - 1.75)~10

+ [-1.00690524777E-02, 1.03470421381E-02] * ex - 1.75)~11

By taking the partition sufficiently fine, inclusions for g(x) with differ by only
a few units in the last place can be achieved.

The Pascal-SC program used to produce the listing above is available from the
author.

5. Properties of G. The true anti-derivative is continuous. The computed
anti-derivative should have the same property, especially when that function is being
used as input for some other algorithm. Lyness [9J points out that when an adaptive
quadrature routine is used to compute an (approximate) anti-derivative, the result
is not a continuous function of x. This causes trouble when the result is used by an
optimization routine.

The functions Q(x) and G(x) computed by either Theorem 1 (Taylor polynomi­
als) or Theorem 2 (Gaussian quadrature) are continuous. For composite formulae,
G is continuous on each subinterval. G is continuous at each node in the partition by
its dependence on (x - x J). Hence, anti-derivatives computed using the techniques
of this paper are well suited for use an input for other algorithms.

Acknowledgment.

The author wishes to thank Professor Gary Krenz, with whom much of this
work was done.

REFERENCES

[1] B. F. CAVINESS, Computer algebra: Past and future, J. of Symbolic Computation, 2 (1986),
pp. 217-236.

[2] B. W. CHAR, G. J. FEE, K. O. GEDDES, G. H. GONNET, AND M. B. MONAGAN, A tutorial
introduction to Maple, J. of Symbolic Computation, 2 (1986), pp. 179-200.

[3] G. W. CHERRY, Integration in finite terms with special [unctions: The error [unction, J. of
Symbolic Computation, 1 (1985), pp. 283-302.

[4] GEORGE F. CORLISS AND GARY S. KRENZ, Indefinite integration with validation, ACM Trans.
Math. Software (to appear) (1989).

96

[5J GEORGE F. CORLISS AND LOUIS B. RALL, Adaptive, self-validating numerical quadrature,
SIAM J. Scientific and Statistical Comput., 8 (1987), pp. 831-847.

[6J J. FITCH, Solving algebraic problems with REDUCE, J. of Symbolic Computation, 1 (1985),
pp. 211-227.

[7J IBM CORP., ACRITH High Accuracy Subroutine Library: General Information Manual,
IBM No. GC33 - 6163 - 02, 1986.

[8J ULRICH KULISCH, (ED.), Pascal-SC Manual and System Disks, Wiley-Teubner, Stuttgart,
1986.

[9J JAMES LYNESS AND J. J. KAGANOYE, Comments on the nature of automatic quadrature
routines, ACM Trans. Math. Soft., 2 (1976), pp. 65-8!.

[lOJ RAMON E. MOORE, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[I1J RAMON E. MOORE, Methods and Applications ofInterval Analysis, SIAM, Philadelphia, PA,

1979.
[12J R. PIESSENS, E. DE DONCKER-KAPENGA, C. W. UBERHUBER, AND D. K. KAHANER, QUAD­

PACK: A Subroutine Package for Automatic Integration, Springer Series in Computational
Mathematics No.1, New York, 1983.

[13J LOUIS B. fuLL, Automatic Differentiation: Techniques and Applications, Springer Lecture
Notes in Computer Science No. 120, New York, 198!.

[14J R. H. RAND, Computer Algebra in Applied Mathematics: An Introduction to MACSYMA,
Pitman, Boston, 1983.

[15J R. H. RISCH, The problem of integration in finite terms, Trans. Amer. Math. Soc., 139
(1969), pp. 167-189.

[16J R. H. RISCH, Tile solution of tile problem of integration in finite terms, Bull. Amer. Math.
Soc., 76 (1970), pp. 605-608.

[17J R. S. SUTOR, The Scratchpad II computer algebra language and system, Proc. of Eurocal
'85, vol II, edited by B. F. Caviness, Springer Lecture Notes in Computer Science No. 204,
New York, 1985, pp. 32-33.

A TOOLBOX FOR NONLINEAR DYNAMICS

SHANNON COFFEY* 1, ANDRE DEPRITt 2, ETIENNE DEPRIT*,
LIAM HEALY,t 3 AND BRUCE R. MILLERt

Abstract. Using the main problem of artificial satellite theory as an illustration, we review
several developments which have had a significant impact on research in nonlinear dynamics. On
the mathematical front, we point to the theory of Lie transformations; in the area of computational
software, we explain how massively data parallel machines open the way for symbolic solution of
large problems. Finally, we show how color graphics assist in the qualitative analysis of dynamical
systems.

1. Introduction. The rapid progress in computers, software as well as hardware,
has revolutionized research about dynamical systems. Prior to the computer age,
mathematicians like Ch. Delaunay, G. W. Hill and E. W. Brown envisioned no other
way for predicting the motion of a celestial object than by analytical theories. They
encapsulated solutions to the differential equations in the form of power series into a
body of formulas which they called a 'theory.' That phase once completed, they would
turn to the task of breaking the theory into a sequence of steps, each one arranged to
save as much of the intermediary calculations as possible. These arrangements which,
today, we call 'flow charts', they referred to as the 'Tables' of a theory because they
consisted for the main part in preparing partial results in the form of reference tables.
Developing a Theory required years of effort, and so did the job of restructuring it
to produce Tables. Mathematicians engaged in computational astronomy could not
evade meeting head on the ultimate challenge: calculations in the almanac offices had
to be done in 'real time.' Of what use would a lunar theory be if an average clerk
could not predict the position of the moon from one place to the next in less time
than it takes the moon to move from that place to the next?

With the advent of computers, numerical integration became the favored technique
in orbit prediction for several reasons - modest use of processor time and memory,
greater accuracy for shorter time periods, and ability to accommodate non conser­
vative forces too difficult to model analytically. More recently, however, analytic
theories have enjoyed a resurgence owing to the increasing sophistication of algebraic
software, the appearance of novel computational methods and the availability of color
graphics. Nonlinear dynamics, at last, is finding a toolbox to serve its purposes.

Our line of research started many years ago, with the study of families of periodic
orbits emanating from the triangular equilibria in the restricted problem of three bod­
ies. In the neighborhood of the equilibria, the periodic orbits are functions of a small
parameter to be expanded as Fourier series; coefficients in these series are obtained

*Naval Research Laboratory, Washington, D.C. 20375.
tNational Institute of Standards and Technology, Gaithersburg, MD 20899. Partial support

from the Computational and Applied Mathematics Program at the Defense Advanced Research
Project Agency.

tNAS/NRC Cooperative Research Associate at the Naval Research Laboratory.

98

as roots of recursive sets of linear equations [1,2]. These symbolic calculations led to
devise general procedures for manipulating en bloc symbolic expressions of the form

(1) " C '1'2 in { cos } (. . .) L.. ',jX 1 X 2 ..• Xn • J1Yl + J2Y2 + ...)nYn .
'J Sill

Expressions of that kind were dubbed Poisson series, and the name has stuck ever
since [3].

During the same period, Imre Iszak [4], David Barton [5] and others were looking at
ways of reproducing and expanding the grand literal theories upon which astronomers
of the XIXth century had lavished so much time. Foremost among those stands the
lunar theory. Rigorous to a fault, Delaunay had taken great pains to document his
hand calculations, even taking the extraordinary precaution of reporting from one
series to the next how each individual term arose. No wonder then that researchers
wrapped up in algebraic processors eagerly tested the power and robustness of their
systems against the achievements of Delaunay.

Armed with their own symbolic algebra system MAO (short for Mechanized
Algebraic .Qperations), A. Deprit, J. Henrard and A. Rom took the challenge in
steps. They first automated Birkhoff's normalization technique in the neighborhood
of an equilibrium for a Hamiltonian system with two degrees of freedom [6], then
expanded the main problem of artificial satellite theory in powers of the eccentricity
[7] - a task that D. Brouwer speculated would be intractable with the computers
available at the time.

Much has happened since MAO succeeded in checking Delaunay's theory, and ex­
tending it from order 8 to order 13 and even higher [8]. MAO's creators wavered for"
a while between assembler and Fortran implementations [9], eventually settling upon
Fortran with a RATFOR preprocessing stage, yet, at the same moment, branching
into PL/I where packaging the code into macros yielded more flexibility. The in­
creasing need for flexibility in coding and ease of application to problems prompted a
radical change of direction in 1984, when B. Miller transported MAO to a Lisp work­
station to make programming 'objects' out of Poisson series. The Lisp version of MAO
readily incorporated the new Lie algebraic methods devised to normalize Hamiltonian
systems by canonical transformations near the identity mapping. Implementing the
method of Lie transformations [10] in MAO stimulated mutual refinement and exten­
sions between computational algorithms and their software implementation.

Over the years, applications extended from the three-body problem to other sec­
tors of celestial mechanics, overflowing eventually into the general areas of classical
mechanics. The latter applications include the Stoermer problem, i.e. the motion
of a charged particle in a magnetic dipole, the dynamics of orbiting dust [11], the
Henon-Heiles oscillator, the quadratic Zeeman effect [12,13]' and the Toda 3-point
lattice [14]. All these problems pertain to the class of perturbed integrable Hamilto­
nian systems with a principal part that is either a Keplerian problem or a harmonic
oscillator.

2. Symbolic algebra and Hamiltonian systems. In the 1960's and 70's, as­
tronomers were not talking of normalizing Hamiltonians and their equations. Instead,

99

they spoke of averaging Hamiltonians over fast variables, which they did by using one
of Poincare's methodes nouvelles. In that context, averaging transformations

x: (q,Q) -+ (p,P)

are represented by a system of implicit equations

P = 8Sj8p, q = 8Sj8Q

derived from a function in mixed variables S == S(p, Q).
Ideal for eliminating fast variables from a Hamiltonian, Poincare's method is not

well suited, though, to obtaining the averaging transformation in explicit form. For
it necessitates solving simultaneous implicit equations for half of the system, and
substituting the solutions into the other half. Astronomers were not yet equipped
computationally to perform these operations beyond the first order. They were, of
course, familiar with Lagrange's inversion formula for solving elementary implicit
equations in one independent variable; beyond that, they knew only of the method of
successive approximations. The theory of Lie transformations [15,10] evolved in the
late 1960's to stave off these difficulties.

2.1. Normalization as an algebraic operation. We concern ourselves exclu­
sively with canonical transformations depending on a small parameter e of a particular
type, namely those which are the general solution (p(q,Q,e),P(q,Q,e)) of a Hamil-
tonian system

(2)
dp 8W
de = 8P'

satisfying the initial condition

p(q,Q,O) = q,

dP 8W
de 8p

P(q, Q, 0) = Q.

In regard to these objects, our major problem is a basic one: Given the power series

if W itself is a power series in e, how do we obtain by machine the transformed
function

F*(q,Q,e) = F(p(q,Q,e),P(q,Q,e))

as a senes

in powers of the small parameter? Well, we found that automated conversion works
well when we recognize that the coefficients F~ are the values at e = ° of the iterates
.cw for the Lie derivative

(3) .cw : F -+ (F; W)

of F in the direction of the vector field W. The notation (F; W) in (3) represents the
Poisson brackets of the two functions F and W.

100

Along those lines, normalizing a Hamiltonian that is a series in the powers of a
small parameter e

en
'H = 'Ho + L "I 'Hn

n2:0 n.
(4)

means building a Lie transformation X such that ('H*j 'H~) = 0 for the transformed
Hamiltonian 'H* = X('H).

Actually, for most of the problems handled in the literature, normalization is
merely an algebraic operation. Indeed, let A denote an algebra of functions containing
the terms 'Hn, and let LO stand for the Lie derivative

LO : F -+ (Fj 'Ho).

In most cases, Lo acts as a semi-simple operator in A, i.e. the vector space A may
be decomposed into the direct sum

A = ker(LoIA) EB im(LoIA).

Under that assumption, normalizing 'H means finding a Lie transformation which
projects 'H into an element 'H* in the kernel of the Lie derivative restricted to A.

2.2. Automated normalizations. Without entering into details, recall that
Lie transformations, and hence normalizations, are built by induction. Precisely this
property makes normalizations most amenable to construction by computers. As the
construction progresses at each order in e, one encounters a partial differential identity
of the form
(5)

which we try to satisfy by choosing the two unknowns, namely the term Wn of order
n in the Hamiltonian from which are derived the transformation equations (2) on the
one hand, and the term Kn,o, likewise of order n, in the transformed Hamiltonian of
the system on the other.

As it happens most often, while Hn,o belongs to the Lie algebra A, Wn belongs
to an algebra B offunctions such that (f j g) E A for any f in A and any 9 in B. In
those circumstances, we choose Kn,o to be the part of Hn,o in the kernel of LO, which
makes Wn a counter-image of Hn,o - Kn,o in B.

Solving (5) for Wn rarely proves trivial. Our favorite practice has been to select
a standard representation for the algebra A and determine the action of LO upon
the appropriate expressions in A. These rules of action indicate membership in the
kernel, and tell us how to determine counter-images.

As a simple example, consider the elliptic oscillator

In complex variables the Hamiltonian and Lie derivative take the form

'Ho = i(uU + vV)

101

Assume that the perturbation belongs to the complex algebra A of multivariate poly­
nomials in the variables u, v, U, V. The action of the Lie derivative on a given mono­
mial is

.cO(u"UJ3V"YV8) = ita - j3 + ,- 8)u"UJ3v"YV8•

A monomial belongs to the kernel of .co if and only if a - j3 + , - 8 = 0; otherwise,
u"UJ3v"YV8 is the image of the monomial

iu"UJ3v'YV8

Clearly, all algebraic computations involved in the normalization of an elliptic
oscillator with polynomial perturbations are closed in the algebra A. The successive
differential equations of type (5) are solved automatically by syntactic matching of
patterns and mappings. A similar argument holds when it is necessary to introduce
dependent variables to reduce the complexity of expressions; the canonical forms aid
in performing simplifications of these expressions.

2.3. Canonical simplifications. Not many of the systems one encounters in
physics or astronomy belong to the class of polynomial Hamiltonians. Furthermore,
given an algebra of perturbations, there exists no general procedure for building
generators for the kernel of the Lie derivative restricted to that algebra.

Out of these difficulties grew a new line of research. Rather than going to the
extreme of forcing the transformed Hamiltonian into the kernel of the Lie derivative
.co, one conceives of converting the original Hamiltonian by Lie transformation into a
'simpler' function not necessarily in the kernel. So far, the few trials performed using
this compromise solution have been very promising. In the next section, we mention
how 'canonical simplifications' helped in normalizing the main problem of artificial
satellite theory to the fourth order without resorting to developments in the powers
of the eccentricity. As a result, the idea of canonical simplifications is now explored
vigorously to see how it would contribute a lunar theory without expansions in the
powers of the eccentricity of the sun, and also to study the attitude of a rigid body
rotating about a fixed point.

Finally, we should question our fixation with canonical transformations. It is quite
conceivable that normalization could be achieved by Lie transformations that are not
canonical. Consider, for instance, a perturbed circular pendulum, the principal part
being

Ho = ~02 -w2 cosO

when all terms (Hn)n>o in the perturbation belong to the algebra A of periodic
functions of the elongation 0 with coefficients in the kernel of .co. Already at first
order, a normalization by canonical Lie transformation introduces various types of
elliptic integrals, thereby making it necessary for the software to extend A into a
broader algebra mixing ordinary trigonometric functions with elliptic functions.

Some time ago, a canonical simplification was found to remove all periodic terms
at the first and second order [16]. But one can achieve far more if one is willing to
operate with Lie transformations that are not canonical. It is shown in [17] how to

102

build by induction a non-canonical transformation ((}, e) -+ (¢, <p) to convert not the
Hamiltonian itself but the canonical equations derived from the perturbed Hamilto­
nian 1t into differential equations of the form

(6) ~~ = <P, ~: = _w2 sin ¢.

Someone interested in performing the reduction by machine will appreciate the fact
that elliptic functions and integrals do not show up in the literal developments. The
construction in [17] takes place solely in the algebra of trigonometric functions in (}.
There is, of course, a price to pay for using non-canonical transformations around
Hamiltonian systems. The price here is a change of independent variable defined
through an implicit equation. But, as we learn from K. R. Meyer in these proceedings,
the symbolic solution of implicit equations is advancing rapidly.

3. Application: satellite theory. The discussion of Section can be made
more concrete by examining the role of normalizations and canonical simplifications
in the theory of an artificial satellite.

We assume the satellite can be taken as a point of negligible extent and consider the
attraction by the Earth as the only force. Attach to the Earth an orthonormal frame
(bI,b 2 ,b3), where b3 is the direction of the polar axis, and b1 lies on the Greenwich
meridian. The position of the satellite in the Earth frame is given by the vector

2l = r [b3 sin,8 + (b 1 cos>. + b2 sin A)cos,8] ,

with r > 0 representing the distance from the center of the Earth to the satellite, ,8
the geographic latitude such that -7r /2 :::; ,8 :::; 7r /2, and A the geographic longitude
such that 0 :::; A < 27r. Let J1 stand for the Gaussian constant of the Earth, i.e., the
product J1 = Pmff) of the Newtonian constant of universal attraction by the mass of
the Earth; let also IX denote the equatorial radius of the Earth. Then the gravity field
of the Earth at the position occupied by the satellite is minus the gradient V 2l V of
the potential

V = -1: L (~)n [L (Cn,m cos mA + Sn,m sin mAl P;:'(sin ,8)] .
r n?:O r Omn

The functions P;:' (w) are the associated Legendre polynomials

P;:'(z) = (_l)m 'lI)1 - z2 ~:m Pn(z).

The field parameters Cn,m and Sn,m are dimensionless constants. By definition of the
Gaussian constant, Co,o = 1, and by setting the Earth-bound frame at the center of
mass of the Earth, there follows that all three coefficients C1 ,o, C1,1 and Sl,l are zero.

Let (51,52,53) be an orthonormal frame fixed in space set at the center of mass of
the Earth. Assume that the polar axis of the Earth b3 is fixed in space, and that the
Earth rotates at a constant angular velocity nff) about b3 . Then we choose 53 = b3

and consider only the zonal form of the problem in which the potential reduces to
the function

103

Pn(W) = Pn,o(w) being the Legendre polynomial of degree n. By common usage, one
sets Cn,o = -In • For the Earth, J2 ~ 10-3 whereas for n 2: 3, IJnl ~ 10-6 ~ Ji.
On account of these relative sizes, we retain only the first two terms. The dynamical
system Ho + J 2 HI, where

Ho _ R2 +_ --, 1 (0 2
) JL

2 r2 r

constitutes the main problem in artificial satellite theory.

The main problem being a perturbed Keplerian system, normalization amounts
to eliminating the mean anomaly. After many trials, we discovered at last that the
normalization arises most directly as the product of two canonical transformations
[18]. The first step is only a canonical simplification whereby the Hamiltonian is
stripped of all dependence on the mean anomaly except for terms in (p/r)2. More
precisely, H is converted into a series of the type

whose coefficients Cn belong to the kernel of .co. We dubbed this simplification
the 'elimination of the parallax.' From the point of view of symbolic algebra, this
simplification has the incomp<l-rable advantage of taking place entirely in the algebra
of functions of the type

F = (::)2 L Cn { c~s } n()
r n::::O sm

with coefficients Cn in the kernel of .co. More significantly, elimination of the parallax
removed most of the difficult trigonometric functions in () which cause difficulty in an
ordinary Delaunay normalization, allowing us to eliminate the mean anomaly to the
fourth power of J 2 by machine without resorting to developments in the powers of
the eccentricity. The latter alternative is no longer attractive with today's aerospace
engineers launching satellites at eccentricities greater than 0.1. This achievement
paved the way for development of a complete third order theory for the main problem
of an artificial satellite.

Following the elimination of the parallax, a Delaunay normalization eliminated
the remaining short period terms for the main problem. To complete the theory,
a long period transformation, once again a Lie transformation, was constructed to
produce the secular Hamiltonian [19].

Our first attack on the satellite problem produced the third order theory mentioned
above and a second order theory which included zonals through J7 . The algebra
was first performed on the early PL/I versions of MAO and later on Dasenbrock's
Fortran processor. Integer overflows, however, caused by the 32 bit word length on
the Texas Instruments ASC vector computer limited the number of zonals that could
be included in the potential to J7 • Recently, in exercising the Lisp version of MAO,

104

we revisited the satellite problem. Given the extended precision integer arithmetic
of the Lisp machine, we were able to produce the transformations to second order
for the combined potential of J2 through JlO • We mention this detail to underscore
the fact that integer arithmetic with indefinite length has become an indispensable
instrument in the toolbox of nonlinear mechanics.

4. Symbolic algebra systems. In principle, general purpose symbolic manipu­
lation systems, such as Macsyma, Reduce and Mathematica, provide all the functions
necessary to perform the desired normalizations and simplifications. These general
purpose processors, however, suffer from the "free-form" specification of expressions
which ignores the underlying algebraic structure. Specifying the exact operation
desired or producing results in the precise form required often proves quite difficult.
Moreover, by handling mathematical expressions of arbitrary structure, these systems
cannot optimize their storage schemes or their algebraic algorithms for expressions
of a fixed structure. Our experience with both general and special purpose proces­
sors clearly demonstrates that our research problems must be attacked with software
specifically designed for the task at hand. In this paper, therefore, we concentrate on
special purpose algebraic systems.

4.1. Serial processing. The early symbolic processors were special purpose
programs, most of them, if not all, developed by individuals interested in solving
specific classes of problems. Although each processor grew in capabilities with the
research interests of its creator, nonetheless, the processor never departed from the
algebraic structure characterizing the class of problems for which it was originally
designed.

The Echeloned Series Processor (ESP) was developed in assembler on the IBM
360/44 computer for Delaunay's theory [20J. The ESP turned out to be barely ad­
equate for the lunar theory, but spurred development of symbolic codes along the
same pattern. In 1973, R. Dasenbrock at the Naval Research Laboratory devel­
oped a processor in Fortran [21J. This processor finds continued use at NRL [22J;
portable versions were made at the University of Zaragoza for IBM/RT's, the CNES
in Toulouse for Sun's, and the University of Cincinnati for PC's.

Developing the artificial satellite theory on Dasenbrock's processor exposed sev­
erallimitations of the compilers and hardware of the time. The integer length of 32
bits limited the size of the rational coefficients. Memory limitations always posed a
serious problem, partially as a result of scrimped core and no virtual memory, and
partially as a result of the flat data representation for the expressions. Long run
times of several hours on the ASC advanced array processor were common for large
problems. Indeed, the ASC proved to be of little advantage for these types of calcu­
lations. Algebraic manipulations require tremendous amounts of localized operations
like sorting, combining terms, and other operations to maintain the canonical form
of the expressions. Such local operations prove difficult to vectorize, and we ended
up using the ASC as a fast scalar machine. In sum, while the software could exploit
very efficiently the algebraic structures inherent to the canonical representations, it

105

made it very inconvenient to fit the problem at hand.

In 1984, Miller reincarnated MAO on a Symbolics workstation using an object­
oriented dialect of Lisp. This version of MAO introduced a number of new features,
most notably the polymorphism of functions and advanced mathematical typography
on a bitmapped screen.

In the current version of MAO, both mathematical functions (such as multipli­
cation) and operational functions (such as printing) are polymorphic. Each class of
algebraic object knows how to handle addition, multiplication, printing, etc. in the
appropriate way. For example, the product of two algebraic objects may be a multi­
plication or a scaling depending on the types of the operands. By using these generic
operations, the code which implements polynomial multiplication may be optimized
quite readily, since this routine concerns itself only with manipulating the two expres­
sions at the polynomial level. The types of the coefficients and even the number of
variables prove irrelevant, as long as generic routines exist to multiply and add terms.

The polymorphism of functions also provides a user of MAO with great freedom in
structuring the solutions to his problem. By combining modules defined for manipu­
lating polynomials, series and Fourier sums, the user constructs expressions matching
exactly the algebra of his computational methods. For example, one might choose
to work with series in the small parameter t, whose terms are polynomials in Land
n, whose coefficients are Fourier sums in the angles f! and g, whose coefficients are
polynomials in e, whose coefficients are rational numbers (see Figure 1). Having
this hierarchy of algebras, MAO keeps all expressions in this form, ready for any
simplifications or other operations requiring the results to be in canonical form.

S[f]

over
P[L,n]

over
F[l,g]

over

Pre]

over Q

Figure 1: Hierarchy of algebras

On the whole, MAO has turned into a very handy tool for solving medium size
problems. Yet, in spite of all provisions to ensure speed and efficiency, MAO appears
too slow to handle very large problems. We do not invent these problems for the
sake of pushing the equipment to the limit; they are out there, begging for a solution.
The main problem of lunar theory was solved to an accuracy of 50m in the radius.
Presently, the U.S. Naval Observatory time service requires a solution accurate to a

106

500

400 -- Macsyma

MAO ---- MAOIi

en 300

'" E
;:: 200

100

0
0 10 20 30

Order

Figure 2: (alr)5 with rational coefficients

few centimeters. Most likely, so stringent a precision will tax the Symbolics environ­
ment beyond its present capabilities in both speed and memory. Thus, we turn once
again to rebuilding MAO on a new type of machine, this time on a massively parallel
processor - the Connection Machine (CM).

4.2. Parallel processing. As suggested in Figure 2, a massively parallel proces­
sor constitutes a powerful tool for manipulating large Poisson series. In the benchmark
picture, we started with the ratio air as a Fourier series in the mean anomaly I! with
polynomial coefficients in the eccentricity e over the rationals. Textbooks in celestial
mechanics give only the first few terms of the series air:

a
r

+ e3cos31!(~ - ls21se2 + ...) + e4cos41!(~ + ~e2 + ...)

+ e5 cos 51! (~! + ...) +

Acting upon a suggestion made by Prof. K. R. Meyer, we solved Kepler's equation
by means of a Lie transformation which we then applied to obtain the series air to
power 30 in e. We could have applied the same transformation to the power (alr)5,
but we did not. Our purpose here is to produce an expression long enough that,
by raising it to the fifth power, would exercise to the fullest the capabilities of the
Connection Machine.

In one calculation of Figure 2, we use Macsyma; in another, we employ MAO on
a Symbolics Lisp workstation. In the third, we compute the product on a Connection
Machine, for which we have developed a package of procedures (MAO!!) written in
*Lisp. In each run, we timed the operations for increasing orders in e. At order
n = 30, each factor contains 256 terms. Macsyma is desperately slow-it took almost

107

two and a half minutes to compute the result to order 10. MAO reached order 30 in
approximately seven and a half minutes, while MAO!! did the same nearly twice as
fast. The shape of the curve representing timings on the CM exhibits several inter­
esting features. Up to order 22, the curve is practically linear; this is easily explained
by the small increase in overhead due to the incremental growth in the length of the
series from one order to the next. Then, the timing curve jumps to another linear
slope slightly steeper than the initial one, and the phenomenon reproduces itself pe­
riodically at higher orders. At order 22, the jump results from the program having
exhausted the available pool of physical processors and reconfiguring the real machine
to behave as a logical machine with twice as many virtual processors. At order 26,
the configuration changed again, again redoubling the number of virtual processors.

The tool developed on the Connection Machine has been dubbed MAO!! [24]
- the suffix '!!' follows the CM programmer's convention for denoting parallelism.
MAO!! achieves its gains over MAO by spreading Poisson series over thousands of
processors. Each processor in the CM holds a single term of a Poisson series. This
distribution provides a simple resource allocation scheme flexible enough to deal with
the constant explosion and implosion of partial results so typical of symbolic algebra.
In addition, the scheme permits many series to remain active in the CM memory.

From the standpoint of parallelism, algebraic operations fall into two classes. Mul­
tiplication by a monomial, partial differentiation and integration are local operations,
requiring only isolated computation in each processor. On the other hand, multiplica­
tion and simplification are global operations in the sense that processors representing
terms of the series must communicate among themselves. Global operations bring
forth the real power of the CM.

Among the global operations, we concentrated on two problems: the simplification
of like terms, and the multiplication of Poisson series. In both cases, we succeeded in
introducing a high degree of parallelism. The secret was to take advantage of the pos­
sibility of restructuring the CM as a grid on which global patterns of communication
act like translations in n-space. In this regard, combination of like te~ms turns into a
sorting to put all like terms next to one another along intervals of a one-dimensional
grid; after sorting comes a scanning to sum the like terms in the processor at the end
of each segment.

MAO!! multiplies Poisson series by replicating the factors and forming all partial
products at the same time. The code is best understood by looking at a simple
example. To multiply a second degree polynomial in one variable a + bx + cx2 by a
polynomial A + Ex, we arrange the machine so that the first six processors on the
one-dimensional grid contain the following quantities.

abc abc
X O Xl x 2 X O xl x2

A A A E E E

Then, all partial products are computed in parallel so that the one-dimensional grid
now holds the quantities below.

108

a b c a b c
XO Xl X2 XO Xl X2

A A A B B B
xO XO XO Xl Xl Xl

aA bA cA aB bB cB
XO Xl x2 Xl X2 X3

There remains to pass the terms to the simplification routine and store away the
remaining terms. The dynamic virtualization mechanism of the CM makes the mul­
tiplication of large series possible. For instance, when multiplying two Poisson series
of 256 terms each, the intermediate result will have 217 terms, while our CM provides
only 214 physical processors. Nevertheless, the CM may be configured as if it had 217
virtual processors, where each physical processor emulates eight virtual ones.

In our opinion, massive parallelism presents a viable option for processing very
large Poisson series. We intend to continue the development of MAO!! by introducing
hierarchical structures like those in MAO, as well as refining the parallel and numerical
algorithms. In addition, the introduction of the Data Vault ~ a parallel mass-storage
device connected directly to the CM ~ offers the possibility of caching large numbers

of series, constituting in effect a virtual memory.

5. Graphical studies of flows. Although a normalization may vastly simplify
a system, there remains much to do to understand its global behavior. By virtue
of the normalization described in Section, the system has been reduced from one
describing the evolution of the position of the satellite to one describing the evolution
of the 'state' of the orbit, the instantaneous ellipses upon which the satellite moves.
The stable equilibria of the reduced system indicate which orbits are 'safe'; a satellite
would remain on or near such an orbit for a long time. The purpose of performing
the normalization is to better understand the dynamics of the system. Once the
algebraic manipulations are done and we have the normalized Hamiltonian, we still
need to extract the qualitative features of the dynamics.

We are facing, from an algebraic point of view, a comparatively unstructured
problem: whereas previously we were able to identify algebraic structures amenable
to automated manipulations, we are now dealing with Hamiltonians usually so short
that we can afford to process them by general purpose systems for symbolic and
algebraic manipulations. Our guides at this point are insight and experience. For
we are now trying to capture the major features in the global flow determined by
normalized Hamiltonian equations.

As expected we start by locating the singularities in the system. In particular we
are especially attentive to the creation and annihilation of equilibria as the param­
eters of the system are changing. One can envision several ways of learning these
things, and, in fact, we use no single tool but a combination of numeric, symbolic and
graphical techniques.

5.1. Topology to the rescue. Carried away by tradition, the first people to
study the satellite problem assimilated the phase space (g, G) to a cylinder, in part

109

because they felt comfortable in looking at the system as a simple pendulum under
perturbations. The fact is that the model of the pendulum is totally misleading. It
misses those exceptional situations at G = L where, the eccentricity being zero, the
argument of perigee g has no meaning. Furthermore, it excludes the whole manifold of
equatorial orbits because when the inclination I is zero, Le., at G = H, the longitude
h of the ascending node has no meaning.

However, as Elie Cartan showed some eighty years ago, on each manifold L =
constant, the set of bounded orbits that one gets from making constant all Delaunay
elements but the mean anomaly £ consists of a pair of two-dimensional spheres. One
can see that easily: indeed the vector functions

G =;c x X and A = (L/ fL)(X x G - fL;c/r)

are independent of £, and so are u = HG + A) and 6 = !(G - A). The identities
lIul12 = 11611 2 = L2 /4 define the two spheres recognized by Cartan.

As we are interested mainly in perturbed Keplerian problems where the longitude
of the ascending node is ignorable we found convenient to use coordinates other than
the vectors u and 6. We take

7/1 = J L2 - H2 cos h,

7/2 = J £2 - H2 sin h,

7/3 = H,

6 =LGsinlecosg,

e2 = LGsinI esing,

In these coordinates, the orbital space is represented by the two spheres

So, for a perturbed Keplerian system in which the longitude h is ignorable, the re­
duction by the group SO(2) identifies the orbital space to the unique sphere in the
Euclidean space based on the coordinates (e1,e2,6).

Once the Hamiltonian is expressed in these coordinates, the equations of motion
are
(7) for i=l,2,3.

These equations cover all possible motions on the spheres, including those in the nei h­
borhood of the north pole (0,0, !J £2 - H2) and the south pole (0,0, -! £2 - H2).
At the north pole, G = L, hence that point represents circular orbits with an incli­
nation such that cos I = H / L; at the south pole, since G is equal there to H, we
find the class of equatorial orbits with eccentricity e = Jl - H2 / L2. The coordinates
(g, G) amount to a Mercator projection of the sphere, which excludes the north and
south poles. Curves on a sphere are easy to draw on the screen of a terminal. In an
orthographic projection, there is no need for a special algorithm to decide whether a
point is visible on the screen.

5.2. Phase flows by numerical integration. In the main problem of artificial
satellite theory, the global equations (7) tell that the south pole is an equilibrium,
call it Eb and that this equilibrium is stable for any H. The north pole is also an
equilibrium, call it Eo, but sometimes stable, at other times unstable. This change of

110

stability stems from two bifurcations. These facts are established by using a Newton­
Raphson iteration to solve analytically the equilibria equations

(8) fJH/8g = 0, 81i/8G = 0

in the neighborhood of H = L/~. Details of the calculations have been published
elsewhere [25]. This was accomplished with Macsyma on a Lisp workstation, and,
later, Mathematica [26] on a Macintosh.

Once the equilibria were located and their stability character established, we drew
a sample of averaged orbits by integrating numerically the differential equations

(9) G = 81i/8g, 9 = -81i/8G

Sampling was first accomplished at the terminal by selecting what we thought would
be the appropriate initial conditions. After a long while, we came to an algorithm for
selecting automatically those initial conditions that would produce the most telling
image of the phase flow.

Our tool for doing the plots, which we named the "Doodler," operates somewhat
like a hybrid of a plotting package and an object-oriented drawing program. Lines,
curves, and figures can be drawn under program control. In addition, one can use the
mouse to annotate or manipulate the images. For instance, one can superimpose the
plots to make a collage of the kind that one sees in [25, Figures 2 and 5].

General purpose algebraic systems like Macsyma and Mathematica, on the one
hand, and interactive graphic software like the Doodler proved effective in attacking
more difficult systems. On account of the interest engineers have for "frozen orbits,"
we enlarged the main problem to involve a few more zonal harmonics, namely those
of degree 4 and 6.

Save for a rotation by 900 the harmonic of degree 4 introduces no qualitative
changes. The same, however, cannot be said for the harmonic of degree 6. Eliminating
G between the equations (8) produces a resultant that is quadratic in sin g, it opens
the prospect of equilibria appearing at values of g away from multiples of 7r /2 whose
appearance and annihilation are the effect of additional pitchfork bifurcations. At
this stage of our analysis we began to feel very painfully how much we were straining
the capabilities of our equipment. We had reached the point where a diagram of the
phase flow produced by numerical integration required 60 uninterrupted hours on the
Lisp workstation.

5.3. Phase flows by color painting. Investigation of the critical inclination
in the main problem of satellite theory was initially limited to a neighborhood of

H/L = 1/~. As the value of H/L decreases, what becomes of the global dynarrlics?
Answering the question analytically by iterating the Newton-Raphson procedure is
out of the question. The result would be so complex as to preclude any significant
interpretation. The only way then is to proceed numerically. The function Solve of
Mathematica proves errlinently suitable in that direction. To our surprise we found

that, close to H/L = 0.0306 for 12Ci2 /a 2 = 0.001, there appear four more roots in G
for equations (8) when g equals 0 or 7r.

III

This discovery made us wish to be able to see snapshots of the phase flow as the
ratio H/L runs from 1/)5 to O. Numerical integration will not serve this purpose.
Let us approach the problem from a different perspective. Since we are dealing with
conservative Hamiltonians having only one degree of freedom, the average orbits are
the level curves of the Hamiltonian over the orbital spheres. Initially, we experi­
mented with the contouring features of Mathematica; we found them wanting. Not
all interesting features could be shown simultaneously due to insensitivity to changes
of scale. Furthermore, numerical roundoff gave poorly defined trajectories.

There is an alternative that solves all these problems and furthermore is ideally
suited to the data-parallel architecture of the Connection Machine. At each point
in the phase space we compute the value of the Hamiltonian; we convert that value
into a color code; we assign that color code to the pixel representing the point. This
is what we call "painting the Hamiltonian onto phase space." These computations
are performed for each point independently of the computations for any other points,
and thus they can proceed in parallel. On the screen, we see strips of different colors;
the boundaries between adjoining strips are a substitute for contour levels of the
Hamiltonian.

A straightforward painting of the Hamiltonian would suffer from the same problem
as contour drawing in that it would be insensitive to changes in scale. The algorithm
mapping value onto color must be selected carefully, for there is a difference between
the map we seek and a cartographer's contour map. The cartographer wants to
represent altitudes uniformly throughout the map. For us, however, comparison of
altitudes is not the issue. The altitude of a point over the sphere is determined by
the value of the Hamiltonian at that point. We are not interested in reading values
of the Hamiltonian in the map; we only want to relate points if they are of the same
value and to contrast them if they are not. In particular, we care about marking
peaks, hollows, and passes; we are especially attentive to the contours around these
singularities. These are the features that we want to emphasize even if it means losing

all information about their relative heights.
The new equilibria just mentioned have a Hamiltonian value which is about 104

times smaller than that of the critical inclination points. In a uniform height scale,
it would take an enormous number of colors (or, for a contour plot, an enormous
number of contour lines) to enhance these very low features, so many in fact that
the interesting areas would have only slight color gradation. To a cartographer, the
problem is one of separating a huge mountain from a shallow lake at its foot, and
furthermore of showing the details in the lake and around the summit. A cartographer
might solve the problem by printing the heights of the mountain and the lake on the

map. We do not care so much about the heights as we do about showing which
points in the neighborhood of the mountain and the lake are of the same height and
about contrasting points at the same elevation with nearby points at slightly different
altitudes.

One way of achieving this result is by covering the range of Hamiltonian values
not by a single spectrum, but by covering with several spectra. This will effectively
show finer detail. The procedure, however, has its limits. Too many bands of color
would make the picture confusing.

112

Figure 3: The phase flow slightly below H / L = 1/..;g. The region depicted is an
orthographic projection of the northern hemisphere upon the equatorial plane 6 = o.
The north pole is at the center of the figure; the positive horizontal axis corresponds

to 9 = O.

Another way is to give up a uniform height scale. Whether shallow or high, the
interesting points and their neighboring flows generally occupy about the same area
in phase space. We draw a very fine scale around the stationary points, and take
longer strides along the mountain sides and other less interesting areas. Thus we
shall weigh the assignment of colors by the distribution of values, so that any strip of
a given color has approximately the same number of points as any other strip. Our
shallow lake, the newly discovered equilibria, occupies about the same area in phase
space as the mountain of critical inclination, so it will now appear with as many color
strips, even though the range of values of the Hamiltonian are dramatically different.

Calculating the Hamiltonian at each point and mapping its value to a color are
operations that can be performed in parallel. On the Connection Machine (16K
processors with floating point accelerator), the rendering of a 512 x 512 plot takes
about one second; contrast this to the Symbolics where it takes about 40 minutes.

The first illustration of the painting technique, Figure 3, reproduces in black and
white a color phase diagram on the display of the Connection Machine [27]. It shows
the flow of the averaged equations in a neighborhood of the critical inclination after
the two bifurcations which have alternatively changed the stability of the north pole
from stable to unstable and back to stable again. Figure 4 shows the newly discovered
equilibria. These equilibria appear by a saddle node bifurcation. The ability of
the Connection Machine to display rapidly the phase flow as it evolves through the
bifurcation is very effective in animating the mechanism by which these equilibria
come to existence.

At the speed of the Connection Machine, one can make a movie of phase flow
as the ratio H / L is varied. Pictures are produced fast enough that one's mind re-

113

Figure 4: The eyes of the hippopotamus. A view from the south pole.

tains knowledge of the behavior, so that creative exploration with different values of
parameters, or zooming in on some section of phase space yields a solid feel of the
behavior, sometimes even new knowledge as well. In fact, a suspicious looking pattern
at the previously unstable points of 9 = 7r /2 and 9 = 37r /2 at low values of H turned
out to be, on closer examination, the aftermath of a pitchfork bifurcation into one
stable and two unstable equilibria, the new unstable points being at slightly different
values of g. This bifurcation had not been anticipated, although examination of the
equilibria equations after the fact showed how they occur. Figure 5 is a zoom of the
region around the equilibrium 9 = 7r /2 where the unanticipated bifurcation occurred.

6. Conclusions.
Most recently, visualization has been added to our collection of tools to provide

insight into the global behavior of dynamical systems. The appeal of color graphics
as an exploratory tool is not to be turned down. For it is at the start of a qualitative
analysis rather than in the middle of writing the research report that global pictures
should be sought.

Unlike other disciplines identified with pure geometry, nonlinear dynamics should
not and never shall be one of those lofty towers where individuals feel compelled
to live up to some intellectual asceticism away from machines and gadgets. The
discipline instead must try with tenacity to keep pace with computational technology
and make room for its innovations the same way. The challenge thus is endless,
for each generation of mathematical physicists needs to keep abreast of techniques
relentlessly emerging from the engineering shops. There is ex~usable dabbling and
playfulness in shopping for a tool.

114

Figure 5: Zooming onto a surprise bifurcation in Figure 4.

References

[1] A. DEPRIT AND A. DELlE, Trojan Orbits I. D'Alembert Series at L4 , Icarus, 4 (1965), pp. 242-
266.

[2] A. DEPRIT, Limiting Orbits at the Equilateral Centers of Libration, Astron. J., 71 (1966),
pp.77-87.

[3] A. DEPRIT, J. M. A. DANBY AND A. ROM, The Symbolic Manipulation of Poisson Series,
Boeing Document D1-82-0481 (1965).

[4] J. M. GERARD, I. ISZAK AND M. P. BARNETT, Mechanization of Tedious Algebra: The
Newcomb Operators of Planetary Theory, Comm. ACM, 8 (1965), pp. 27-32.

[5] D. BARTON, A scheme for manipulative algebra on a computer, Computer J., 9 (1967),
pp. 340-344.

[6] A. DEPRIT, J. HENRARD AND A. ROM, Trojan Orbits II. Birkhoff's Normalization, Icarus, 6
(1967), pp. 381-406.

[7] A. DEPRIT AND A. ROM, The Main Problem of Artificial Satellite Theory for Small and
Moderate Eccentricities, Celest. Mech., 2 (1970), pp. 166-206.

[8] A. DEPRIT, J. HENRARD AND A. ROM, Lunar Ephemeris: Delaunay's Theory revisited,
Science, 168 (1970), pp. 1569-1570.

[9] A. ROM, Mechanized Algebraic Operations (MAO), Celest. Mech., 1 (1970), pp. 301-319.

[10] A. DEPRIT, Canonical Transformations Depending on a Small Parameter, Celest. Mech., 1
(1969), pp. 12-3l.

[11] A. DEPRIT, Dynamics of Orbiting Dust under Radiation Pressure, The Big Bang and Georges
Lemaitre, ed A. Berger, The Reidel Publishing Company, Dordrecht, (1984), pp. 151-180.

[12] S. L. COFFEY, A. DEPRIT AND B. R. MILLER, The Quadratic Zeeman Effect in Moderately
Strong Magnetic Fields, Ann. New York Acad. Sc., 497 (1987), pp. 22-36.

115

[13] A. DEPRIT, S. FERRER, M.-J. MARCO AND J. PALACIAN, The Hydrogen Atom in Parallel
Electric and Magnetic Fields (m=O), Physics B, submitted for publication.

[14] A. DEPRIT AND B. R. MILLER, Normalization in the Face of Integrability, Ann. New York
Acad. Sc., 536 (1988), pp. 101-126.

[15] G.-I. HORI, Theory of General Perturbations with Unspecified Canonical Variables, Proc.
Astron. Soc. Japan, 18 (1969), pp. 1287-1296.

[16] A. DEPRIT, The Ideal Resonance Problem at First Order, Advances in the Astronautical
Sciences, 46 (1982), pp. 521-526.

[17] J. HENRARD AND P. WAUTHIER, A Geometric Approach to the Ideal Resonance Problem,
Celest. Mech., 44 (1989), pp. 227-238 ..

[18] A. DEPRIT, The Elimination of the Parallax in Satellite Theory, Celest. Mech., 24 (1981),
pp.111-153.

[19] S. L. COFFEY AND A. DEPRIT, A Third Order Solution to the Main Problem in Satellite
Theory, J. Guidance, Control, and Dynamics, 5 (1982), pp. 366-371.

[20] A. ROM, Echeloned Series Processor (MAO), Celest. Mech., 3 (1971), pp. 331-345.

[21] R. R. DASENBROCK, Algebraic Manipulation by Computer, NRL Report 7564 (1973).

[22] A FORTRAN-Based Program for Computerized Algebraic Manipula-
tion, NRL Report 8611 (1982).

[23] A. DEPRIT AND E. DEPRIT, Massively Parallel Symbolic Computation, Proceedings of the
ACM-SIGSAM 1989 International Symposium an Symbolic and Algebraic Computation, ACM
Press, New York, (1989), pp. 308-316.

[24] ----------- Processing Poisson Series in Parallel, J. Symbolic Computation,
submitted for publication.

[25] S. L. COFFEY, A. DEPRIT AND B. R. MILLER, The Critical Inclination in Artificial Satellite
Theory, Celest. Mech., 39 (1987), pp. 365-406.

[26] S. WOLFRAM, Mathematica. A System for Doing Mathematics by Computer, Addison-Wesley,
Reading, MA, 1988.

[27] S. L. COFFEY, A. DEPRIT, E. DEPRIT AND L. HEALY, Visualization of Phase Flows, sub­
mitted for publication.

COMPUTER ASSISTED PROOFS OF
STABILITY OF MATTER

R. DE LA LLAVE*

Abstract. We review some recent progress in the study of Schrodinger equations for arbitrarily
many fermions interacting via Coulomb forces. The goal is to prove lower bounds for the infimum
of the spectrum which are reasonably close to optimal. Some of the key estimates are established
with the help of a computer.

Key words. N-body problem, Schrodinger equation, Taylor methods, Interval arithmetic,
Gr01md states.

AMS(MOS) subject classifications. 81-08, 81C99, 82-03, 2A15.

1. Description of the problem and motivation.

The problem we have considered is to obtain lower bounds for the so-called
N-body problem in quantum mechanics.

The most standard version of the problem can be formulated mathematically
as:

Problem 1.1. For any N, MEN, Z E R, choose M points YI"'" YM E R3 and
consider the operator:

(Ll)
l<j<M
l<k<:M
J<k

acting on the Hilbert space L~ntisym' the space of complex valued functions 'l1 of
N variables in R3 whose square is integrable and which satisfy the antisymmetry
condition:

Define

(1.3)

*Dept. of Math., University of Texas, Austin, TX 78712. Supported in part by N.S.F. grants

117

Show that:

(1.4) EN,M ~ -C(Z)(N + M)

The physical interpretation can be found in any textbook in quantum mechanics.
Let us recall it briefly:

The setup describes a system of N electrons interacting among themselves
and with M nuclei of charge Z - in physical applications it is an integer - via
electric forces described by Coulomb's law. In appropriate units, the strength of
the electrostatic force is measured by ll'. The nuclei are assumed to be at fixed

positions YI"'" YM' The "wave function" llI(x l ,.··, x N) has the meaning that
/1lI(x l , ... ,xN)/2 is the probability density of finding one electron at Xl' another
one at x 2 , etc. The meaning of (Ill, Hili) is the "expected energy" of the system.
The antisymmetry requirement for the wave function is the so-called Pauli exclu­
sion principle, which implies that electrons, even if undistinguishable cannot occupy
the same state.

Remark. The model as it was described, does not take into account the "spin"
of the electrons. To include it, we just consider the variables Xi entering in III to
range over R3 x {-I, I} rather than R3. TillS modification affects all the numbers
coming from the theory.

For physical systems at relatively low temperature, one expects that they will
get rid of as much as possible of the energy and will be described most of the time
by the states where the energy is close to the minimum EN,M'

Lower bounds for EN,M can be interpreted as statements that a system cannot
give off much energy by rearranging itself in a particularly favorable state (these
arrangements would happen spontaneously, so they, probably, should have been
observed if they were possible). We point out that to show that EN,M > -00 for
N or M ~ 2 is non trivial and was proved for the first time by Kato in [Ka]. For
the corresponding model based on classical mechanics, indeed EN,M = -00 except
in the trivial case N = 0 or M = O.

The fact that EN,M does not grow faster than linearly with the total number
of particles has important physical consequences. Once one proves the bound (1.4)
it is comparatively easy to show that limN_ooEN,N/N exists. This shows that,
when N is macroscopically large E 2N,2N :::::; 2EN,N' In physical terms, when we
put together two equal large systems, the energy of the system is approximately
twice the energy of each one. We do not gain energy by making a bigger out of two
smaller ones. If, instead, we had EN,N:::::; NT, then, E2N would be:::::; 2TEN so that
putting together two masses of N particles, would give off (2T - 2)EN . If T > 1

even by a tiny amount, systems large enough for the approximation to hold, would
tend to absorb neighboring systems and give off energy. This situation is described
as collapse, and the fact that there is no collapse, ((1.4)) is described as stability
of matter.

We should stress that the behavior of bulk matter can be described by different
models depending on which- physical effects we decide to model. Since there is no

118

all-encompassing physical theory, such models involve, of necessity approximations
that can only be valid for certain ranges of parameters. We will not go into the
physical discussion oflimits of validity of models, but rather prove rigorous theorems
about the models themselves. When we use the abbreviation matter collapses or
matter is stable it should be understood as a mathematical statement about the
model being discussed at the moment. We just point out that, even if we will not
argue for it, the theorems we prove are considered to apply for physically relevant
parameters.

Stability of matter, even if part of every day experience, is surprising because,
after all, the expression we are bounding has N2 terms. If stability is to be true
at all, it has to depend on very delicate cancellations of the N2 terms entering in
the potential. The fact that these cancellations are subtle is illustrated by the fact
that, if we forget about the antisymmetry requirements, the result is false [Li2].
The form of the potential is also crucial since apparently tamer potentials, finite
and exponentially decreasing can lead to collapse ([Th] p. 258.) Gravitation is an
example of a physical model which predicts collapse. For sufficiently large N -a few
times the mass of the sun- EN grows faster than linear and matter indeed collapses.
Those are the neutron stars. (See [Th] Chapter 4.2, [LT2].)

It is worth pointing out that since energy controls the statistical properties of a
system in contact with a heat bath, a problem closely related to stability is to show
that thermodynamic properties such as entropy, etc. are asymptotically propor­
tional to the number of particles and that they satisfy some qualitative properties
such as convexity. We refer to [Lil], [Li2], [Th] for a review of implications of sta­
bility of matter and related subjects. [Th] contains a wealth of material on the
problem of deriving properties of bulk matter from first principles using quantum
mechanics.

Since failure to account for the bulk properties of matter was one of the main
reasons the classical theory of matter was abandoned, it is reassuring to be able to
show that quantum mechanics can indeed account for these properties.

Stability of matter was proved first by Dyson and Lenard [DL1], [DL2]. Another
much simpler proof was discovered by Lieb and Thirring [LT1]. A few years ago, C.
Fefferman showed in [Fel] that, assuming that (1.4) holds with a constant C close to
the one for a configuration describing separate atoms, it follows from first principles
that, for certain ranges of temperature and density, matter formed of protons and
electrons can be described as a plasma - almost homogeneous density of protons and
electrons and almost no correlations -. For other ranges of temperature and density,
matter can be described as a gas of hydrogen atoms - the correlation between
protons and electrons are almost those of a hydrogen atom and the correlation

between different atoms is very small-.

Clearly, in view of this result, proving good lower bounds of the constant C in
(1.4) became an interesting problem and provided motivation for the search of new
methods that could provide better bounds.

What we are going to describe in this paper is part of a program initiated by C.
Fefferman to obtain lower bounds for the N-body problem in quantum mechanics.

119

We are going to describe only the part of the program in which computer assisted
proofs play an important role and in which the author has been personally involved.
Both restrictions are non-trivial: there are very important results that follow from
the same techniques without using the computer and there are computer-assisted
results obtained by others, notably H. Trotter, L. Seco and C. Falcolini. The work
in progress described in section 4, has been done in collaboration with C. Fefferman,
H. Trotter and C. Falcolini.

2. Relativistic stability of matter.

The problem considered here was not the standard N-body problem in quantum
mechanics but rather a modification in which the kinetic energy is supposed to be Ipl
rather than the usual p2/2m (we take units in which m = 1/2). Since Ipi S p2 -1/4,
lower bounds for this problem imply lower bounds for the standard problem. In
particular, the following theorem proved by computer-assisted methods in [FL] can
be used to prove (1.4) for Z = 1.

Theorem 2.1. If as 70/1447r, then the operator

(2.1)

satisfies ('l1, H'l1) ?: 0 for any 'l1 E L~ntisym'

Remark. The fact that we have the square root of the Laplacian in place of the
Laplacian makes all the terms in the Hamiltonian have units of inverse of length.
This has as a consequence that if there is a configuration with negative energy, by
shrinking the positions of the protons and electrons, we get another configuration of
smaller energy. If there indeed was a configuration with negative expected energy,
we could obtain an unlimited amount of energy form it by shrinking indefinitely.
This is the relativistic collapse. Using trial functions, it is possible to show that this
collapse indeed happens when a?: 2/,rr: [He] [We]. Notice that then, the conclusions
of Kato's theorem do not hold for this model. This is not surprising since Kato's
theorem uses essentially that, since the Laplacian has units of Length -2 and the
potential of Length -1, for phenomena happening in small scales, the Laplacian is

the dominant term.

The scale invariance of (2.1) also makes it impossible to use the methods based
on statistical methods that we mentioned before,

Some landmark papers in the study of this problem are: [We], [He] studied
the problem of one nucleus and one electron - it can be solved using the Mellin
transform -, [DL3] studied the problem of one electron and many nuclei, and [Co]
proved stability of matter for this model provided that a, Za was small enough -
the estimate quoted in the paper was 10-200 -.

120

In this section, we will describe the computer-assisted method used in [FLj to
prove Theorem 2.1 Further developments along similar lines, can be found in [Fe3],
[LYj.

The basic strategy in the proof of stability of matter of [FL] - and some others -
is to bound the problem by another one that decomposes into as many independent
pieces as nuclei. Bounding from below the independent pieces is very similar to
bounding from below the energy of atoms. The caricature of atoms can be bounded
from below by a problem describing independent electrons.

The main analytical device introduced in [FLj to achieve this decompositions
is to rewrite the expected value of the Hamiltonian as an integral over the space of
balls. If we denote by B(z,R) the ball of center z E R3 and radius R E R+ we
have:

(2.2) 1 11 j dzdR
Ix - xII =;: Xx,x'EB(z,R)--W

xER zER+

(2.3)

j J 1 dzdR
R E R+ lu(x) - u(YWdxdy~

zER3 x,yEB(z.R)

= 1671" J lu(x) - u(Y)12 d d = 3271"2 / (_t.,.)1/2)
35 Ix _ yl4 xy 35 \ u, u

Except for the value of the constants, one can convince oneself quickly that the
formulas are correct observing the invariance under rotation and the properties of
both sides under scaling.

These formulas have immediate consequences. Calling

N

N(z, R,xl"'" xN) = LXx;,x;EB(z,R)
i<j

M

M(z,R'Yl'''''YM) = LXy;,y;EB(z,R)
i<j

the number of electrons and of protons in a ball, we have:
(2.4)

V(x1,···,xN;Yl'···'YM) =

1 j 1, dzdR - (N(N-1)/2+M(M-l)/2-NM)-R5 =
71" zER3 RER+

1 j 1, (1 2) dzdR - -(N-M) -N/2-M/2 -5
71" zER3 RER+ 2 R

Likewise, the kinetic energy can be rewritten:

121

where Tk(z, R; xk) = Jxl,x"EB(z,R) [w(x', xk) - W(X", Xk)[2 dx'dx".

The formulas (2.4), (2.5) are interesting because they write the energy as integral
of local quantities. Notice also that (2.4) shows that, unless the charge in a ball is
more or less balanced, the contribution of this ball is largely positive. This agrees
with the experimental fact that, in states with low energy, the electrostatic charge
is almost exactly balanced.

In this representation, it is also possible to take into account the effect of an­
tisymmetry. Due to the antisymmetry, two electrons in the same ball ca=ot both
be in a state that minimizes kinetic energy. This raising of the energy can be in­
terpreted as an extra repulsive term. As we mentioned before, this extra term is
crucial to the proof of the result.

Reducing the original problem to a set of independent problems for each nuclei
can be achieved by dividing the contribution of the balls among the nuclei. The
contribution of a ball is divided equally among all the nuclei it contains. If it
contains none, its contribution is assigned to the nucleus nearest to the center.

The problem for each nucleus can be further estimated to show it is bounded
from below if for any choice of 0 < Rl < R2 < 1, the quadratic form Q(w) =

Jo1 ~(s)A[W](s)s2ds with

(2.6)

A[w](s) = W(s)w(s) - 27l' 11 K(s, t)w(t)t2dt

l11R 2 dtdR
W(s)=-l/s+, sO t R5M(R)

Y() '11 dR
i s,t =, R5M(R)

max(s,t)

M(R) = 1 + X[Rl,l] + X[R2,1]

is positive for all W in an appropriate domain that ensures that the form makes

sense. , and " are constants related to the original 0'.

We omit the details which can be found in [FLJ, but we point out that the
variational equations for this problem are, formally, a.D.E's and the conditions on
the domain can be interpreted as boundary conditions. It is furthermore possible
to show that, for certain ranges of parameters, the minimizing solution exists and
indeed satisfies the a.D.E.

It is possible to show analytically that the quadratic form is positive for certain
values of 0' ::::: 0'*. If we can show that for 0' E [0'*,0'**] there are no solution of
the eigenvalue problem with zero eigenvalue, then the form will be positive when
0' ::::: 0'**. It is the later problem that will be tackled with the computer.

122

3. Computer assisted lower bounds

3.1. Interval arithmetic. Interval arithmetic, introduced by R. Moore in the
60's provides a very convenient framework in which to perform rigorous calculations
with the computer. We refer to [Mo],[KM] for more details.

Usually, computers come equipped with an approximate arithmetic. Arithmetic
operations are only defined on finite set R C Q, - the representable numbers - which
the machine can manipulate very effectively. The manufacturer supplies arithmetic
operations acting on R which produce either another representable which is close
to the right answer or raises an exception indicating that no such a number can be
found - e.g. an overflow or division by zero -. Since approximate of approximate
may not be approximate at all, it is very difficult to asses the reliability of the final
result of a large number of arithmetic operations. The situation is even worse when,
as happens in practice, the arithmetic operations are meant to be an approximation
to an analytic operations which is our real interest.

The basic idea of interval arithmetic is to introduce arithmetic operations that
produce representable numbers which are upper (resp. lower) bounds for the true
answer. Using them systematically, it is possible to obtajn upper and lower bounds
of arithmetic expressions given upper and lower bounds of the variables entering in
them.

A convenient way of organizing this idea is to introduce an structure "interval"
whose boundaries are representable numbers. We take it to mean a set of possible
values which an expression can take.

It is possible to write routines that, given intervals, can produce intervals which
are guaranteed to contain the true result of the mathematical operation performed
on any number contained in the input intervals.

The result of translating an algebraic operation in its interval counterparts is
guaranteed to contain the result of the mathematical operation whenever the vari­
ables are contained in the input intervals.

It is well known that interval arithmetic results can be very pessimistic because
they assume worst case estimates at each stage of the computation.

Two main effects are "subdistributivity": For any three intervals I, J, L, we

have denoting by +v and *v the interval operations.

and "coherence" effects. If two expressions e1 , e2 involving the variable x are
negatively correlated (e. g. x and -x), and £1 , £2 are intervals guaranteed to

contain e1 , e2 , then £1 + v £2 will be a pessimistic estimate of e1 + e2 even if e1 C £1

e2 C £2 are sharp bounds.

Even if these effects are always a theoretical possibility, there are many applica­
tions where the intervals that we need to consider have a width which is negligible
compared with the value they represent, so that these effects are not worrisome.
Very often, if the subdistributivity and coherence effects are serious, it should be

123

interpreted as a symptom that the algorithm used has been poorly chosen or that
the implementation should be improved.

3.2. Non-existence of solutions of boundary value problems. Most
of the computer assisted proofs based on interval arithmetic had been geared to
"validate" a numerical calculation -an exception is [MP]-. In our case, we want to

use the interval arithmetic to "exclude" the existence of solutions of a family of
boundary value problems for certain range of parameters.

The basic idea is to reduce the problem of existence of solutions to whether a
certain function takes the value zero or not. If we compute an interval which is
guaranteed to contain all possible values of the function but does not contain zero,
we are sure that our function does not take the value zero and, hence, the problem
does not have a solution.

Remark. We believe that in these exclusion problems, interval arithmetic presents
notable advantages - besides that of rigor - over traditional methods. Within the
philosophy of traditional numerical analysis, the most natural way of proceeding
would be to compute the function on a grid and check whether the values obtained
are safely away from the value zero. To get convincing results one should make
estimates of the derivative of the function. Either if we obtain them analytically
or numerically, it is likely that we will have to use a very fine grid. The need of
computing in a fine grid can easily overcome the overhead involved with the use of
intervals.

For a second order boundary value problem, the natural function to consider
is the value of the Wronskian of two solutions, each of which satisfies the bound­
ary conditions at one end. It is well known that if the Wronskian does not vanish
identically, the two solutions satisfying the boundary conditions are linearly inde­
pendent and it is possible to obtain a Green function so that the only solution of
the homogeneous problem is the zero solution.

A possible way of organizing the calculation, would be to write an O.D.E. solver
that given the values of the solution and the derivative at a certain point, can com­
pute them at a neighboring point. Then, starting from the bOlmdaries, it should be
possible to compute the values of the function and the derivatives at an intermediate
point.

In our case, some inessential complications arise from the fact that there are

points in which the O.D.E. has discontinuities and because it is singular at the
boundaries. This requires that the solver uses different algorithms .. Other math­
ematical complications such as certain values that have to be treated specially or
the need to exclude some degenerate ranges of parameters can be dealt with with
the same methods.

It is interesting to point out that the most popular algorithms to solve O.D.E's
- Runge-Kutta, predictor-corrector, Stoerr-Burlish - are not easy to make rigor­
ous. Theoretical error analysis are available for the first two, but they seem too
cumbersome to implement in practice.

An alternative well suited for interval arithmetic are the so-called "Taylor meth-

124

ods". The basic idea is to use the fact that, by matching powers in the O.D.E.,
it is possible to determine the Taylor expansion of the solution. The remainder
can be estimated by using a majorant method (an exposition of the method can
be found in [Po] §20 - §27). We have found it more convenient to use the con­
traction mapping principle to estimate the errors because of reasons that will be
clarified later. The basic idea is that a solution of y' = f(y) is a solution of

y(t) = Yo + J; f(y(s))ds == T[y](t). This is a fixed point equation for the op­
erator T. It is possible to show that T is a contraction in appropriate spaces. If y*

is a polynomial for which we can show Ily* = T[y*]11 ::::; €, then, there will be a true

solution y satisfying Ily - y*11 ::::; €/(1 -IIDTID·
We refer to [Mo] for a discussion of Taylor methods with error bounds. We also

refer to [Ch] for a program that given a differential equation, generates a heuristic
FORTRAN program implementing a Taylor method. Other alternatives, reducing
to integral equations are mentioned in [KM].

We also point out that if the equation contains parameters, translating all the
algebraic operations into interval arithmetic, it is possible to obtain bounds which
are uniform when the parameters range on the intervals we assign them.

3.3. Implementation and practical considerations. We wrote an interval
arithmetic package in standard PASCAL. Using these routines, we implemented
the O.D.E. solvers needed. Originally, the routines were written for the 4.1 BSD
PASCAL compiler on a VAX 11/750. We checked that the program run without any
difference under the ULTRIX compiler for the same machine. Later, it proved very
easy to get the program running under SUN's or MS-DOS machines with TURBO
or Microsoft PASCAL.

The O.D.E. solvers we constructed were as conservative as possible. Given
intervals containing initial time, the final time, the values of the function and its
derivative and the parameters, they produced intervals guaranteed to contain the
solution and its derivative at the final time for any data contained in the original
intervals.

The O.D.E. solvers we constructed used very heavily the form of the equations
being considered. Somewhat more general O.D.E. solvers have been constructed in
[Se], but for exclusion problems, it seems counterproductive to attempt generality.

The main difficulty in exclusion problems seems to be that since we want to

obtain uniform bounds over a macroscopic range of parameters, we have to work
with intervals whose width is much bigger than the round off error. In those cir­
cumstances, the coherence and subadditivity properties playa very important role.
It becomes important to organize the calculations in such a way that the expres­
sions have as many built in cancellations as possible. For example, using recursive
e-yaluation of the coefficients of a Taylor expansion, even if it works very well with
sharp intervals, leads to catastrophic growth if the intervals are" fat". This is why,
to estimate the truncation error in the O.D.E. solver we use a contraction mapping
principle.

Remark. It is quite possible that, for the study of O.D.E.'s, keeping bounds on

125

the derivative and the function is a bad idea. We can think of a second order
O.D.E. as a flow on two dimensional space. Typically, a rectangle, will evolve into
a much more complicated figure. If we require bounds of the form of a rectangle,
we may be overestimating grossly the region. For linear second order O.D.E.'s , a
possibility is to perform a Ricatti transformation w = u' /u and study the equation
for w. A variant of this approach is used in [Se]. Other possibility is to study more
general data structures to bound the region in space (see [MP] or the contribution
by Muldoon to this volume). Other methods are considered in [LR].

In the case considered in [FL], we decided to postpone tackling general issues
till we got more experience. The way of defeating the growth was to rewrite the
program till a substantial amotmt of coherence and subadditivity was taken out.
The places where those effects were more harmful were decided empirically. In the
most delicate cases, we decided to evaluate in different ways and take intersections.

The estimates obtained are more conservative the wider the intervals which
bound the parameters are. It could happen that the interval obtained by applying
the routine to the interval we are interested in is much bigger than the union of
the results obtained running the program on subintervals that cover the original
interval. Clearly, both of them are valid estimates. A convenient way of organizing
the program was to write it in two different levels. A first level consists of a routine
called "excluded " which propagates the solution and checks whether the resulting
interval for the Wronskian contains zero. If it does not, excluded reports success.
The second level is a routine superexcluded which calls excluded and reports
success if excluded succeeded. If excluded failed, superexcluded divides the
interval in parameters space into pieces and calls itself on each on of the pieces. If
all of them succeed, then it reports success. Notice each one of the calls to superex­
eluded has the capability of generating new calls if the subsequent evaluation fails
to show that there is no solution. The final result is an adaptative method that
considers finer subdivisions where they are needed. Many other adaptative methods
can be organized in the same way.

4. Current work

It turns out that many of the ideas described before can be used for the canonical
model of matter Problem 1.1 including spin, even though the values of Z have to
be suitably restricted.

It is possible to find representations of the kinetic energy as an integral over balls,
and use the antisymmetry. The resulting formula can be divided into independent
problems by estimating the contribution of certain balls that contain sufficiently
many particles. Again, it is possible to reduce the study of the problem to a
quadratic form on one-dimensional functions by using only radial estimates.

We are lead to the problem of estimating from below the sum of negative eigen­
values of a quadratic form very similar to the one considered in (2.6). There is
a potential term and integral kernels which are piecewise the integrals of rational
functions.

126

For this problem, it does not seem to be practical to reduce to a differential
equation. Moreover, the fact that the Hamiltonian is not scale invariant and that
we want to introduce the parameter Z makes us to have to consider several problems.
The amount of work can be cut because convexity properties make it sufficient to
study a finite number of points.

The line of attack we are currently pursuing is to compute the kernels using
symbolic manipulators and then produce estimates using the methods based on
interval arithmetic in Banach spaces of analytic functions as described e.g. in [La],
[EKW], [EK]

REFERENCES

[Ch] Y. F. Chang: The ATOMCC toolbox. Byte 11,4, 215-226 (1986).
[Co] J. Conlon: The ground state energy for a classical gas. Comm. Math. Phys. 94, 439-XX (1984).

[DL1] F. Dyson, A. Lenard: Stability of matter 1. Jour. Math. Phys. 8, 423-434 (1967).
[DL2] F. Dyson, A. Lenard: Stability of matter II. Jour. Math. Phys. 9, 698-711 (1968).
[DL3] I. Daubechies, E. H. Lieb: One-electron relativistic molecules with Coulomb int.eraction.

Comm. Math. Phys. 90, 497-510 (1983).
[EKW] J-P. Eckmann, H. Koch and P. Wittwer: A computer assisted proof of universality in area

preserving maps. Mem. of the A.M.S. 289, (1984).
[EW] J-P. Eckmann, P. Wittwer: " Computer methods and Borel summability applied to Feigen­

baum's equation", Springer Verlag, NY (1985).
[FL] C. Fefferman, R. de la Llave: Relativistic stability of matter 1. Rev. Mat. Iber. 2, 119-213

(1986).
[Fe1] C. Fefferman: The atomic and molecular nature of matter. Rev. Mat. Iber. 1, 1-44 (1985).
[Fe2] C. Fefferman: The N-body problem in quantum mechanics. Comm. Pure and Appl. Math. 39,

S67-S109 (1986).
[Fe3] C. Fefferman: Graduate courses taught at Princeton 1986-1987,1987-1988.

[He] 1. Herbst: Spectral theory of t.he operator (p2 + m2) 1/2 - Ze2/r. Comm. Math. Phys. 53,
285-294 (1977).

[KM] E. W. Kaucher, W. Miranker: "Self- Validating numerics for function space problems", Aca­
demic Press, Orlando (1984).

[Ka] T. Kato: Fundamental properties of Hamiltonian operators of Schrodinger type. Trans. Am.
Math. Soc. 10, 195-211 (1951).

[LL] J. Lebowitz, E. H. Lieb: The constitution of matter: Existence of thermodynamics for systems
composed of electrons and nuclei. Adv. in Math 9, 316-398 (1972).

[LR] R. de la Llave, D. Rana: Algorithms for the proof of existence of special orbits. preprint
[LT1] E. H. Lieb, W. Thirring: Bound for the kinetic energy of fermions which proves the stability of

matter. Phys. Rev. Lett. 35, 687-689 (1975).
[LT2] E. H. Lieb, W. Thirring: Gravitational collapse in quantum mechanics with relativistic kinetic

energy. Ann. of Phys. 155,494-512 (1984).
[LY] E. H. Lieb, H.-T. Yau: The stability and instabilit.y ofrelativist.ic matter. Comm. Math. Phys.

118,177-213 (1984).
[La] O.E. Lanford III: Computer assisted proofs in analysis. Physic a 124A, 465-470 (1984).

[Li1] E. H. Lieb: Stability of matter. Rev. Mod. Phys. 48, 553-569 (1976).
[Li2] E. H. Lieb: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53,

603-642 (1981).
[MP] R. MacKay, I.C. Percival: Converse KA.M.: theory and practice. Comm. Math. Phys. 98,

469-512 (1985).
[Mo] R.E. Moore: "Methods and applications of interval analysis", S.I.A.M. Philadelphia (1979).
[Po] H. Poincare: "Les methodes nouvelles de la mechanique celeste", Gauthier Villars, Paris

(1891-1899).
[Th] W. Thirring: "A course in mathematical Physics IV, Quantum mechanics of large systems",

Springer Verlag (1981).
[We] R. Weder: Spectral analysis of pseudodifferential operators. Jour. Funct. Anal. 20, 319-377

(1975).

ACCURATE STRATEGIES FOR K.A.M. BOUNDS
AND THEIR IMPLEMENTATION

R. DE LA LLAVE* AND D. RANAt

Abstract. We study perturbative expansions for quasi-periodic solutions of non-linear sys­
tems. We describe how to construct and implement algorithms that prove convergence of these
expansions for values of the perturbation parameter as close to optimal as desired. The method
is based on a constructive form of K.A.M. theory and implemented using interval arithmetic.
For some cases, the algorithms have been run on a computer yielding results better than 90% of
optimal.

Key words. K.A.M. theory, Interval arithmetic, Perturbation methods, Stability bounds.

AMS(MOS) subject classifications. 39-04, 39B99, 70K50, 58F30, 58F27, 58FIO, 65J15,
30D05

1. Description of the problem

1.1. Introduction. Many problems of interest in celestial mechanics are
"close" to systems that can be solved exactly. In such cases it is natural to consider
perturbation expansions that allow us to understand features of the system of in­
terest in terms of those of the exactly solvable one. Typically, one can compute all
the terms in these expansions recursively, but frequently this computation involves
expressions whose denominators become arbitrarily small in the course of the cal­
culation.(See [Po) §126, §146 ff.) The convergence of these expansions is difficult
to settle in general and it has been known for a long time that they sometimes
diverge. In the 60's Kolmogorov, Arnol'd and Moser found a systematic way of es­
tablishing convergence of these expansions in many cases. These techniques, usually
known as KA.M. theory, have some limitations from the point of view of physi­
cal applications. They are technically complicated and the range of validity that
can be established in some typical problems is much smaller than the values that
would be relevant for applications. (See [Mol) for a discussion of some astronomical
problems.)

We have considered the problem of systematically improving the values yielded
by KA.M. theory. We show that there are algorithms that can make the KA.M.
theory produce results arbitrarily close to the true ones. In two applications of
the theory, we have actually implemented the algorithms on a computer, paying
attention to round-off errors so that the results of the programs can be considered
as rigorous theorems. For those cases, we have also obtained - or found in the
literature - values for which the conclusions of the theorem are known to be false.
In both cases, the lower bounds for the range of validity we prove are 90% of the
values for which the conclusions are known to be false.

*Dept. of Math., University of Texas, Austin, TX 78712. Supported in part by N.S.F. grants
tMath. Dept. Columbia Univ. Supported in part by N.S.F. grants

128

1.2. Classical results. The K.A.M. techniques can be applied to many
problems in dynamics. Two problems that involve all the essential difficulties of the

theory are the Siegel center tbeorem (originally proved by Siegel lSi] using other
methods) and the twist mapping tbeorem (originally proved by Moser [M02].)

Theorem 1.1. Given a family of analytic functions on C

1 •
I.(z) = az + - I(EZ),

E
lo(z)=az

wbere j(z) = O(z2) and a satisfies, for some C, v> 0

(1.1)

Tben, tbere exists an EO > 0 sucb tbat, if lEI::; EO tbere is a conformal cbange of

variables \lI defined on tbe unit disk and satisfying

i) \lI(O) = 0

ii) \lI'(O) = 1

iii) \lI-1 0 I. 0 \lI = az

Remark. The above theorem can be interpreted as saying that for small enough lEI
the perturbed dynamics - I. - is just the unperturbed dynamics -10 - in a distorted
system of coordinates. This is very similar to the Hamilton-Jacobi method of

perturbation theory, whose basic idea is to try to reduce the perturbed system to

the unperturbed one by making a suitable change of variables.

Remark. Observe that I. is just a scaled version of II' I.(z) == ~ II (EZ). As stated,
the theorem produces an E for which the domain of the conjugating function, \lI
contains a ball of radius 1. Alternatively, we can use the above scaling to find

the biggest radius on which we can define a \lI linearizing 11. That radius is then

::; EO. Since switching from one formulation to another is so easy, we will use
either one, depending which one is more natural for the aspect of the problem we

are discussing. In most other problems, e.g. the twist mapping theorem that we
will discuss below, the size of the perturbation and the domain of definition of the

solutions are described by different parameters.

Theorem 1.2. Let F. be a Ck family of Ck diffeomorpbisms of R x 8 1 :

F.(x, B) = (f.(x, B), ¢>.(x, B))

for wbich:

i) tbe area dx /\ dB is preserved

ii) ¢>x(x, B) :::: c > 0, wbere c is a constant

iii) J(f(x,B)-x)dB=O

iv) Fo(x,B) = (x,(B+x)(modl))

129

For some C > 0, 0 < v < k/3, let wE R satisfy:

Inw - ml- l ::; Cn" n, m E Z, n =I- 0

Then, for any k' < k - 3v there exists an fO > 0 such that if If I < fO there is a Ck'
map, K : 8 1 1-+ R X 8 1 , whose image is a topologically non-trivial circle, and for
which:

(1.2) F, 0 K = K 0 Tw = 0,

where Tw(B) (B + w)(mod 1). Kw is invertible on its range and the inverse is
differentiable.

Remark. Notice that all the orbits of the unperturbed system Fo move in circles
winding around the cylinder, so that one can find a Kw for every w. The theorem

states that some of these unperturbed motions survive, up to a change of variables,

in the perturbed system.

Remark. This problem appears frequently in celestial mechanics. For example,
it appears in the study of an integrable system of one degree of freedom subject

to periodic forcing, in the three body problem, in the motion of a satellite around
an oblate planet and, with suitable modification, in the study of the motion of a

billiard ball on a convex planar table, etc.

Remark. In the application mentioned above, the conclusions of the theorem have

dramatic importance for the long time behavior of the system. The theorem asserts
the existence of invariant circles going around the cylinder. These circles are clearly

barriers for global diffusion. One orbit that starts on one side of the circle cannot

contain points on the other side. It has been shown recently [Mal that circles

winding around the cylinder are the only obstruction for global diffusion, though

the circles may not be as differentiable or have winding numbers with Diophantine

properties as those circles considered in the K.A.M. theory.

Applying most of the versions of these theorems in the literature to concrete

examples e.g.

(1.3)
,;5-1 ,=--

2

for Theorem 1.1 or the "standard map":

(1.4) F,(x, B) = (x + ~ sin(27rB), (x + B + ~ sin(27rB))(mod 1)) .
27r 27r

for Theorem 1.2, we find that the f for which smallness conditions of the theorem,

also known as K.A.M. bounds, apply, are several orders of magnitude smaller than

those relevant for physical situations.

We have considered the problem of finding systematic methods of improving the

K.A.M. bounds. We find that there are systematic optimizations of some K.A.M.

proofs which yield bounds converging to optimal. Other proofs have intrinsic lim­
itations so that, no matter how optimized in the free parameters, they will yield

results that remain a finite distance from the optimal values.

130

2. Theory

2.1. Definitions. The proofs of K.A.M. theorems involve many, in fact
infinitely many, arbitrary choices. For example, at each step one has to choose a
decreasing domain of analyticity in which to compute bounds, one has a choice
of which norms to use, etc. At the expense of computational effort, a proof of a
theorem can yield improving K.A.M. bounds by optimizing the choices, though the
choices which are optimal for one system could be far from optimal for another one.

Definition 2.1. A strategy for K.A.M. bounds is an algorithm which, for a family
of problems :Fe (fe for Theorem 1.1, Fe for Theorem 1.2) and any positive integer
N, produces a positive number eN' where eN can be computed out of :Fe using less
than N operations, and such that iflel < eN the conclusions of the K.A.M. theorem
hold.

By operations we mean either arithmetic operations between real numbers or
comparisons between them. The algorithm may have branches, that is the opera­
tions to be performed may depend on the result of a comparison.

Some strategies are optimal in the following sense:

Definition 2.2. We say that an strategy for K.A.M. bounds is accurate if, whenever
we have a family :Fe for which lim eN = e*, then for any e*' > e*, the conclusions
of the theorem are false for some :Fe' , e* ::; e' ::; e*'.

Analogous definitions can be made for the case in which the theorem we prove
states that the conclusions of K.A.M theory do not hold. In that case, we will speak
of " (accurate) strategies for converse K.A.M. bounds".

The concept of accuracy is related to the "finite computability hypothesis" of
[MP], established in [St]. In our language, the finite computability hypothesis would
have been formulated saying that the algorithm of [MP] is an accurate strategy for
the non-existence of invariant circles.

2.2. Some accurate strategies for K.A.M. bounds. From the analytic
point of view, K.A.M. theorems can be formulated as assertions that certain func­
tional equations have solutions, and the theorem with its proof can be interpreted
as an implicit function theorem. The functionals considered usually have deriva­

tives (understood in some appropriately weak sense), and the existence of a formal
perturbation theory (up to first order) can usually be formulated in terms of the
inverse of this derivative. The difficulty of small divisors implies that the inverse
of the derivative is not bounded. In such cases it is impossible to apply the usual

implicit function theorem between Banach spaces, and indeed, in this generality, the
result of an implicit function theorem is false. Even though the usual algorithms
for the proof of an implicit function theorem (e.g. those in [DiD do not converge,
sometimes a variation of the Newton method can be used for our problems. This is
usually called a "hard" implicit function theorem because the proof uses the detailed
structure of the functional, delicate properties of the spaces where the functional is
defined, and assumptions on the small divisors.

131

For a systematic review of how to formulate many small divisor problems as
consequences of a general implicit function theorem see [Zel], [Ze2], [Bo]. Many
other problems not treated in these papers, such as Siegel's center theorem, can
also be fitted into this framework. The application of a general implicit function
theorem to K.A.M. theory has shortcomings. Some well known theorems do not fit
easily. Frequently it is also possible to obtain sharper differentiability conclusions
by walking trough the steps of the proof and optimizing for the particular case being

considered.

On the other hand, for the problems considered here the systematization intro­
duced from this point of view is essential. By performing the proof of the implicit
function theorem carefully, it is possible to find a finite set of explicit conditions
that will guarantee that a "Newton method" started on a sufficiently approximate
solution will converge to a true solution.

The prototype of such a theorem is:

Theorem 2.3. For certain choices of Banach spaces Xo C Xl and certain func­
tionals T : Xo Xo there exist a computable function g : R+ n x R+ R+
satisfying:

and computable functionals £1" .. , £n : Xo R with the following property.
Suppose that h* E Xo satisfies:

i) IIT(h*)llxo :::; /1-

ii) £l(h*):::; M l ,·· "£n(h*):::; Mn

iii) g(MI , ... ,Mn ;/1-) 2: 0

Then, :3 h E Xl s.t. T(h) = 0 and Ilh - h*llx, = 0(/1-).

Remark. With a theorem such as the one described above, by checking a finite
number of conditions on a function which approximately solves the functional equa­
tion, we are assured that there is a true solution nearby. Constructive implicit
function theorems have played an important role in the "validation" of numerical
computations. If the approximate solution, h* is the result of an heuristic numerical
algorithm, by verifying the hypothesis of the theorem we are assured that there is a

true solution close to the computed one. In most of the applications consi~ered so
far, (e.g. most of those in [Mo3], [KM], [La]) it sufficed to use a version of the im­
plicit function theorem patterned on the usual implicit function theorem in Banach
spaces rather than on Nash-Moser implicit function theorems.

Remark. Notice that to conclude the existence of a true solution we do not need
to analyze the algorithm used to produce the approximate solution. It suffices to
verify rigorously that the conditions of the theorem are met.

Remark. Rather that considering a functional, if we consider a continuous family
of functionals 7., as in the Siegel center theorem or in the twist mapping theorem,
the hypothesis of Theorem 2.3 will be verified for a nontrivial interval. By applying

132

the constructive implicit theorem to, a guess (or possibly several guesses) h*, it is
possible to prove the K.A.M. theorem for a range of parameters.

Remark. In most of the applications in the mathematical literature, h* is taken as
the solution of the unperturbed system. This is usually necessary because the inte­
grable system is the only system in the family for which it is possible to compute the
solution to the functional equation in closed form, and more importantly, because
the integrable system is the one for which it is possible to compute a perturbation
theory. For our applications it is quite important that the Newton method starts on
an arbitrary approximate solution. Some versions of Nash-Moser implicit function
theorems, notably those of [ZelJ and [HaJ, have this feature, but they require extra
conditions such as special structure in the equations or invertibility of the derivative
of the functional in a neighborhood about h *.

Besides a constructive implicit function theorem, the other ingredients of the
accurate strategies we have considered are two algorithms A and B that provide a
suitable starting point h* for the constructive implicit function theorem and that
verify that the function satisfies the condition of the theorem. More precisely, we
have to prove a lemma of the form:

Lemma 2.4. There is a sequence oEfinite dimensional Banach spaces, X(N) c Xo,

and two algorithms, A and B such that:

i) A yields an hN E X(N) in less than N operations. Moreover, ifT has a zero in

Xo then:

i.i) limhN = h exists in Xo' and T(h) = O.

i.ii) SUPN,i£i(h N) < 00

ii) For any h* in some X(N), B yields a sequence oE bounds:

The Mi,iil' ftiil can be computed in less than N operations and:

Jim M;,iil = £iCh*) 1::; i ::; n, and Jim ftiil = IIT(h*)llx,
N-~ N_oo

The existence of these algorithms is, perhaps, not too surprising. If the Banach
spaces we are considering are separable, any function can be approximated by func­
tions in finite dimensional subspaces. That is, any function can be approximated
by functions that can be described by a finite number of parameters. The set of
these finitely specified functions can be systematically searched for candidates for
solutions. If there was a solution, it is plausible that the solution could be sys­
tematically approached. The only non-trivial request is that the approximation is
sufficiently well behaved not to make the functionals £i blow up.

Since accurate strategies are algorithms, it is very natural to try and implement
them on a computer. This brings forth some considerations we have neglected
so far. Notably, some attention has to be paid to efficiency and we also have to
pay attention to the fact that computers do not deal with all real numbers but

133

with a finite set of them. Since small divisors introduce some amount of numerical
instability, the effects of round-off could be very serious. In the next sections we
take up these issues

3. Accurate strategies for Siegel and twist theorems

3.1. Preliminary considerations. The choice of the functional to be used is
quite important. Even if two functionals have the same zeros, they could have very
different properties. Out of the many functionals that are used in the mathematical
literature to deal with these problems some are unsuitable for calculations and
others can only be used to prove the K.A.M. theorem for sufficiently small values
of the parameter. That is, finding solutions for them is equivalent to solving the
problem, but only for some small enough values of the perturbation.

The choice of the sequence of spaces X(N) in algorithm A is also quite important
as the X(N) correspond to the notion of discretization schemes in numerical analysis.
For certain choices of X(N), it can happen that IIT(hN)11 decreases much more
slowly than the 'ci (h N) increase in such a way that it would become impossible to
use the implicit function theorem for any choice of h N to verify the existence of a
solution.

One instructive example of these difficulties is the following. The proof of The­
orem 1.1 explained in [Ar] uses the functional:

(3.1) T[1JI](z) == 1JI-1 0 if 0 lJI(z) - az

The function IJI is discretized using truncations of order N of the Taylor series at
zero.

Since lJI(az) = if (lJI(z)) and a is an irrational rotation, it follows, in the case
that if is an entire function, that the maximal simply connected domain of definition
of IJI will be a circle. Nevertheless, the domain of definition of 1JI-1 will, in general,
be a much more complicated domain (the cases where the maximal domain is a
circle are classified in [Br].) Since the Taylor expansion of 1JI-1 converges only on
a disk centered at zero and contained in this domain, I IT [IJI Nli I will only converge
to zero when we consider IJIN defined on circles so small that the image of this disk
under if 0 IJI is contained in the domain of convergence of 1JI-1.

This strategy was implemented in [LST],[LT] . The estimates they obtained,
neglecting round-off errors, could only yield results for values of € about 60% of the
correct value. This is very close to the limit imposed by the previous argument. It
is easy to produce examples in which this discrepancy becomes arbitrarily large.

Variants of this argument can be used to show that unless one uses carefully
chosen ways of representing the (IJIN)-l, the proof based on reducing the problem
by a sequence of changes of variables and keeping track of Taylor coefficients or of
estimates on disks do not lead to accurate strategies. This is somewhat disappoint­
ing since the proofs based on successive changes of variables are very convenient for
analytical proofs. In [Ra], it is possible to find an accurate strategy based on the

134

functional (3.1). The discretization used is interpolation on a complicated grid that
has to be computed as the calculation proceeds.

Therefore, the choices of acceptable functionals is drastically reduced by the
following considerations:

• The functional considered should only involve functions that can be approxi­
mated efficiently using the scheme of approximations chosen. Computing the
functional should only involve operations that can be implemented effectively.

If we use Taylor expansions for the discretization and we want to understand a
function in its maximal domain, the maximal domain should be a disk. If we use
Taylor or Fourier series, we should not use inverse functions and the composition
on the left should only involve very simple functions (e.g. entire.)

• The functions we are searching for should be functions of as few variables as
possible.

The complexity of representing functions of several variables to a certain accu­
racy increases exponentially fast, with a large exponent, in the number of variables.
Moreover, as the the perturbation parameter approaches a critical value, the solu­
tions of the functional equation begin to have very large derivatives, so that they
will be hard to approximate.

The choice of discretization schemes is, likewise, reduced by the following con­
siderations.

• The hypothesis of K.A.M. theorems depend on the values of derivatives of the
function of fairly high order. Hence the representation of functions considered
should allow reliable evaluation of derivatives.

All the proofs of the K.A.M. theorem available so far require that the functions
are several times differentiable and the size of derivatives of relatively high order
plays a role. This restriction is probably unavoidable since there are a growing
number of counterexamples with lower differentiability [Hel]. This suggest that
a discretization should specify a neighborhood on a space of functions which are
highly differentiable. Since the neighborhoods for which the constructive implicit
function theorem can be proven analytically are rather small, the discretization of
functions we take should specify the high derivatives with high precision.

The most effective way of achieving precision for high derivatives we have found
is to represent the function by Taylor polynomials (for functions defined in a complex
disk) or Fourier series (for functions defined in a complex strip.) See [Ko] for
a theoretical discussion on how to approximate functions when high precision is
required on their derivatives.

An alternative that has been considered in [BZ] is to specify a trigonometric
polynomial by storing the values it takes on a grid in a complex strip. If the numbers
stored were infinitely precise, the representations would indeed be equivalent since
interpolation allows an exact reconstruction of the polynomial. Nevertheless, it
is well known that computer round-off leads to instabilities in the evaluation of
derivatives of the interpolated functions. We suspect that the erratic behavior of
the algorithm observed by [BZ] for many parameter values can be traced to the

135

instability of interpolation for the reconstruction of derivatives.

• The calculations we are going to perform are intrinsically unstable.

Notice that the goal of the problem is to explore functions in domains as large
as possible, getting as close to the domain of convergence as possible. (Informally,
if the calculation was stable, we would "fix it" by studying a bigger domain.)

Notice also that since our goal is to compute estimates of T[h*], which are
presumably very small, we are going to perform operations with large numbers to
obtain eventually a very small number. In other words, there are a large number
of cancellations. It is known that in these cases, round--off could be particularly
harmful.

3.2. Strategy for the Siegel center theorem.
theorem, we choose the functional

T[q,](z) = if 0 q,(z) - q,(az).

For the Siegel center

Notice, that, as remarked before, q, has maximal domain a disk. We will see in
moment that if T[q,] = ° it follows that q, is univalent in its maximal domain of
definition, so that T[q,] = ° is completely equivalent to the functional equation in
Theorem 1.1 iii).

Observe also that, if T[q,] = 0, then q" does not take the value zero inside its
maximal domain of definition.

A theorem of the form of Theorem 2.3 can be obtained by slightly modifying
the proof of [Ze3] (full details can be found in [Ra].) The theorem proved in [Ra]
takes Xo to be the Banach space of analytic functions in a disk of radius rand
Xl the Banach space of analytic functions in a disk of radius re-o equipped with

the norms Ilq,llxo == 2::~0 Iq,klrk <¢d Ilq,llx, == 2::~=0 Iq,klrkek6. We have found
it convenient to use also the two norms Illq,lllxo == 2::;;:0 Iq,klkrk and Illq,lllx, ==
2::;;:0 I'll k Ikr k e k6 in intermediate steps of the proof. It is intuitively clear that the
more information we keep about the function q,*, the sharper the final results will

be. Therefore, the functionals Li(q,*) used in the proof are: Ilq,*'llxo' 111/q,*'llxo'

Illq,*'lllxo and 1111/q,*'lllxo'

With these choices, both r and 8 are parameters which we have to adjust de­
pending on the family i.. The problem of getting the best estimates for the Siegel
center theorem becomes the problem of finding the best re- 6 for which its is pos­
sible to prove the theorem. A strategy will be accurate if it can prove the theorem
for re 6 arbitrarily close to the radius of the maximal domain of definition of q,.

The function 9 of the theorem is rather complicated to express analytically, since
it involves using numbers which are arbitrary except for having to satisfy conditions
involving other numbers already calculated. Nevertheless, calculating bounds for
the function is reasonably straightforward to program since we can check whether
the conditions in the arbitrary choices are met. The parameter 8 also enters into g.

The condition on the behavior of 9 as I-l tends to zero is also readily verified for all
possible 8. The explicit expressions for the conditions can be found in [Ra].

136

Producing approximations to the solution in the domain of definition is done by
computing the Taylor expansions of w. This can readily be done by matching equal
powers. (See e.g. lSi] for details.) Computing arbitrarily good approximations to
the auxiliary functionals can be done by using the usual rules of the algebra of
polynomials. Notice that, since w' does not take the value zero in the disk where
it is defined, l/w' will be an analytic function there and the Taylor series obtained
by synthetic division converges. It is possible to estimate the remainder of the
truncated Taylor series for l/w" in the analytic norms we are considering. We
again refer to [Ra].

The final strategy consists in computing W and the auxiliary functionals with
increasing degrees and exploring finer and finer grids in rand 8.

If we are considering a radius slightly smaller than the true one, the auxiliary
functionals and their computed bounds will remain bounded whereas the remainder
will go to zero. The theorem will be therefore verified with some finite amount of
work.

3.3. Strategy for the twist mapping theorem.
of the standard mapping (1.4), (1.2) reduces to:

For the particular case

(3.2) T[£(x)] == £(x + w) - 2£(x) + £(x - w) + --=- sin(27r(x + £(x))) = 0
27r

where £(x) = £(x + 1) and x + £(x) is to be a diffeomorphism of the circle.

This equation admits a constructive implicit function theorem of the form we
discussed above. It is possible to prove the theorem by modifying slightly [Rii] or
[SZ].

Remark. Even if for more general twist mappings the formalism of [Rii] or [SZ]
leads to different functional equations, for the standard mapping they both agree.
The iterative methods they use and the bounds they obtain are different.

Remark. It is also possible to prove a constructive implicit function theorem fol­
lowing the proof in [Bol. The later appeals to the version of the Nash-Moser implicit
function theorem in [Ha]. Since this reduction involves heavy use of inverses, which
are difficult to estimate effectively, it seems that the results obtained would be
numerically worse than the version in [ZelJ, which is the one we have followed.

Remark. Either one of the three different formalisms mentioned above can be
extended to higher dimensions. One important feature is that, to produce tori of
dimension n in a 2n dimensional system, one only has to consider functions of n
variables rather than the functions of 2n variables required by the formalisms based
on transformations into normal forms (e. g. those of [Ze2]).

The implicit function theorem we have used is based on the method of [SZ].
The spaces we use are spaces of periodic functions analytic in a strip around the
real axis.

137

Xo = {f(x)lllfllo == Lliklelklpo < 00, J f(x)dx = O}
k

Xl = {f(x)lllflll == L liklelklpl < 00, J f(x)dx = O}
k

where 0 < PI < PO' Again, we have also found it useful to introduce other norms
Illflllo = 2::k likllklelklpo and Illfllll = 2::k likllklelklpl We then prove the theorem
using the following auxiliary functionals £i: 111£1110' 11£110, 111/(€' +1)110' 111/(£' + 1)111'
111/(£' + 1)(€, 0 Tw + 1)110 and 111/(£' + 1)(£' 0 Tw + 1)111'

We refer to [Raj for full details of the proof and the explicit expressions of the
conditions.

Remark. Notice the condition J £ = 0 entering in the definition of the spaces X o'

Xl' This is a normalization to guarantee that the solution of (3.2) is unique. It
can always be arranged since for any a, T[£] == 0 ~ T[£ 0 T", - a] == O. Where
T",(x) = x + a mod 1.

If £N is a trigonometric polynOlnial, it is possible to compute T[£N] and £i
very efficiently. The Fourier expansion of sin(£N) can be computed as follows:
Write £N (x) = P(z) + P(z) with z = exp(271'ix), z its complex conjugate, P is a
polynomial and P is the polynomial whose coefficients are the complex conjugate
of those of P. The sin and cos of a polynomial can be computed, as suggested in
[Kn], by using the formulas (sin oP)' = cos oP P', (cos oP)' = - sin oP P'. If we
match coefficients of corresponding powers, we derive a recurrence relation for the
coefficients of cos oP, sin oP. It is also possible to find bounds for the truncation
error when the calculation stops at a finite order. Once we have computed the sin
of the polynomials, it is very easy to use the addition formula of the sin to compute
sin(271'(x + £N(x)).

The computation of l/(€,(x) + 1) is more tricky. In principle, evaluating the
polynomial at sufficiently many points, computing the inverse at each point and,
then, performing a discrete Fourier transform will produce the inverse up to any
desired degree of accuracy. It is even possible to estimate the remainder and its
derivatives. This turns out to be very unstable numerically. We have found it more
efficient to use a constructive implicit function theorem between Banach spaces. If
we find another trigonometric polynomial P such that (£' + l)P = 1 + R and we can
show that R is small, then, the inverse will be P + P 2::i=l Ri. If we have estimates
on R, we can estimate how much does P differ from the true inverse.

An algorithm to produce the approximate solution on which to verify the con­
ditions of the constructive implicit function method, can be based on the usual
continuation methods. It is possible to implement a Newton method for a trun­
cation of the functional along the lines discused above. When the solution for a
parameter value is computed to enough accuracy, we increase the parameter and
the order of the truncation and use a Newton method starting on the solution for
the old parameter. If the increment of the parameter is small enough, the Newton
method will converge and we will have a very accurate solution for a bigger param-

138

eter value. The process can be started on the parameter value corresponding to the

integrable case, whose solutions are exactly known.

The final strategy consists on simultaneously computing approximate solutions

using a numerical continuation method and trying to verify the hypothesis of The­

orem 2.3 for increasingly finer grids of Po and Pl. It is not difficult to show that
this strategy is accurate.

This strategy is accurate, that is, it can produce all circles of a particular Dio­
phantine rotation number for which

i) The circles are analytic.

ii) The motion on the circles is analytically conjugate to a rotation.

iii) We can find a continuous family of solutions connecting them to the solutions
of the unperturbed problem. (As any continuation method, the algorithm is

powerless to find solutions that can be continued only to an isolated sets of

parameters) .

If we had maps more complicated than the standard map, in order to derive
the analogue of (3.2), we would require some global conditions which depend on the

formalism we use (either that of [Rii], [SZ], [Bo].) For example, [Bo] requires

iv) The circle is the graph of a function from the circle to the reals.

In principle the algorithm could fail to find circles that do not satisfy either
of i) - iv) above. Nevertheless, it is possible to show by other methods that the

conditions i) - iv) are implied by some weaker ones. For circles with rotation w,

the golden mean invariant under (1.4) we have:

I) [SZ] prove a theorem that implies that all the circles which are C 7+< are analytic.

I I) [He2] shows that on all analytic circles, the motion is analytically conjugate to

a rotation (more modern proofs are [Yo], [KO].)

I I I) If one finds an approximate circle by any method other than continuation, it

is possible to use it in the strategy instead. For the so called "reversible "

maps, which appear naturally in mechanics, there are methods to compute

approximate circles which do not use continuation [DeV], [Gr].

IV) [Ma2] shows that all invariant circles are graphs of Lipschitz curves (A more

modern proof is [Fa].) Renormalization group analysis [McK], gives evidence

that, for many systems, the circles remain as differentiable for all the values of

the parameter up to a critical value, for which they become much less differen­

tiable and they disappear for bigger values.

In higher dimensions, II) and IV) are not available, so the situation is more

confusing. Some partial results are available [He4], [Ka]. See also the contribution

of M. Muldoon to this volume.

Remark. Since it is possible to compute the terms in the perturbation expansion

in powers of €, it seems to be reasonable to use the sum of a finite number of them

to produce a good starting value. Unfortunately, there is, at the moment, no way

to show that this strategy is accurate because it could, in principle, happen that

there were complex singularities in the expansion off the real axis but very close to

139

the origin. Moreover, it seems to happen that summing the series leads to severe
cancellations that make the procedure much more prone to numerical errors than
the self-correcting Newton method which can refine the guess till the numerical
remainder is of thre same order of magnitude as the round--off. Such an strategy
has been considered in [Ce] using also an implicit function theorem based on [SZ].
Their implementation requires the use of interval arithmetic to manipulate the
perturbative expansion in powers of E. Since interval arithmetic cannot profit from
cancellations, the results they obtain are pessimistic. Nevertheless, the computation
of the power series expansions could have intrinsic interest, since there are some
surprising regularities [Be].

4. Converse bounds

4.1. Siegel theorem. For the Siegel Center theorem, it is possible to use
univalent function theory to prove not only converse K.A.M. bounds, but also to
prove estimates on the speed of convergence of the algorithms we discussed before
to the right answer. Here it is much more convenient to formulate the problem as
trying to find the maximal domain of definition of \.[I for a given function rather
than the problem of finding the best scaling.

Lemma 4.1. IT the function i l is entire, the function \.[I satisfying iii) of Theorem
1.1 is univalent in its maximal domain of definition.

Proof. Assume that there were two points zl' Z2 in the domain of definition of
\.[I such that \.[I(zl) = \.[I(z2). Using the functional equation satisfied by \.[I we can
conclude that for all n E N, \.[I(anzl) = \.[I(anz2).

If zl = z2 = 0, there is nothing to prove, so we can assume that Zl # O. For
Z E {anzl}~=O' \.[I(z) = \.[I (Z(Z2/zl)). This set is infinite and has accumulation
points, hence the above functional equation has to hold in the maximal domain of
\.[I. If Zl # Z2 this leads to a contradiction with \.[11(0) = l.

Univalent functions satisfy many a-priori bounds. Perhaps the most famous
are the Bieberbach-De Branges bounds for the coefficients. If \.[11(0) = 1 and \.[I is
univalent in a disk of radius E, then:

(4.1).

Since the Taylor coefficients of \.[I can be computed by algebraic operations from

those of iI'

EN = ~ilJ C:nl) n=-'

is a decreasing sequence of computable numbers. By (4.1), each one of them is
an upper bound to the Siegel radius. By the Hadamard formula for the radius of
convergence, these bounds converge to the Siegel radius. Therefore, the strategy is
accurate.

140

Remark. It is quite possible to use the stronger Milin-DeBranges inequality in
similar manner.

When f is a polynomial it is possible to use other methods. It is well known
that we can find 0 < R < 00 in such a way that If(z)1 > 1.11z1 whenever Izl > R.
So that, whenever Izl > R, fn(z) goes to infinity. On the other hand, if z belonged
to the range of W, we would have tn(z) = tn(w(w)) = w(anw) so that fn(z) would
come arbitrarily close to z. We conclude that Area (Range (w)) S; 7r R2.

The area of the range of a univalent function defined on a disk of radius 10*
can be related to the coefficients of the Taylor expansion by the well known "Area
formula":

00

Area (Range (w)) = L IWn l2e*2n

n=l

It is clear that any ION verifying 2::::=1 IWnl2eN2n > R2 is an upper bound for
the Siegel radius. Since the coefficients W N can be computed, it is also possible to
compute, in a finite number of operations, ION' As N becomes large, the ION get
arbitrarily close to optimal.

Again using the Hadamard formula, it is easy to check that the bounds obtained
in this way converge to the Siegel radius.

Univalent functions also satisfy a-priori bounds on how big they and their
derivatives or the reciprocal of their derivatives be on domains slightly smaller than
the maximal domain of definition. Using the detailed form of the smallness condi­
tions in the constructive implicit function theorem, the Koebe distortion theorem
as Bieberbach-DeBranges inequalities it is possible to prove:

Theorem 4.2. Assume that f in Theorem 1.1 is a polynomial. For any 0 < p < 1
there exists an No that depends on p and f such that if N > No and 10* is the Siegel
radius, then h* the Nth order Taylor polynomial of'll verifies the conditions of the
constructive implicit function theorem on a disk of radius e*e-N - p •

Informally, by using the accurate strategy described above, working with N
terms we can guarantee that the lower bounds are correct up to a factor e-N - p

•

We refer to [Ra] for the proof.

4.2. Twist mapping. In [Ma] it is shown that a class of mappings involving

(1.4), for 1101 > 4/3 there is no invariant circle. Since the class contains elements that
saturate the bound, it is clear that any improvement has to use the specific form
of (1.4) and, hence, involve some calculation. In [MP], it is shown by extremely
elegant computer assisted methods that for the standard map, when 1101 > 63/64
there are no non-trivial invariant circles.

We would also like to call attention to [Au] which, provides with a method that
could easily be made rigorous. [OS] introduces and implements a criterion of non
existence for invariant circles with a fixed rotation number.

141

5. Computer Implementation

5.1. Interval arithmetic. Since a strategy involves an algorithm it is
natural to use a computer for an implementation. Unfortunately, most of today's
computers are equipped only with an approximate form of arithmetic operating on a
subset of the rational numbers, which makes the results of a numerical computation
inadmissible as elements of a proof. A way of overcoming this difficulty without
venturing very far from the traditional numerical analysis lore is the use of interval
arithmetic.

The basic idea, introduced by R. Moore in the 60's is to introduce a basic data
structure - the interval - which represents all the real numbers contained between
two represent abIes. It is possible to write routines that given any pair of intervals,
produce another interval guaranteed to contain the result of an arithmetic operation
performed between elements of the input intervals. If this were impossible, because
of overflow, because we divide by an interval containing zero, or any other reason,
they raise an exception. If a program runs without raising an exception, we may
be assured that the bounds reported for an algebraic expression are rigorous. We
refer to [Mo], [KM] for a more detailed discussion of interval arithmetic.

5.2. Implementation of Interval Arithmetic. Our programs have been
written on a VAX 11-750 whose technical description appears in [Dec]. Of all the
different classes of numbers that the machine is capable of representing, the two
that interest us are "machine integers:"

I = {I IE Z, _231 :=:; I < 231 }

and the "representable numbers" which simulate the reals. Out of the many floating
point systems supported by the VAX, we have used the D-float, which corresponds
to the type double in many c compilers:

R={(s,e,m)ls=+l,-l; 0:=:;e:=:;28 -1; 0:=:;m:=:;256 -1, e,mEZ}.

For e of 0 any (s, e, m) E R represents:

s . 2(e-128) . (m + 2 56)
257

If e = O,s = +1 then (s,e,m) represents 0 (regardless of m), and e = O,s = -1 is
unused.

There are several properties of the machine operations on these numbers which
we have used. All of them can be found in the DEC manual and we checked them
in some cases. We have also checked by looking at the assembler listing generated
that the compiler generates calls to the VAX floating point instructions rather than
calling library routines.

i) Comparisons of numbers in I or R are done by comparing bits, so the results
of a comparison are exact ..

142

ii) Arithmetic operations on machine integers are performed correctly modulo 232 •

An overflow is reported by the machine as a "exception", but the computation
proceeds.

iv) Conversion of an integer to a real is done exactly. Since the mantissa of a real
is longer than the integer and the internal representations are almost the same,
it is hard to imagine that this is done otherwise. Nevertheless, we checked some
borderline cases.

v) Arithmetic operations on machine reals produce results in n, which are correct
to "t the least significant bit."

vi) Floating point overflow is reported by the hardware as an exception. We have
relied on the fact that the code generated by a UNIX compiler, by default, stops
execution when an overflow occurs.

The key to implementing interval arithmetic is to write two functions:

up : n -+ nand dn: n -+ n

which respectively increment (decrement) the least significant bit of the machine
real to which they are applied (reporting overflows if they occur.) Then, if x, yEn
and + c is the computer's addition operation and + denoteds the true mathematical
operation, we have:

dn(x +c y) :::: x + y:::: up(x +c y),

and similarly for the other arithmetic operations.

For efficiency, we wrote up dn in assembler, but the rest of the arithmetic rou­
tines to manipulate intervals are written in C. We also found it useful to include
routines to manipulate bounds which can be interpreted as intervals whose end­
points are at infinity. We also included routines to manipulate subsets of complex
numbers either rectangles, products of intervals, or balls specified by a center and
an upper bound on the radius. Operations with rectangles run faster, but there are
instances where using balls produces sharper bounds. We have also routines that
compute some elementary functions on the types described above.

5.3. Arithmetic on Banach algebras of analytic functions. It is possible
to extend the basic ideas of interval analysis to function space. We work with neigh­
borhoods specified by a finite number of representable numbers and write routines
that implement computer operations that bound the mathematical operations. The
resulting neighborhood is required to include all the possible outcomes when the
operands range over the input neighborhoods. If interval arithmetic takes care au­
tomatically of round-off error, the interval arithmetic in function space, sometimes
called "ultra-arithmetic" will take care of truncation error.

There are several proposals in the literature [Mol, [KM] each one, designed with
some particular problem in mind.

The set up we have found best adapted for our purposes is truncation in power
series introduced by Lanford. (See [La2], [EKWl, [EW] .) We have found convenient
to add some more information to the basic data structure.

143

If fo ... f n are intervals (or rectangles or balls) and go ,gl ,ho ,hI are bounds, we
define, with the notation used in 3.2:

NUl' ... , fn; gO,gl' ho,hl) = {K(z) I K = Kp + Kg + K h,

Kp(O) = Kg(O) = Kh(O) = o.
(Kp)m E fm for 1 S m S n, (Kp)m = 0, m > n

IIKgllo S go' IIIKgliio S gp
(I(h)m = 0 for 0 S m S n, IIKhllo S ho, IIIKhilio S hI}

Kg, Kh are the error terms.

Analogous definitions can be introduced for periodic functions using Fourier
coefficients and the norms introduced in 3.3. In that case, however, we have
not found it useful to keep the error divided into high order and general. For some
purposes, it is useful to use neighborhoods in which only 11110 is used in the estimate
of the errors.

The arithmetic operations between these neighborhoods are easy to implement
remembering that, when the coefficient of order zero vanishes Ilf· gllo S Ilfllollgllo
and Illf· gilio S Ilfllolllglllo + Illflllollgllo·

It is also possible to implement other operations such as composition, integra­
tion, etc. as well as some transcendental functions.

For problems in celestial mechanics, this approach has shortcomings. Typically,
the most interesting problems in celestial mechanics involve many variables. Using
the representation discussed above, the number or terms required would exceed the
capacity of the largest computers. Nevertheless, for many problems, only a very
small number of Fourier coefficients is relevant. A sytematic package to deal with
sparse Fourier and Taylor series of many variables with rational coefficients has
been developed by K. Meyer and D. Schmidt. They have used it to settle stability
problems for isolated parameter values where standard K.A.M. theory fails and it
becomes necessary to study subsequent terms. [MSj.

5.4. Implementation of arithmetic in Banach algebras. We have
written routines in C that implement all the operations described above.

The routines return pointers to the places where the results are stored. This
allows us to use successive calls without making explicit assignments to intermediate
variables. The alternative or returning structures was discarded due to the fact
that it is slow and that with many compilers does not work. The degree of the
polynomials was controlled by a global variable, so that some intermediate delicate
calculations could be carried to a higher degree.

One advantage of this modular organization is that the programs can be reused
and its is possible to write check routines that enhance reliability. Given the simi­
larity between Fourier series and complex polynomials, some of the code could be
shared by the programs for the Siegel center and the twist mapping problems. L.
Seco could use substantial part of the package in a SUN 3 for an project indepen­
dent of ours and make some enhancements [Sej (see also his contribution to this

144

volume.) Another advantage of this modularity is that it makes possible to isolate

the weakest spots and fine-tune them.

Once one modifies the rounding routines, the rest of the program is machine
independent except for questions of efficiency. We have complied them and run test

routines successfully on MS-DOS machines and SUN's. We expect they are not

difficult to move to other machines.

For the details of the implementation, including listings as well as some other
optimizations in the Siegel theorem, we refer to [Ra].

5.5. Numerical analysis considerations. It is well known that interval

analysis is very bad at detecting cancellations. Straightforward translation into
interval arithmetic will produce the result that, if x E (-1,1), then x - x E (-2-
E,2 + E), which, is certainly correct but far from optimal.

For problems such as K.A.M theory in which cancellations play an important

role, mathematically equivalent expressions could lead to different, but overlapping,

results.

If the estimates are far too conservative, it is possible sometimes to get an

understanding of what is happening by looking at the width of intervals at selected
places.

Notice that the results of conventional numerical analysis are notoriously im­

precise if some intermediate result involves calculating the difference of two very
similar numbers. The problem is that there is no record that this thing has hap­

pened. Interval arithmetic, can be used to spot places where destructive looses of

precision occur. With hindsight, some of them could have been guessed from the
beginning, but others are more difficult to understand. Even if we were not inter­

ested in getting rigorous proofs, interval arithmetic can be an invaluable debugging

tool to write more robust programs.

Notice also that interval arithmetic can produce results in regimes where the
conventional tests of numerical analysis prescribe stopping. In our case, for example,

we can be confident of our results for values of the parameter bigger than those for

which reruns in single and double precision of reasonable implementations produce

different results.

5.6. Results. We have run our programs for a few hours on a VAX 11/750

and obtained:

Theorem 5.1. For i, as in (l.3) the results of Theorem 1.1 hold if iEi ::; .306 and

are false if ifi 2': .342.

Remark. The converse K.A.M. bounds above are obtained using the area formula.

Using the Bieberbach-De Branges bounds, we obtain only .360.

Theorem 5.2. The family of ditfeomorphisms F, as in (lA) has a topologically
non-trivial analytic invariant circle with golden mean rotation number for 10 = .91.

145

Remark. We have verified the theorem for many other values of the perturbation
parameter between 0 and 0.91. Due to limitations in time, we have not yet covered

the whole interval, but we have not found any indication that the theorem fails
for an intermediate value. Numerically, it seems that it is possible to interpolate

smoothly between all the computed circles. The difficulty of the computation and
all the measures of roughness of the computed circle increase monotonically with t.
See also [ee] for another computer assisted proof that covers the interval [0,0.65]

in parameter space.

We also recall the result of [MPj:

Theorem 5.3. For FE as (1.4) the results of Theorem 1.2 are false if Itl ;::: 63/64.

In both examples we have proved K.A.M. bounds that are 90% of converse
K.A.M. bounds.

REFERENCES

[AI'] V. I. Amol'd: "Geometric methods in the theory of ordinary differential equations", Springer
Verlag, NY (1983).

[Au] S. Aubry: The twist map, the extended Frenkel-Kontorova model and the devil's staircase.
Physica 7D, 240-258 (1983).

[Be] A. Berretti, L. Chierchia: Univ. Roma preprint.
[BZ] D. Braess, E. Zehnder: On the numerical treatment of a small divisor problem. Numer. Math.

269-292 (1982). '
[Bo] J.-B. Bost: Tores invariantes des systemes dynamiques hamiltoniens. Seminaire Bourbaki

Asterisque 133-134, 113-158 (1986).
[Br] Brolin: Invariant sets under iteration of rational functions. Arkiv for Math. 6, 103-144 (1965).

[Ce] A. Celletti, L. Chierchia: Construction of analytic K.A.M. surfaces and effective stability
bounds. Comm. Math. Phys. 118, 119-161 (1988).

[Dec] Digital Equipment Corporation: "VAX architecture handbooIC', Digital Equipment Corp (1981).
[De V] De Vogelere: On the structure of symmetric periodic solutions of conservative systems, with

applications. In "Contributions to the theory of nonlinear oscillations IV". Princeton Univ.
Press, Princeton 53-84 (1958).

[Di] J. Dieudonne: "Foundations of modern analysis", Academic Press, N.Y. (1960).
[EKW] J-P. Eckmann, H. Koch and P. Wittwer: A computer assisted proof of universality in area

preserving maps. Mem. of the A.M.S. 289, (1984).
[EW] J-P. Eckmann, P. Wittwer: " Computer methods and Borel summability applied to Feigen­

baum's equation", Springer Verlag, NY (1985).
[Fa] A. Fathi Une interpretation plus topologique de la demonstration du theoreme de Birkhoff:

appendix to [He1] 39-47 (1983).
[Gr] J. Greene: A method for determining the stochastic transition. Jour. Math. Phys. 20, 1183-1201

(1979).
[Ha] R. S. Hamilton: The inverse function theorem of Nash and Moser. Bull. A.M.S. 7, 65-222

(1982).
[He1] Michael R. Herman: Sur les courbes invariantes par les diffeomorphismes de l'anneau vol 2.

Asterique 144, (1986).
[He2] Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations. Pub. Mat. du

I.H.E.S. 49, (1978).
[He3] Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every

rotation number. M.S.R.1. preprint (1984).
[He4] Existence et non-existence de tores invariantes par des diffeomorphismes symplectiques. preprint

(1988).
[KM] E. W. Kaucher, W. Miranker: "Self- Validating numerics for function space problems", Aca­

demic Press, Orlando (1984).
[KO] Y. Katznelson, D. Ornstein: the differentiability of the conjugation of certain diffeomorphisms

of the circle. preprint (1987).

146

[Ka] A. Katok: Minimal orbits for small perturbations of completely integrable hamiltonian systems.
preprint (1988).

[Kn] D. E. Knuth: " The art of computer programming vol II: Seminumerical algorithms, 2nd

edition:' , Addison Wesley (1980).
[Ko] A. N. Kolmogorov: Various approaches to an estimate of the difficulty of an approximate

definition and calculation of functions. In "Proc. Int. Congo Math., Stockholm". 369-376
[LST] C.A. Liverani, G. Servizi, and G. Turchetti: Some K.A.M. estimates for C.L. Siegel's center

theorem. Lett. Nuovo Cimento 39, (1974).
[LT] C.A. Liverani, G. Turchetti: Improved K.A.M. estimates for the Siegel radius. Jour. Stat.

Phys. 45, 1071-1086 (1986).
[La] O. E. Lanford III: Computer assisted proofs in analysis. In "Proc. International Congress of

Mathematicians, Berkeley 198/l'. A.M.S. Providence 1385-1394 (1988).
[La2] O.E. Lanford III: Computer assisted proofs in analysis. Physica 124A, 465-470 (1984).
[MP] R. MacKay, I.C. Percival: Converse K.A.M.: theory and practice. Comm. Math. Phys. 98,

469-512 (1985).
[MS] K. Meyer, D. Schmidt: The stability of the Lagrange triangular point and a theorem of Arnol'd.

Jour. Diff. Eq. 62, 222-236 (1986).
[Ma] J. Mather: Non-existence of invariant circles. Ergo. Th. & Dynam. Sys. 4, 301-309 (1984).

[Mol] J. Moser: Is the solar system stable? Math. Intelligencer 1,65-71 (1978).
[Mo2] J. Moser: On invariant curves of area preserving mappings of an annulus. N achr. Akad. Wiss.

Giittingen Math Phys Kl, 1-20 (1962).
[Mo3] R.E. Moore: "Methods and applications of interval analysis", S.I.A.M. Philadelphia (1979).

[OS] A. Olvera, C. Simo: An obstruction method for the destruction of invariant curves. Physica
26D, 181-192 (1987).

[Po] H. Poincare: "Les methodes nouvelles de la mechanique celeste", Gauthier Villars, Paris
(1891-1899).

[Rii] H. Riissmann: On a new proof of Moser's twist mapping theorem. Cel. Mech. 14, 19-31 (1976).
[Ra] D. Rana: "Proof of accurate upper and lower bounds to stability domains in small denominator

problems", Thesis, Princeton Univ. (1987).
[SZ] D. Salamon, E. Zehnder: K.A.M. theory in configuration space. Comment. Math. Helv. 64,

84-132 (1989).
[Se] L. Seco: Lower bounds for the ground state energy of atoms. Thesis, Princeton Univ. (1989).
lSi] c. L. Siegel: Iteration of analytic functions. Ann. of Math. 43, 607-612 (1942).
[St] J. Stark: An exhaustive criterion for the non-existence of invariant circles for area-preserving

twist maps. Comm. Math. Phys. 111, 177-189 (1988).
[Yo] J.-C. Yoccoz: conjugaison differentiable des diffeomorphismes du cercle dont Ie nombre de

rotation verifie une condition diophantiene. Ann. scient. Ec. Norm. Sup. 11, 333-359 (1984).
[Ze1] E. Zehnder: Generalized implicit function theorems with applications to some small divisor

problems I. Comm. Pure and Appl. Math. 28,91-140 (1975).
[Ze2] E. Zehnder: Generalized implicit function theorems with applications to some small divisor

problems II. Comm. Pure and Appl. Math. 29 ,49-111 (1976).
[Ze3] E. Zehnder: A Simple proof of a generalization of a theorem by C.L. Siegel. Springer Verlag,

N.Y., Lee. Notes in Math. 591, (1970).

A SOFTWARE TOOL FOR ANALYSIS IN FUNCTION SPACES

J.-P. ECKMANN*, A. MALASPINAS*, AND S. OLIFFSON KAMPHORST*

Abstract. A tool is presented which allows for an efficient description of Banach spaces of
analytic functions. Based on this description, an extended Pascal and its associated compiler
understanding the usual operations on such spaces is generated. Furthermore, based on the math­
ematical context, the relevant subroutines needed to implement the function calls are produced.

1. Introduction. A fairly large number of operations in Banach spaces, and
more particularly in spaces of analytic functions, are constructive. This means that
together with an existence theorem, they also provide a bound on the corresponding
object. Typical such results are the contraction mapping principle and its variants,
or the fact that restriction of a set of analytic functions to a compact sub domain
is a compact operator. In the first case, effective bounds on the fixed point of the
contracting maps are obtained, and in the second case, the Cauchy formula provides
a bound on the restricted function in terms of the original one.

The effort to find those bounds which are useful and sufficiently strong to solve a
given problem may vary considerably from one problem to the next, and the number
of elementary operations to verify a bound may be very large. On the other hand, it
has been demonstrated that, with necessary precautions concerning rounding issues,
computers can be used to perform this task in the context of functional analysis
as it is sketched above. With the aid of computers, problems of computational
complexity beyond human capacity can be attacked, and the method has been used
with success in several non-trivial examples [EKW, KW, EWl, L].

One of the difficulties of the approach seems to be that the computer programs
which perform these bounds are often hard to read, and hence to verify, because
there is no adequate way to transcribe mathematical facts about Banach spaces
into the current programming languages. In fact, similar difficulties occur in other
fields of research:

- The efficient description of compilers and operating systems and their semantics
[BJ].

- The relation between mathematical facts and their implementation as programs

[Kn].

The present work can be viewed as a further attempt to gain experience with this
class of problems. It is our conviction that in the difficult field of teaching "ideas"
to computers, progress is made by solving increasingly general classes of problems,
such as the ones mentioned above. Understanding what they mean, and what their
essence is, should fruitfully complement those parts of "knowledge" contained in
data bases.

*Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

148

Many proposals and implementations for allowing scientific notation in program­
ming have been made. The examples of Ada and Pascal-SC come closest to our
project. What is new here is that large quantities of contextually implied subroutine
code are automatically generated from the mathematical description. The actions
which we generate are sometimes nonlinear functions of the structures involved (see
below).

This paper deals with the fundamentals and a detailed description of a software
tool for analysis in function spaces. In a companion paper [EW2] , an extensive
description of an example is given. The example gives a complete proof of the
so-called "Feigenbaum conjectures" for maps of the interval and it uses analytic
functions in two variables.

2. Overview. To facilitate the programming of computer assisted proofs in
analysis, we have developed a tool which consists of three interlocking components:

1) A small programming language called Mini in which one can describe efficiently
the vector spaces or, more particularly, the spaces of polynomials, one wishes
to consider.

2) A compiler generator which, using the descriptions given under 1), defines an
extension of Pascalt called Lang, in such a way that the common vector space
operations (+, -, assignment, scalar multiplication, norm) can be programmed
in usual mathematical notation. The grammar of Lang is described in Yacc
(the standard compiler-compiler of Unix). A simple compilation leads to a
preprocessor which converts Lang to Pascal.

3) A subroutine generator, which generates those subroutine calls which are needed
to implement the function calls the Lang compiler generates when it translates
the extended Pascal to Pascal.

The system exists in two versions: One version is based on Pascal, and other
is based on the C programming language. Both versions run under Unix BSD4.2.
However, our description below will deal only with the interface based on a some­
what extended Pascal, which provides a more checkable version. This "extension"
of Pascal does not support the "with ... do" construction. The translation of the
grammar of Mini to the C-version (which looks more like C rather than Pascal) is
easy.

3. An Example. The aim of Sects. 3-7 is to explain the mathematical frame­
work on which the construction of Mini is based. This framework is less general
than similar other proposals made in the literature, but more directly applicable to
concrete problems. The intended use of Mini is in giving bounds on Banach space
operations. We begin with an example dealing with a space of analytic functions
on the unit disk, which we denote by Ao. We represent a function J in Ao as

00

J(z) = L J;zi .
i=O

t A version extending C is also available

149

We denote by A the subset of Ao consisting of functions with real fi and with finite
"h-norm"

00

Ilfll == L Ifd .
i=O

A ball B (of degree n) in A is a subset of A given by

B(Io, ... ,In,h)
00 (1)

={fEAlfiEldor i=O, ... ,n, L Ifml <h}.
m=n+l

Here, the Ij are real intervals, and h is a nonnegative real number. We claim that
the usual operations on analytic functions carryover to balls of the above type,
and that these operations are in fact constructive. This means that they can be
performed by computers. As a first example, we consider addition. Note that if

f E B(Io, ... , In, h) and g E B(Ib, ... , I~, h') then

(2) f + g E B(Io + I~, ... , In + I~, h + h'),

where I + I' is the addition of intervals:

I +I' = {x E Rlx = Xl +X~,XI E I,x~ E I'}.

It is clear from the above bound that the addition of balls can be implemented on
a computer provided rounding issues are handled carefully. The purpose of Mini is
to make this kind of computations easy to formulate and to extend Pascal in such a
way that ordinary mathematical notation can be applied to calculations with balls.
We show now how to implement the structure of B in Mini. In addition to the usual
type "real" of Pascal, there are three predefined types in Mini, called "s", "u", and
"1". The type s (segment) is a data structure describing the two endpoints of a
real interval, and all operations on objects of type s are implemented with rigorous
bounds, so that, e.g. the addition of two intervals I, I' leads to a third interval I"
(represented again with 2 "real" numbers as endpoints) such that

1+1' c I" .

The type "u" represents (non-negative) real numbers and is used for upper bounds,
such as h above. The type "1" is used for the lower bounds.

The exact implicit definitions of "s", "u', and "I" are (in Pascal):

TYPE u = RECORD

value real

END;

TYPE 1 RECORD

ISO

value real

END;

TYPE s = RECORD

lower 1

upper u

END;

In Mini, the description of B as given by Eq. (1) (for n = 5) takes the following
form:

Example 1.

TYPE P = POLYNOMIAL OVER s

CONST n=5 ;

VAR i integer

BEGIN

FOR i := 0 TO n DO

coef s

END ;

TYPEb VECTOR OVER s

BEGIN

poly p;

BOUND high: u

END ;

The word "bound" signals that high is used to store an absolute value, see Sect. 8.
If Example 1 is given as an input to Mini, the following things happen.

1) Two new types are implicitly declared, namely

CONST loop $1 = 5 ;

TYPE P = RECORD

coef ARRAY [0 loop $1] OF s

END ;

TYPE b RECORD

poly p;

high: u;

END ;

151

2) Subroutines are generated which implement a large set of operations (see Table
2 below). In particular, the addition of two objects of type b according to Eq.
(2) will be defined. More precisely, a subroutine bSUM will be generated, which
implements the sum of two balls as described above. Similarly, bsLMULT will
implement "scalar multiplication" by an interval, i.e., if G(10 , ••• ,In, h) and I
are given then we want to find a ball G' which contains all Y . f for y E I and
f E G(Io, ... , In, h). Clearly, a reasonable choice of B' is

(3) B' == B(I* 10 , ••• ,1* In, IIlh),

where
1* I' == {y = xx'ix E I, x' E I'},

and

III == max{y = Ixl I x E I}.

3) A Yacc description of the Lang grammar is generated which defines an extension
of Pascal by types 1, u, s, p, and b and in which the mathematical symbols take
their conventional meaning. Thus, b1 + b2 means the addition of two balls in
the sense of Eq. (2) and s1 * b2 implements the bound of Eq. (3).

Note: The first letters of each variable must coincide with the type name
(except for reals and integers). Also a variable whose first letters coincides with a
type name will be taken by the Lang grammar to be of that type.

4. Bounds in Banach Spaces. In Mini, constructions of the type of Exam­
ple 1 are supported in great generality. The underlying mathematical structure is
as follows:

Let H be a Banach space. Let Eo, ... ,En be unit. vectors in H and let HI, ... , H m

be subspaces of H, spanning together H. We call this a decomposition of H. The
decomposition of x E H into these subspaces need not be unique, and the Hi
may be one-dimensional, multidimensional or infinite dimensional, but not empty.
In the case of the balls B of Sect. 3, we have m = 1, Ei = zi, i = 0, ... , n,
and HI is the set of functions in A which are of order zn+l. We give n + 1 real
intervals Si, i = 0, ... , nand m non-negative numbers u;, i = 1, ... ,m and we define

n m

H(s,u) = {x E Hlx = LlJ'iEi + LYi with
i=O i=l

IJ'i E Si, Yi E Hi, and I!Yi II ~ ud,

(Similar definitions are possible for complex vector spaces.) Clearly, if

XEH(s,u) and x'EH(s',u'),

then

(4) x + x' E H(s +s',u +u'),

152

while for A E R, we have

(5) AX E H(A· s, IAlu).

Here, s + s' is the componentwise addition of intervals, i.e. (s + S')i = Si + si, while
. is the componentwise multiplication by a scalar.

We also have a bound on the norm, for x E H(s,u):

n m

(6) Ilxll :S Lls;1 + LUi,
i=O i=l

where

Isl=max{lzl, ZES}.

The Eqs. (4)-(6) lead naturally to constructive algorithms, which can be automati­
cally generated from the description of H (and which carry the gE'neric names SUM,
LMULT, and ABS). The Lang grammar generated by Mini will in turn recognize
+, *, and I· I as the corresponding operation symbols.

Some further operations are definE'd: The difference of x E H (s, u) and x' E

H(s',u') is bounded by

(7) x - x' E H(s - s',u + u'),

which leads to a subroutine DIFF, and a unary minus (NEG). Finally, it is useful
to have a notion of zero, and some output routines (See again Table 2.)

5. Polynomials. We recall the example of Sect. 3, dealing with analytic
functions on the unit disk. Clearly, the definition of the polynomial part of the
function lends itself to an automatic generation of several operations which can
be performed in the (truncated) polynomial algebra. In Mini, a polynomial is one
indexed array of coefficients. Thus, the definition of polynomials is more restricted
than that of vectors. On the other hand, Mini will generate more subroutines
for polynomials and extend the Lang grammar correspondingly. Apart from those
operations defined for every vector type, the following operations are automatically
generated for polynomials:

-The (truncated) product, h(z) = f(z)· g(z),

-Evaluation, y = f(zo),

-Dilation and translation of arguments, g(z) = f(az + b),

-Derivatives of every order, g(z) = 8';f(z),

-The (truncated) inverse, g(z) = 1/ f (z).
Of course, all these operations are generated with rigorous error bounds on the (in­
terval) coefficients. Polynomials in several variables are allowed. The Lang grammar
will understand that if p is a polynomial type, then all variables starting with the
letter p will be of type p. On the other hand, with this convention the grammar
will imply that operations like

pI * p2

pI+p2

a * pI

153

take their standard mathematical meaning, namely (truncated) product, sum, and
multiplication by a scalar of the corresponding field. Furthermore, pl(#=a) means
evaluation of the polynomial at a, and pI(#:a,b) means pI(a· z+b), where z is the
formal variable of pI.

Finally, in the Lang grammar generated by Mini, IpII means the sum of the
absolute values of the coefficients of pI.

6. Products. When one considers analytic functions, as in the example of
Sect. 3, it is desirable to be able to give a bound on their product. A constructive
bound is in fact possible as we now show. Assume B = B(Io, ... , In, h) and B' =
B(I~, . .. , I~, h') are given, and we are to find a ball Btl containing all f l' with
f E B,j' E B'. A possible choice is Btl = B(Jo, ... , I n , k), with

I

(a) J1 = L IpI!_p, for 1 = 0, ... ,n,
p=o

(b) k= L IIpIII~1
p+q>n

n

(8)(c) + L IIplh'
p=o

n

(d) + LhII;1
p=o

(e) +h h'.

The bound (8) may seem canonical, but in practice, (see e.g. [EWI]), there occur
cases where other choices may be preferable, or where no canonical choice is possible
(d. also [M]). We therefore have designed Mini so that it does not generate a bound
automatically. But Mini provides a syntactic construct to aid in the generation of
the product of two objects of type vector such as b. In Example 2 below, we
implement the natural choice of Eq. (8), corresponding to the definition of balls
given above (Example 1). In Mini, this is described as follows (we add the letters
(a)-(e) to indicate the correspondence with Eq. (8)):

Example 2.

DEFINE b*b -> b

CONST n=5;

BEGIN

poly * poly -> poly;

IF (i$ 1+i $2 > n) THEN

poly * poly -> high;

poly * high -> high;

high * poly -> high;

high * high -> high;

END;

154

(a)

(b)

(c)

(d)

(e)

The idea is that all implicit summations can be omitted from the description of the
bounds. The variables il, i2 are derived from the variable name for the declaration
of the polynomial part, in our case, the variable i of Example 1. Here, i$1 and i$2
refer to the left and right factors, respectively. Of course, the Lang grammar will
understand bl *b2 as a bound of the kind just described.

Finally, if p is a polynomial and b any object over the same number field as p,
for which multiplication is defined, then the command

Example 3.

DEFINE P 0 b;

generates the composition
n

pob= LPibi.
i=O

In other words, po b(z) = p(b(z)). Also, the notation pl(#=b2) will be understood
as pI 0 b2 in the extension of Pascal generated by Mini.

A deeper consequence of the definition of the product is that the inverse can
be automatically defined.

7. Inverses. We have seen how produds can be defined using 1.fini. Using this
product, we want to define the "inverse" of a vector in H, where H is as in Sect. 4.
We assume that Eo E H spans the one dimensional subspace corresponding to the
identity for the product H x H -+ H. (In the case of a polynomial with higher order
terms as in Examples 1-2, Eo corresponds to the constant function 1.) We then

00

define the inverse of (1 + v), as L(_v)k, where (_v)k is the k-fold product of -v.
k=O

Here, we assume that the Eo-component of v vanishes. (In the case of bounds on

155

functions, this definition is reasonable.) We now discuss how we bound the infinite
sum. If H is of the form Eo, ... , En, H1"'" Hm, as above, and if Eo, ... , En are
the coefficients of a polynomial (in one or several variables) of maximal degree A-f,
then we consider

00 M 00

L(-v)k = L(-vl + L(-v)k(_v)M+1.
k=O k=O k=O

The first term is a finite sum and can be evaluated by using the sum and product
operators. Similarly (_v)M+1 is easily evaluated. Note now that (_v)M+1 lies

entirely in the subspace spanned by H 1 , •.• , H m, since the lowest order occurring in
v is 1. (This argument applies to any Euclidean ring with inverse. Mini will generate
an incorrect inverse in other cases, or when the product does not accumulate "errors"
only in H 1, ... , H m.) We now view the left multiplication by (-v) as a left action
on H1, .. . ,Hm. This action is defined by the definition of the product in H and
defines a matrix operator A on the corresponding bounds. It is a simple matter
to invert (1 + A) as a matrix. If the declaration of the product defines a finite
dimensional algebra in which the inverse is really given by the sum I:(_v)k, then
the above construction will give sharp bOlmds to within rounding errors.

We illustrate the construction of the inverse in detail for the Example 1-2. 'Ve
assume for simplicity that the degree (const n) is only 1. Thus we want to invert

(l,T,O')-d+Tx+h(x) , with Ilhll ~O',

(T is an interval, x is the formal variable, hex) = L:~2 hjxj). Applying the general
ideas explained above, we get

[1 + TX + h(x)]-1
00

= 1- TX - hex) + 2) -TX - h(x))k[T2 x2 + 2TXh(x) + h2(x)].
k=O

Note now that the term in square brackets contains only terms of order higher than
1 in x, and is bounded (in the h-norm) by

ITI2 + 21TI0' + 0'2 ,

where ITI = sup{lyl, YET}. Similarly, the 1 x 1 matrix A is induced by the map

h1(x) --t -Txh1(x) - h(x)h1(x).

We get

11- Txh1(x) - h(x)h1(x)1I ~ (ITI + 0')lIh111 .

The matrix A acts on the bound, i.e. if IIh111 = 0", then we get

AO" = (IT I + 0')0" .

Thus, if ITI + 0' < 1, then

(1 + TX + h(x))-1 = 1 - TX + hex),

with
IIh(x)1I ~ 0' + (1 - (ITI + 0'))-1(ITI2 + 21TI0' + 0'2).

Again, Mini generates these operations as INV and the Lang grammar is augmented
to accept the construction 1/b1 as the inverse and b1/b2 as the quotient.

156

8. The Grammar of Mini. We have now described the main features of
Mini. The grammar of Mini, given in detail in Table 1, allows for polynomials
in several variables, for indices in the higher order terms, as well as for simple
conditions in the choice of index sets. We use BNF notation where { ... } denotes 0
or more occurrences of the item, and C ...) denotes zero or one occurrence. Upper
case words and symbols in quotes' ... ' denote terminals, while the lower case words
are non-terminals. Finally I denotes alternatives.

Table 1. The grammar of Mini, somewhat simplified.

I*TYPES*I
I * * * * * * *1
new

field

block

short_block

action_list

statement

simple_component

I*DECLARATION - PART*I

TYPE identifier '=' VECTOR OVER field
(declarations_part) block ' ; ,

ITYPE identifier '=' POLYNOMIAL OVER field
(declarations_part) short_block , . , ,

DEFINE identifier '*' identifier '->' identifier
(declarations_part) action_list '

DEFINE identifier '0' identifier' ; ,

identifier

BEGIN statement {' ; , statement} END

BEGIN for_clause {for_clause}
name ':' type-Ilame {, ; ,} END

:BEGIN action {, ; , action} END

name {, , ' name} , : ' type-Ilame
I BOUND name {, , ' name} , type_name

1* * * * * * * * * * * * * * * * *1

declarations_part

declaration

{declaration}

constant_definition_part
I variable_decl_part

constant_definition_part CONST constant_definition

157

{, ; , constant_definition} ,

constant_definition identifier '=' constant

constant :unsigned_integer (as in Pascal)

VAR variable_declaration
{, ; , variable_declaration} ,

variable_declaration : identifier {, , identifier} , INTEGER

I*LOOP CONSTRUCTS WITH EMBEDDED IF - THEN*I

1* *1

for_clause

control_variable

initiaLvalue

finaLvalue

expression

FOR control_variable' := ,

initial_value TO final_value DO
IF expression THEN

identifier

expression

expression

simple_expression
simple_expression

relational_op simple_expression

simple_expression: term
I ' - , term

I ' + ' term
I simple_expression adding_operator term

adding_operator ' +'

I ' -
I OR

term factor
I term multiplying_operator factor

relationaLop '<' '>' I '>=' I '>=' I '<>' '='

multiplying_operat:or' * ' I 'I 'I AND I DIV I MOD

factor variable

variable

158

unsigned_integer (as in Pascal)
, (, expression ')
NOT factor

identifier

/*PRODUCTS WITH BOUNDS*/

/* * * * * * * * * * * * * * * * * * */

action {for_clause} simple_action

simple_action (prefactor ' * ,) indexed_identifier' * '

prefactor , " , any text ' " ,

/ *GENERIC STUFF*/

/* * * * * * * * * * * */

name

type...name
indexed_identifier
expression_list

identifier

identifier
identifier (, [, expression_list'] ')
expression {, 'expression}

identifier A-Za-z followed by zero or more A-Za-zO-9

We next describe the semantics of Mini. The language Mini has four main
structural elements, namely the description of vector .. , polynomials, the definition
of bounds in products, and composition.

We start by describing vectors. Int.uitively, the description of a new type of
"vector space" is a "direct sum" of vector spaces which have already been defined.
The vector spaces (vectors) are constructs as in Sect. 4 and are over a number field
which can be one of the types real or s. If the user wants to supply another field,
he has to choose a name for it, e.g. "c" for the complex numbers and must provide
a set of basic subroutines. Some of these subroutines are cZERO, cONE, ucABS,
cDIFF, cNEG, cPROD, ciCONST, ucLMULT. The name of these subroutines must
be prefixed by the name of the field (i.e. 'c' in our example). The action is obvious,
except for cNEG (the unary minus), ciCONST (conversion of an integer to the new
type), and ucLMULT (product of iel with u). A list is given in Table 3. We suggest
the following procedure to create a new nnmber field: First define it as a vector
space, e.g. the complex numbers are two-component vectors over the "reals" (or
"s" in case of rigorous bounds). This vector space can t.hen be used in the "OVER"
construction. Mini will signal that this vector space is used as a field, and the user
must check that the necessary operations are (correctly) implemented.

159

Vector spaces are recursively constructed from smaller spaces. The basic vector

spaces from which bigger spaces can be constructed are the reals, and intervals

(called segments). Segments are a predeclared type, called s. furthermore, there is

a sort of affine space, of predeclared type u which serves to allow components in a

vector which are upper bounds. These types have been described in Sect. 3. The
components of a vector space have names (as for components of a Pascal record),
and must be of an already defined type. See the Example 1 given above.

A second, more general possibility is the definition of indexed components. They
can be defined with a combination of for statements and if statements. It is illegal

to use an indexed component name more than once in a declaration. Suppose we

want to define components called Ji of type s numhered 1 to 10, with the exception
of 3. Then we would define

Example 4.

TYPE q = VECTOR OVER s

VAR i : integer ;

BEGIN

FOR i := 1 TO 10 DO

IF i<> 3 THEN

f s;

END;

The variable i must be declared as an integer (in Pascal fashion) before the

"begin". It is desirable to be able to define indexed objects whose upper bound
depends on a parameter. In Mini, a constant definition is allowed. The user may

want to define the constant definitions in an "include rue" which however must be
accessible to all rues generated by Mini. In particular, Mini generates a separate

program whose sole purpose is to compute effective array dimensions, because arrays

are "packed" by Mini. It must of course know these constants.

A polynomial is a special case of a vector and must have exactly one component.

In the definition of a polynomial, in principle any combination of for statements is
allowed, but the implementation will fail unless all degrees below the maximal order

are present (and no negative degrees occur). So

Example 5.

TYPE P = POLYNOMIAL OVER real

VAR i, j : integer

BEGIN

FOR i := 0 TO 5 DO

FOR j := 0 TO 2*i + 3*i*i DO

coef real ;

END;

is allowed but

TYPE P

VAR i

BEGIN

For i

POLYNOMIAL OVER real

integer ;

= 0 TO 5 DO

IF i<> 2 THEN

coef : real

END;

160

will lead to disaster (there would be no problem if we only defined a vector and not
a polynomial).

To describe the bounds in products of vectors, the notation of the Example 2
together with the grammar of Table 1 should make the intentions clear. To be
more precise, we give the detailed semantics for the construction a*b -+ c, inside a
definition of a product tl * t2 -+ t3'

We consider first the case when the three types tI, t2, t3 are equal (to a type t),
as in Example 2. Then, a, b, c must be names of components of t. If a, b, c are all
names of polynomials, then a*b -> c defines the truncated product. Wherever one
of the variables a, b is a polynomial, summation over the indices is implied. In this
case, if the summation indices are needed explicitly (as in prefactors, see below)
they are obtained from the original names by appending "$1" for a and "$2" for b.
The range of summation can be restricted by a sequence of conditional statements
as in Example 2.

If, in the definition of c as a component of t, one has given the attribute BOUND
to c, as in Example 1, then the command a*b -> C is meant to accumulate the
absolute values of the products. In this case, c can be over the same numbpr field
as a and b, or of type u (i.e. an upper bound). If c was not given the attribute
BOUND then c must be of the same type as a and b (in fact, if c is of type u, it is
wise to give it the attribute BOUND).

If the three types t l , t 2, t3 are not equal, the rules are in principle the same,
however, meaningless combinations of subtypes will not be detected by Mini.

Mini distinguishes four cases in the construction of products:

1) The truncated polynomial product.

2) The polynomial product leading to "higher order" terms.

3) Polynomial times non-polynomial.

4) Non-polynomial times polynomial.

In case 1), Mini generates all necessary terms. In case 2), if the original names
of the loop variables were x, y, ... then one refers to the corresponding variables
in the left factor as xl, yl,. .. and in the right factor as x$2, y$2, The $
distinguishes the name to make it unique. (We suggest that '$' should not be part
of a variable declared by the user.) So, as we have seen,

IF (i$l + i$2 > n) THEN

poly * poly -> high ;

in Example 2 means

high:=high

161

+ L Ibleft.poly.coeJ[i$l]* brig ht.poly .coef[i$2] I .
i$1+i$2>n

In cases 3) and 4), there is no appended "$", since only one of the factors uses the
original indices. In other words, to refer to indices in terms of the form "poly * high
-> high", of Example 1, use the index i of the original definition of poly. Thus one
might write

IF (i > n) THEN

poly * high -> high;

We also allow for an extension of the bounds, so that weight factors are possible.
The preceding example can be augmented to

IF (i$l + i$2 >n) THEN

"ui const(i$l *i$l +i$2* i$2)" * poly * poly -> high;

which then means

high:=high

+ L luiconst(i$l*i$l + i$2*i$2)*
i$1+i$2>n

bleft.poly.coeJ[i$l]* bright.poly .coeJ[i$2] I .

Note that the user must convert the result to the type of the right hand term (in
our case "u").

REMARKS.

1) Mini does not automatically symmetrize the definitions, so that the user is

responsible for this.

2) Note that summation and indices are only implied for polynomials. For
other indexed compounds, such as an array of bounds, a Pascal-like notation
must be used. To simplify notation, h[i] denotes the element defined by the

value i. So if we define

FOR i: = 7 TO 19 DO

IF i <> 8 THEN

162

h: u;

then h[9] identifies the element with index i=9 although effective storage
will be in an array of consecutive indices starting at o. This correspondence
is hidden from the user.

We next address the issue of the identity. If the user defines a product tOt -+

t, then Mini will attempt to define an identity, called tONE, by defining it as
the polynomial which is constant = 1, with all other terms equal to zero. This
fails obviously in more complicated cases, where an identity might still be uniqely
defined. In this case, the user must replace tONE by a routine of his own.

In case the identity is defined, Mini will generate a subroutine tINY which com­
putes a bound on the (left) inverse for the multiplication. This inverse is obtained
by solving the corresponding linear problem. If no bounds occurred, then this is
done in normal arithmetic, otherwise interval arithmetic is automatically applied.
See Sect. 7 for details.

9. Using the Tools. The user prepares a file containing descriptions of new
types written in Mini. He then executes

mini <filename .

A multitude of files will be generated and in particular a file called info which
describes the set of newly generated subroutines. In the case of input from Example
1 together with 2 this will be:

Table 2. Information File

INFORMATION ON LOOPS FOR STRUCTURE P

1.

We represent the component(s)

coef

of the structure p

byarray(s) [0 .. loop $1].

The procedure init $1 (in initloops.p) initializes these arrays.

The procedure init $ $ calls all init $n .

The program calcconst.p calculates the constant

loop$l

INFORMATION ON SUBROUTINES

The call pSHOW(pl) prints pI.

The call bSHOW(bl) prints bI.

163

Setting pI to zero is implemented as pI :=pZERO

Setting bl to zero is implemented as bl :=bZERO

pI :=p2+p3 is implemented as pI :=pSUM(p2 , p3)

pI :=p2-p3 is implemented as pI :=pDIFF(p2 ,p3)

bl :=b2+b3 is implemented as bl :=bSUM(b2 , b3)

bl : =b2 - b3 is implemented as bl :=bDIFF (b2 , b3)

pI :=s2* p3 is implemented as pI :=psLMULT(s2 , p3)

bl :=s2* b3 is implemented as bl :=bsLMULT(s2 , b3)

pI := -p2 is implemented as pI :=pNEG(p2)

bl := -b2 is implemented as bl :=bNEG(b2)

ul :=iP2i is implemented as ul :=upABS(p2)

ul := ib2i is implemented as ul :=ubABS(b2)

sl :=p2(#=x3) is implemented as sl :=spVALUE(P2 , x3)

p2 is a polynomial evaluated at xi ,

the argument(s) are of type s .

pI := p2(#:x3 , y3) is implemented as pI :=pDILATE(p2, x3 , y3)

p2 is a polynomial evaluated at xi*(i'th variable) +yi .

The xi and yi are of type s .

pI :=p2* p3 is implemented as pI :=pPROD(p2 , p3)

This is the truncated product of polynomials.

pI := ljp2, the inverse of p2, is implemented as pI :=pINV(p2)

This is the truncated inverse of polynomials .

pI :=p2jp3 is implemented as pI :=pQUOT(p2 , p3)

The derivate of pI of order ni is implemented as

pDERIVE(pl , ni).

bl := b2* b3 is implemented as bl :=bPROD(b2 , b3)

bl := b2/b3 is implemented as bl :=bQUOT(b2 , b3)

bl := l/b2, the inverse of b2, is implemented as bl :=bINV(b2)

The product with bounds is given by

the definition b * b -> b.

If type comes from polynomials then identity is defined as bONE

Composition bl :=p2(#=bi) is implemented as

bl :=bpCOMP(p2 , bi)

Mini not only generates subroutines, and the corresponding information, but
also an extension to the grammar of Pascal. This grammar is called Lang and

164

depends on the input to Mini. It is written in Yacc (a common compiler-compiler
of Unix).

The command

make lang

generates a compiler for the "Lang" extension of Pascal. This compiler, (or rather,
preprocessor), translates a program from Lang into Pascal, generating function calls
for all the standard operations. So in Lang, after input from Examples 1-2 to mini,
one may write a file "main.lang", such as

PROGRAM test (input, output);

PROCEDURE actions;

VAR b1, b2, b3

BEGIN

b2 :=bONE:

b3 :=bZERO;

b1 := b2 * b3;

bSHOW(b1);

END;

BEGIN

in it $ $;

actions

END.

One then performs

make main p

b· ,

which invokes the Lang preprocessor which acts on "main.lang". It will produce a

file which looks about like

PROGRAM test (input, output);

PROCEDURE actions;

VAR b1 , b2, b3 :

BEGIN

b2 :=bONE;

b3 :=bZERO;

b· ,

b1 := bprod(b2, b3);

bSHOW(bONE);

END

BEGIN

init $ $;

actions;

END .

165

Note that Mini did generate bPROD and bSHOW from the Example 2 (and
from Example 1). Note also that the file info contained the information about the
existence of bPROD, and the legal notation in Lang, i.e. bl :=b2*b3;.

The command

make program

will put all the pieces together and generate an executable Pascal program.

We specify some particulars of Lang, using Example 1-2. There are now 5
new types, namely 1, u, s, p, and p. In Lang, every variable name 8tarting with
b will de8ignate a variable of type b. Similarly for p, s, 1, and u. This simplifies
the legibility of programs and is necessary by the way we have implemented the
analyzer for Lang. The user should exert extreme caution to avoid the following
difficulties.

a) Upper and lower case are distinguished.

b) Having a type f and a type ff could lead to disaster for the lexical analyzer.

c) The letters s, 1, u are already reserved as initial letters for variable names.

d) The above rules serve only as an aid to the Lang analyzer. They do not make

the usual Pascal declarations unnecessary.

The issue of whether the arithmetic operations are rigorously rounded on the
computer is not a question of how Mini operates, but only of how the lowest level
routines (see Table 3) assure rounding in the good directions.

Table 3. Low level routines over a number field f.

fNEG -f1
fPROD fl*f2
f fLMULT f1*f2
f SUM fl+f2
fDIFF f1-f2
f INV 1/f1
fQUOT fl/f2
u fLMULT Ifll*u2
f iCONST conversion of an integer to type f

166

In particular, the routines for the number field "real" do not. provide for rigorous
rounding, but the routines for "s", "u", and "I" do. This depends on the ma­
chine implementation of arithmetic, and in t.he software which is available from the
authors, this is done for the IEEE standard.

Acknowledgements. We thank V. Baladi, D. Buchs, and P. Wittwer for very
helpful discussions. This work has been supported by the Fonds National Suisse
(JPE, AM) and by CAPES, Brazil (SOK).

REFERENCES

[BJ] D. BJORNER, C.B. JONES editors, The Vienna Development Method: The Meta-Language,
Lecture Notes in Computer Science 61, Springer-Verlag, Berlin (1978).

[EKW] J.-P. ECKMANN, H. KOCH, P. WITTWER, A computer-assisted proof of universality for
area-preserving maps, Memoirs Am. Math. Soc. 47, 289 (1984).

[EW1] J.-P. ECKMANN, P. WITTWER, Computer methods and Borel summability applied to Feigen­
baum's equations, Lecture Notes in Physics 227, Springer-Verlag, Berlin (1985).

[EW2] J .-P. ECKMANN, P. WITTWER, A Complete Proof of the Feigenbaum Conjectures, J. Stat.
Phys., in print.

[Kn] D. KNUTH, Literate Programming, Computer Journal 27, 97 (1984).

[KW] H. KOCH, P. WITTWER, A Non-Gaussian Renormalization Group Fixed Point for Hierarchi­
cal Scalar Lattice Field Theories, Comm. Math. Phys. 106, 495 (1986).

[L] O.E. LANFORD, A computer-assisted proof of the Feigenbaum conjectures, Bull. AMS, New
Series 6, 127 (1984).

[M] W.L. MIRANKER, Ultra-Arithmetic: The Digital Computer Set in Function Space, A New
Approach to Scientific Computation, Academic Press (1983).

167

APPENDIX. SOME ADDITIONAL FEATURES OF "LANG'.

The language Lang is created from the definitions given in Mini. In addition, it
has a set of properties which may be useful in writing computer assisted proofs.

1. The types "s" , "u", "I" are predefined: s are intervals, u are upper bounds
and 1 are lower bounds.

2. The common arithmetic operations are defined for the 3 types above, but
the rules for using "I" and "u" are very restrictive. The operations u+u,
1+1, u'u, 1'1 lead to a result of type u, 1, u, 1 respectively. (The last condition
is somewhat dangerous and applies only to nonnegative lower bounds.) The
quantity -u is a lower bound, and similarly l/u, -1, 1/1 are of type 1, u, u
respectively.

3. A special set of operations yielding s-factors is defined:

(s) an interval whose two endpoints coincide and are very close to the
center of the interval s.

[u] an interval whose two endpoints coincide and are equal to u.

[i] here, i is a Pascal integer expression. Then [i] is an interval whose
two endpoints coincide and are equal to the expression. (By the
grammar, confusion with indexed arrays of Pascal is not possible).

+ -u here, u is a u-term and + -u denotes the interval [-u,u], (of type s).

l/s The inverse of s. This is defined as {x-1Ix E s}. (the notation 1/
must be rigorously followed.)

4. The functions upper(s) and lower(s) extract the upper and lower end of an
interval s, yielding type u and 1. Note: lower and upper are reserved words.

5. lsi yields a u equal to max {Ixl,x E s}.

6. u"i, s" i denote the power, as in Fortran. i must be an integer expression
which is nonnegative. The meaning of s"i is

not

s"i = {XIX2 ••• Xi I X j E s,j = 1, ... , i}.

7. Upper and lower case: Lang distinguishes upper and lower case letters. All
Pascal tokens are accepted either in upper case or in lower case. The special
types, such as s,u,l are lower case. If the user defines a new type in Mini,
then Lang will only match exact case context. So if you define a type c, then
cos will be a token of type c in Lang but Cos will be a standard identifier
name (and so will COS, but not cOS).

EQUATION SOLVING BY SYMBOLIC COMPUTATION

ANTHONY C. HEARN*

In proving theorems in analysis, we are often concerned about establishing the
equivalence of two algebraic expressions. It is therefore natural to use computer
programs that do symbolic manipulRtions for this purpose. There are now many
such programs available, but since I happen to be the principal author of one of
these, namely REDUCE [1], the examples I use will be biased towards this system.
However, the ideas can be expressed equally well in other algebraic manipulation
systems.

Given the nature of existing algebra systems, it is appropriate to concentrate
on proofs of theorems that can be expressed as algebraic equations. In other words,
we shall consider sets of equations like

(1)

Since a large number of diverse problems can be expressed in this form, we can
consider many proofs in analysis by a study of such equations.

There are many ways in which the equations in (1) can be considered. The first
of these involves considering (1) as an identity. In other words, is it possible to
prove that this set of equations is satisfied for all values of Xl, ... , xn? For example,
in program verification, one often needs to prove that simple expressions like

(2) (2x + 3x - 4x)2 - x 2

are zero for all x. The "proof' of such a result is trivial for most algebra systems.
Such a proof consists of reducing the expression in (2) to a canonical form, at which

point the theorem can be established, since the canonical form in such a case is
zero. Early verification systems used theorem provers to establish such results, but
these were slow and cumbersome. In the early 1970's, verification system designers
switched to using algebra systems for such tasks, thus making their systems more

efficient [2].

The design of canonical simplifiers has been a key problem in computer algebra
for many of years. The depressing news, as discussed in [3] is that the canonical
reduction of a general algebraic expression is an undecirlable problem. Fortunately,
most expressions of practical interest do have a canonical form. In particular, if we

limit ourselves to polynomials, there is obviously no difficulty.

The specific problem we are considering here is a little simpler than I have
described. It is sufficient to reduce the expression to normal form to prove (or
disprove) the required result. Normal form reduction does not guarantee a unique
representation as a canonical form does, but it does recognize equivalence to zero,

*The RAND Corporation, Santa Monica, CA 90406-2138

169

which is all we need. Furthermore, if we are only interested in disproving a result,
it is sufficient to show that the expression on the left-hand-side of (1) is non-zero
for a subset of the variables involved. In the extreme case, replacing all variables by
numerical values reduces the problem to a simple calculation. If the result of this
calculation is clearly not zero, no further computation is necessary. However, I don't
think that any existing algebra system does such numerical checking automatically.
A user must therefore make such checks explicitly, although it would be relatively
easy to include automatic checking in any existing system.

A more common problem for algebra systems is to determine for what explicit
values of the variables the set of equations is satisfied. Ideally, one would like
closed-form algebraic expressions as the result. However, it is well known that this
is difficult in general. Consider just a single polynomial equation in one variable.
If the degree is greater than four, there is no general closed-form solution invoh'ing
only algebraic numbers and radicals. In addition, a closed form solution to a cubic
or quartic is so complicated in general that it is of little use. In such cases, it is
necessary to use numerical or combined numerical-symbolic methods to obtain a
tractable solution. One might therefore be tempted to conclude that there is lit­
tle to be gained in investing much effort in finding exact solutions of equations.
However, if one is concerned with scientific problem solving rather than abstract
mathematics, things are not so bleak. There are many occasions when exact so­
lutions can be found. In the world of physics, for example, where physical laws
are often expressed as differential or integral equations, we often see problems with
closed form solutions. The "solution" may only be an approximation to the exact
result, but that often provides much more insight than a table of numbers found by
numerical methods. Consequently, there continues to be a sustained research effort
concerned with finding closed form solutions to sets of equations. Sophisticated
techniques for finding closed form solutions to integrals and ordinary and partial
differential equations have been developed during the past decade or so, motivated
often by a physical problem for which a closed form solution is thought to exist.

Since many interesting problems in science and engineering can be expressed
in terms of polynomial equations, there has been considerable research for several
decades in finding solutions to such equations. One might therefore be tempted
to believe that there was little left to do in this area. However, the symbolic case
still provides many opportunities for new discoveries. In particular, there are two
relatively new innovative ideas that I believe will have a long lasting effect. One
already has a big following. The other has had very little publicity, but I am

convinced will become more important in the years ahead.

The first of these deals with non-linear equations. In the past, we have often used
linear approximations to systems better expressed in terms of non-linear equations
because of the sheer difficulty in dealing with the latter types of equations. In 1965,
Bruno Buchberger wrote a dissertation [4] presenting a method for effectively dealing
with multivariate polynomial equations of arbitrary degree. This method, based on
what he called Grobner bases after his supervisor, received little attention from the
mathematical community at that time. In the mid-seventies, the computer a.lgebra

170

co=unity discovered this work, and research in this area has really accelerated
during the past few years. It has now become the basis for powerful techniques
for working with such polynomial equations and there are over two hundred papers
describing work in this area. What makes it important is that it not only has elegant
theoretical underpinnings, but is also of great use in practical problem solving.
Another attractive thing about this technique is that it is easy to understand.
When used to solve sets of non-linear equations, the method is a generalization
of the elimination methods used for solving linear equations. In the latter case,
elimination reduces such a set to triangular form. One can then read off the value
of one variable from the last row of the triangle, and by back substitution determine
values for all other variables. When there are a finite number of solutions to the
set of non-linear equations the Grabner method reduces the set to a form in which
the last equation contains just one variable, but is no longer linear as in the linear
equation case. This can then be solved either exactly, if possible, or with standard
root finding techniques. By back substitution, one can then construct the complete
solution set for the problem. A more extensive account of this technique can be
found in Bernhard Kutzler's paper in these proceedings [5]. To give you an idea of
its power for scientific problem solving, some calculations were recently completed
by a group in West Berlin, using a Grabner basis program written in REDUCE
and run on a Cray X-MP [6]. These calculations involved finding analytic solutions
for chemical reaction systems which had previously only been studied numerically.
One of the most impressive involves 50 polynomials in 37 variables [7]. The analytic
result showed that some of the solutions found numerically and thought to represent
stable chemical behavior were in fact unstable.

The second important idea I wish to discuss relates to solving sets of linear
equations. The formalism traditionally used for this problem is that of matrix
manipulation. The manipulation of matrices has been a stimulus to computer de­
velopment since the beginnings of digital computation. The standard numerical
algorithms manipulate rows of matrices sequentially according to consecutive in­
dexing just as computers access memories sequentially according to consecutive
addresses. In other words, each representation reflects the other.

This duality works well for numerical calculations, and a considerable litera­
ture of techniques has been developed during the past fifty years. On the other
hand, many classical matrix algorithms use partitioning for their effectiveness, thus
presenting relationships between blocks of data rather than indexed vectors. For
example, if we want the product of two matrices, it is possible to partition each
matrix into blocks, and, assuming that the blocks are compatible, compute the
product as follows:

] [AIAz + B 1 C2
C1 A2 + D1C2

AIBz + BID2
C1B2 +DID2] .

In the linear storage model, the blocks AI, A.2 and so on are not available directly,
and it is often very costly to assemble them from the elements of the whole matrix.
This is unfortunate, since algorithms based on block partitioning abound in matrix
theory. In fact, adaptations of some of these have given rise to asymptotically fast

171

algorithms [8]. On the other hand, most algebraic computation systems, especially
those such as REDUCE that use Lisp as the embedding language, use a heap model
of memory which is much more suited to such block representations. However,
existing systems mirror the iterative approach used by numerical systems. In 1984,
David Wise [9] proposed a representation for symbolic matrices which had such a
partitioned representation. Like Buchberger's early experience, Wise's work has not
yet influenced many people. However, I am convinced that it is an important new
technique for symbolic matrix manipulation. The representation he used is called
a quadtree representation.

The basic idea is to represent any d-dimensional array as a 2d_ary tree. Thus
a vector would be represented by a binary tree, and a matrix by a 4-ary tree or
quadtree. We consider only matrices from now on. As a special case, a unit or
zero matrix is represented as a scalar, and only one copy of the element is stored.
Otherwise it is a quadruple of four equally-ordered submatrices. To make the recur­
sion work smoothly, a matrix of order n is embedded in a 2 flog n 1 x 2 flog n 1 matrix,
justified to the lower right corner, with padding to the north and west. Apart from
the principal diagonal, this padding can be O. On the principal diagonal, it can be
o or 1 depending on whether inverses or determinants are required. Either choice
prescribes a normal form for such matrices.

A suitable Lisp representation for such an object is

(T(integer))

for a scalar, and
(NIL (qmat) (qmat) (qmat) (qmat))

for a quadruple, where the recursively defined <qmat> entries represent the north­
west, northeast, southwest and southeast quadrants respectively. To complete the
representation, we need to add at the top level information about its order. So the
complete standard form for a matrix appends an integer defining the order to this
structure. Thus the matrix

A B
C D

would be represented as
(2 NIL (T A) (T B) (T C) (T D))

whereas the matrix

[
All A12 A13 A14

1
A21 A22 A23 A24

0 0 A33 A34

0 0 A43 A44

would have the representation

(4 NIL (NIL (T A11) (T A12) (T A21) (T A22))

(NIL (T A13) (T A14) (T A23) (T A24))

(T 0)

(NIL (T A33) (T A34) (T A43) (T A44))).

172

Operations such as matrix addition and multiplication are now straightforward t.o
define.

Just because it has an elegant representation does not by itself qualify a tech­
nique for my list of innovative, lasting contributions. So what else is important
about the quadtree method? There are two things I can mention. The first is the
performance of the quadtree representation compared with the conventional vector­
oriented representation found in REDUCE. It is well known that the performance
of matrix algorithms can depend critically on the structure of the given matrices.
Extreme cases such as dense or diagonal matrices can exhibit quite different behav­
ior depending on the algorithms used. Tridiagonal or triangular matrices, falling
somewhere between the two extremes, can have a different performance again. Just
as is true in the numerical case, there has been a lot of research into finding good
representations and algorithms for adding and multiplying symbolic matrices in
these various classes. Abdali and Wise [10] in a series of experiments show that the
quadtree representation is efficient over this whole spectrum of matrix forms. In
fact, except for small order dense matrices, the quadtree representation is always
better than the standard REDUCE representation, and for large order tridiagonal
and diagonal matrices is astoundingly better. In other words, the quad tree rep­
resentation is equally effective regardless of the structure of the mat.rix. There is
therefore little incentive to design special purpose representations for special cases.
This makes the maintenance of a complete symbolic matrix package much ea.~ier,
since there is much less code to support. In addition, an improvement for one class
of matrix will usually apply to other classes as well.

Another important feature of this quadtree representation is its effectiveness in
a multiprocessing environment. The partitioning used in building quadtree matrices
breaks a calculation into independent sub-calculations, each of which can itself be
further partitioned. One could therefore distribute these sub-calculations, each with
their own pieces of the partitioned matrices, across processors. Conventional matrix
calculations usually require whole matrices to be distributed in order to work in a
multiprocessing environment.

I should also note in passing that the Grobner basis method also has the poten­
tial for parallel operation. For example, recent developments [11] take advantage
of factors found in terms arising during the computation of the Grobner base. If
such factors are found, it is possible in some circumstances to find f)lrther terms in
the base by an independent inspection of such factors. In other words, one could
distribute the computation of the basis from each such factor to other processors.

The case for the quadtree representation is however not yet as solid as that for
the Grobner method. Matrix inverses and determinants are currently cumbersome
in this representation. One way to calculate these is to represent a partitioned
matrix in the form:

A B
C D] [A 0

C I

173

where ~ = D - CA-I B. From this representation, it is easy to show that

A B rl [A-I + A-I B~-ICA-I _A-IB~-l

C D _~-ICA-l ~-l

and that

det [
A B] = det(A)det(~).
C D

To compute the inverse of a nonsingular matrix, both A and ~ must be nonsingular.
If they are singular, the matrix must be rearranged to avoid this. Furthermore, the
computation of the above determinant requires the computation of the inverse of
A, so both "determinant and inverse require considerable computation. The compu­
tation of inverses by this method is less efficient for dense and tridiagonal matrices
than the standard REDUCE procedure, which uses the Bareiss two-step elimina­
tion method [12]. The computation of determinants by minor expansion is also
more efficient in general than the above method, since there are fewer operations
involved.

If the quadtree method is to have long lasting impact, there has to be a better
method for finding determinants and inverses. However, at an equivalent point
in its development, the Grabner method was also far less efficient than today's
implementations. The point is that once people concentrate on such techniques,
improvements are bound to follow. I am confident that this will be equally true for
the quadtree method as it has been for the Grabner method.

REFERENCES

[1] ANTHONY C. HEARN, REDUCE user's manual, Version 3.3. Report CP 78, The RAND
Corporation, (July 1987).

[2] R. LONDON AND D. R. MUSSER, The application of a symbolic mathematical system to
program verification, Proc. ACM 74 (1974),265-273.

[3] B. BUCHBERGER AND R. Loos, Algebraic simplification, in Computer algebra: symbolic and
algebraic computation, ed. B. Buchberger, G.E.Collins and R. Loos, 11-44, Springer-Verlag,
Wien (2nd edition) (1983).

[4] B. BUCHBERGER, An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-dimen­
sional Polynomial Ideal (in German), PhD thesis, Math. lnst, Univ. of Innsbruck, Austria
(1965).

[5] B. KUTZLER, Deciding a class of Euclidean geometry theorems with Buchberger's algorithm,
these proceedings.

[6] H. MELENK, H. M. MOLLER, AND W. NEUN, Symbolic solution of large stationary chemical
li'inetics problems, Impact of Computing in Science and Engineering, 1(2): (June 1989),
138-167.

[7] L. A. FARROW AND D. EDELSON, The steady-state approximation: fact or fiction?, lnt.
Journ. Chemical Kinetics 6:(1974), 787-800.

[8] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13(4): (August 1969),
354-356.

[9] D. S. WISE, Representing matrices as quadtrees for parallel processors (extended abstract),
SIGSAM Bulletin 18(3): (August 1984), 24-25.

[10] S. K. ABDALI AND D. S. WISE, Experiments with quadtree representation of ihatrices, In
Proc. of ISSAC '88, 358, Springer-Verlag (1988) 96-108.

174

[11] H. MELENK, H. M. MOLLER, AND \V. NEUN, On Grabner bases computation on a super­
computer using REDUCE, Preprint SC 88-2, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, (January 1988),.

[12] E. H. BAREISS, Sylvester's identity and multistep integer-presen·ing gaussian elimination.,
Math. Comp.22: (July 1968), 565-578.

DECIDING A CLASS OF EUCLIDEAN GEOMETRY THEOREMS
WITH BUCHBERGER'S ALGORITHM

BERNHARD KUTZLER*

Abstract. Buchberger's method of Grabner bases can be used to decide a certain class of the­
orems in elementary Euclidean geometry. Moreover, the method can also be used to find subsidiary
conditions that are necessary in order to transform an "almost valid" formulation of a geometry
theorem into a valid one. The introduction surveys all alternative approaches to automated geom­
etry theorem proving, giving references to the corresponding literature. After explaining how to
obtain correct algebraic translations of geometry theorems, Buchberger's method of Grabner bases
is shortly reviewed. Then the application of Buchberger's algorithm to geometry theorem proving
is explained in all details. Finally, a computing time statistics on 20 plane Euclidean geometry
theorems of growing complexity is given.

Key words. automated geometry theorem proving, Buchberger's algorithm, Grabner bases.

1. Introduction. Geometry was one of the first sciences of mankind and one
of the origins of mathematics. It was a purely empirical science in its beginnings
(Babylonia, Egypt) and was turned into a deductive science by the Greeks. While
interest has waned until recently, the field has received an enormous boost in the
last few years, when highly sophisticated application areas like robotics, computer
aided design, molecular conformation, and others received wide recognition. To­
day, geometric reasoning, the field concerned with algorithmic problem solving for
geometric objects, is one of the most promising areas of computer science.

One aspect of this topic, namely automated geometry theorem proving, has
gained a lot of attention during the past few years. The first geometry theorem
prover, was the "Geometry Machine" of (GELERNTER 1963). He built a natu­
ral deduction theorem prover capable of proving geometry theorems formulated in
a suitable geometric theory. One of its best achievements was a proof that the
base angles of an isosceles triangle are equal. There followed many similar at­
tempts, among them the utilization of the logic programming language PROLOG
by (COELHO AND PEREIRA 1979,1986). However, the successes of provers based
on this logical approach to automated geometry theorem proving were only moderate.
A rather complete survey of the literature on such provers is given in an appendix
of (KUTZLER 1988).

An alternative to treating geometry in form of a logical theory has been proposed
by R. Descartes in 1637. He established analytic coordinate geometry as a suitable
algebraic approach, which turned out to be a very powerful means. E.T. Bell, in
(BELL 1937, p. 21), remarked: "Though the idea behind it all is childishly simple,

*RISC (Research Institute of Symbolic Computation), Johannes Kepler University, A-4040
Linz, Austria. The work was supported by the "Osterreichischer Fond zur Farderung der wis­
senschaftlichen Forschung" (project no. P6763).

176

yet the method of analytic geometry is so powerful that very ordinary boys of
seventeen can use it to prove results which would have baffled the greatest of the
Greek geometers - Euclid, Archimedes, and Apollonius."

One of the first major results obtained with the algebraic approach to automated
geometry theorem proving was Tarski's decision procedure for the elementary part of
Euclidean geometry, see (TARSKI 1948). But his method is beyond any applicability
since it is of exponential worst case complexity even for formulae containing only
a single quantified variable and no free variables. No experimental results for any
geometry theorems are known. (COLLINS 1975) devised the method of cylindrical
algebraic decomposition as the key part of a new algorithm equivalent to Tarski's
procedure. Although Collins' method is of much better complexity, experiments in
(KUTZLER 1988) document its impracticality for non-trivial examples.

A considerable milestone was the method developed in (Wu 1978,1984) and
its refinements in (CHOU 1985). It certainly stimulated most of the research on
this topic including our work on applying Buchberger's algorithm. But recent in­
vestigations in (KUTZLER 1988,1989) demonstrated a severe flaw in Wu's method,
namely the inadequacy of his way of translating geometry theorems into algebraic
problems. From this new point of view, almost all results obtained with Wu's al­
gorithm can not be regarded as proofs but only as "near-proofs" in a sense fully
explained in the above reference.

2. Algebraization of geometry theorems. Let some geometric conjecture
be given. The central goal is to find a (mechanically generated) proof in case there
exists one. Throughout this paper we use the following example:

(Ex) Let ABC be a triangle and M be the midpoint of the centroidalline through
C. Then the line through A and M BubdivideB Bide BC in the ratio 2:1.

C

A E B

First of all, one has to formulate the theorem in a suitable logical theory. For
the purpose of this paper we choose the well known theory of Plane Euclidean Ge­

ometry (= PEg). (However, the ideas can be applied to many other geometries
as well.) Since the languages of usual axiomatizations of PEg by Hilbert, Tarski,
and others are not very convenient to use, we have established a suitable specifica­
tion language by extending PEg by definitions l with various useful predicates like
collinear, online, etc. (see (Kutzler 1988,1989)). The formulation of (Ex) in this
extended theory is:

1 An extension by definitions does not change the expressiveness of the theory.

177

(V point A,B,C,E,M,S)
(triangle(A, B, C) 1\ midpoint(E, A, B) 1\ midpoint(M, E, C) 1\
intersection(S,B,C,A,M) =? double(B,S, S, C))

At this point the provers based on the logical approaches start their work of
finding a proof. The basic idea of the algebraic approach is to transform this PEg­
formula into a corresponding algebraic problem (called the algebraization) and to
solve this algebraic problem by computer algebra methods. 2 By such an algebraiza­
tion we mean a translation of the formula into an algebraic model of PEg. We
choose Descartes' analytic coordinate geometry (= A9) and obtain the following
algebraic translation of (Ex):

(VXB,XC,YC,XE,XM,YM,XS,YS E R)
(XbYC # 0 1\ XB - 2XE = 01\ XE + Xc - 2XM = 01\ Yc - 2YM = 0 1\
xL- + yL- # 0 II x1- 2XBXC + x~ + yb # 0 1\ XCYM - XBYM + XMYC # 01\
YcXs - YCXB + YSXB - YsXc = 01\ XSYM - XMYS = 0 =?

x1- 4x~ + 8xsxc - 2XSXB - 3x~ - 4yb + 8ycYs - 3y~ = 0)

Here, (x,,,, Yo,) are the Cartesian coordinates of point 0:. We also have set XA, YA, YB to
zero, because a special choice of coordinate axes (here: origin in A, x-axis through
B) does not effect the validity of the theorem. The algebraic translation of the
atomic formulae like triangle(A, B, C), etc. is straightforward using a "PE9-A9
dictionary". The design of such a dictionary requires some initial effort. For our
specification language this has been done in all detail in (KUTZLER 1988).

The full second order theory PEg is undecidable. Its elementary part (denoted
by PEgeIem) is decidable. But even the best decision procedure that is available
today, namely Collins' method, is impracticable. The only existing implementation
of Collins' algorithm in the SAC-2 computer algebra system does not allow to solve
examples with more than five variables within three hours of CPU-time.

3. Buchberger's Grobner Bases method. In 1965, B. Buchberger developed
the method of Grabner bases. The basic idea of this method is to solve a problem for
an aribitrary set of multivariate polynomials F by transforming F into a standard
form G (the Grabner basis form) and solving the problem for G. For many classes
of problems, certain useful properties of Grabner bases allow a fast solution for G.
The algorithm for transforming F into G has become known as the Grabner bases
algorithm or as Buchberger's algorithm.

The original application was for finding a basis for the residue class ring of
a zero-dimensional ideal (BUCHBERGER 1965).3 Later he described how to use
Grobner bases for solving systems of algebraic equations (BUCHBERGER 1970).
There followed many more results by Buchberger and others. Today, the Grabner

2The soundness of this algebraic approach is based on the fact that PSg is a categorical theory,
i.e. all models of psg are isomorphic.

3The method is named after Prof. W. Griibner, the thesis advisor of B. Buchberger, who stimu­
lated the research on the subject.

178

bases method provides solutions to a wide range of problems that can be formulated
using finite sets of multivariate polynomials. In this section, we describe the main
ideas of the method and sketch the algorithm in its basic version. A thorough

introduction to the method of Grabner bases is (BUCHBERGER 1985), where also a
complete reference to the literature is given. Details on applications of the method
to various geometric problems are given in (BUCHBERGER 1987).

Let K be a field and K[y!, . .. ,Yrn] be the ring of m-variate polynomials over
K. We use f,g, h as typed variables for polynomials in K[Yll"" Yrn], F, G for
finite subsets of K[Yl," . ,Yrn], t, u for power products of the form Yi' ... y;;'m, a, b
for elements in K, and i, j for natural numbers. Let some total, admissible4 ordering
< on the power products be given.5 It is straightforward to extend the ordering to
arbitrary polynomials. For a fixed ordering <, coeff(g, t) denotes the coefficient of t
in g, lpp(g) denotes the leading power product of 9 w.r.t. <, and lc(g) denotes the
coefficient of lpp(g).

A non-zero polynomial f gives rise to the following reduction relation: 9 -> j h

(g reduces to h modulo f) iff there exists u, b -I 0 such that b· u . Ipp(J) is identical
with some monomial of 9 and h = 9 - b . u . f. Such a polynomial reduction step
9 -> j h can be viewed as a generalized division, deleting a monomial in g. h is
strictly smaller than 9 w.r.t. <.

Additional notations are: 9 ->F h (g reduces to h modulo F) iff there exists
f E F such that 9 -> j h; fl.F (g is irreducible modulo F) iff there exists no h such
that 9 ->F h; ->j (->p) denotes the transitive closure of ->j (->F); +--+j (+--+'F)
denotes the symmetric, reflexive and transitive closure of -> j (-> F); h is a normal
form of 9 modulo F iff 9 ->'F hand h.F. In the sequel, let N F denote an algorithm for
computing, for given F, 9 a normal form of 9 modulo F. Such an algorithm is called
a normal form algorithm. The ideal generated by F is the set IdeaIK[Yl, ... ,Ym](F) :=

{LjEF hi' f I hj E K[y!, ... , Yrn]}. If the domain is clearfrom the context, Ideal(F)
is written for short. The zeros of F is the set Zero(F) := {(al,'''' arn)} E en I
fYlo ... ,Ym [al," . ,am] = 0 for all f E F}.

EXAMPLE 3.1. Choose K = Q, n = 3, the lexical ordering, 9 = y~ +YlY2Y3 - yi,
and h = YlY3 - Y2, f2 = YlY2 - YI, F = {fl,f2}' Then, 9 can be reduced to
hi = 2y~ - yi modulo fl using u = Y2 and b = 1. The second monomial of 9 is
deleted by this reduction. hI is a normal form of 9 modulo F, because hi cannot
be reduced further by fl or f2. On the other hand, 9 can also be reduced to

h2 = YlY3 + y~ - yi modulo h using u = Y3 and b = 1. h2 further reduces to
h3 = y~ + Y2 - yi modulo hand h3F. Therefore, h3 is a normal form of 9 modulo
F.

As can be seen from this example, in general, the normal form of a polyno-

4 An ordering < is called admissible iff 1 = Y? ... Y~ is minimal under < and multiplication by a
power product preserves the ordering.

5Examples for such orderings are the total degree ordering (1 < Yl < Y2 < Yr < YIY2 < yi <
y~ < ... in the bivariate case) and the lexical ordering (1 < Yl < Yf < ... < Y2 < YIY2 < YfY2 <
... < yi < Ylyi < ... in the bivariate case).

179

mial 9 modulo a basis F is not unique, since there may exist several "reduction
paths" leading to different normal forms. Bases for which this cannot happen are
emphasized in Buchberger's theory:

DEFINITION 3.1. (BUCHBERGER 1965) G is called a Grabner basis iff each 9
has a unique normal form modulo G.

This canonical simplification property of Grabner basis is the key to a large num­
ber of applications. For making the Grabner bases method (i.e. solving a problem
for a set F by transforming F into Grabner basis form G and solving the problem
for G) constructive one needs an algorithm for constructing, for a given set F, a set
G, such that Ideal(F) = Ideal(G) and G is a Grabner basis. Such an algorithm
has been given in (BUCHBERGER 1965). Before this algorithm is presented, its two
main algorithmic ideas, namely "completion" and "critical pairs" are sketched:

Whenever a polynomial 9 gives rise to two different normal forms hI, h2 modulo
an arbitrary basis F, it suffices to add the difference hI - h2 to F in order to enforce
that these two reduction paths (modulo FU {hI - h2 }) yield the same normal form. It
is easy to check that the ideal of the basis has not been changed by this completion.

This completion procedure is not effective, because· infinitely many polynomials 9

would have to be tested. Buchberger found that it suffices to consider only finitely
many such polynomials, namely all S -polynomials of pairs of elements of F. These
pairs of elements of the basis are called critical pairs. The S - polynomials are the
"minimal" polynomials where distinct reductions can occur.

DEFINITION 3.2. (BUCHBERGER 1965) S - polynomial(fI' h) := UI • fi - ~~f}~l'
U2' f2' where UI, U2 are such that UI . fi and U2' f2 have the same (smallest possible)
leading power product (= least common multiple of lpp(fr) and lpp(h)).

By the construction, an S - polynomial of two elements of F lies in the ideal
generated by F, hence its normal form must be zero. For the completion step,
therefore, it suffices to compute one normal form and to add it to the basis in case
it does not vanish. This yields the following algorithm. (Here, N F is any normal
form algorithm.)

ALGORITHM 3.1. (BUCHBERGER 1965)
G:=F

B:= {(fI,j2) I fI,j2 E G,fI 1= h}
while B 1= 0 do

(fI,j2) := a pair in B
B:= B - {{Jr,h}}
h := N F(G, S - polynomial(Jr, f2))

if h 1= 0 then(B := B U {{g, h} I 9 E G}; G := G U {h})

A Grabner basis as defined above and as constructed by this algorithm is not
necessarily unique. Different normal form algorithms may lead to different Grabner
bases. A Grabner basis G is called reduced iff 9 is irreducible modulo G - {g}
and lc(g) = 1 for all 9 E G. Reduced Grabner bases are unique, for their con-

180

struction the basic algorithm has to be adjusted accordingly. The above algorithm,
though structurally very simple, is of extremely high complexity. In (BUCHBERGER
1979) an improved version of the algorithm is given that significantly improves the
computing times. The main idea was to find criteria that allow to detect whether
an S - polynomial will reduce to zero without actually having to do the (some­
times very expensive) normal form computation. Two such criteria are contained
in Buchberger's improved algorithm. In the sequel, let GB denote an algorithm for
computing, for a given F a reduced Grabner basis of F.

Below, some of the most important properties of Grabner bases are summarized.

THEOREM 3.1. (BUCHBERGER 1965,1970)

• (Ideal membership)
For all F,f: f E Ideal(F) iff NF(GB(F),J) = o.

• (Radical membership)
For all F, f: f vanishes on all common zeros of F iff 1 E G B(F U {z . f - I}),
where z is a new indeterminate.

• (Solvability of polynomial equations)
For all F: Zero(F) = 0 iff 1 E GB(F).

• (Finite solvability of polynomial equations)
For all F: F has only finitely many solutions iff
for all 1 ::; i ::; m there exists an f E GB(F) such that Ipp(J) zs a power of

Yi·

• (Elimination ideals, solution of polynomial equations) (TRINKS 1978)
Let < be the lexical ordering defined by Yl < Y2 < ... < Ym'

Then, for all F, 1 ::; i ::; n: GB(F) n K[Yb ... , Yi] is a Grobner basis for the
"i-th elimination ideal" generated by F, i.e. for Ideal(F) n K[Yb' .. , yJ

• (Ideal intersection)
Let < be the lexical ordering defined by Yl < Y2 < ... < Yrn < z, where z is
a new variable. Then, for all F, G: GB({z . f I f E F} U {(z - 1) . gig E

G}) n K[Yl, ... ,Yrn] is a Grobner basis for I deale F) n I deale G).

A large amount of current research on Grabner bases aims at further speeding up
the algorithm. Today, the Grabner bases method is a central technique in computer
algebra with many applications in numerous fields. 6

4. Deciding certain geometry theorems. Collins' algorithm yields a de­
cision method for the real numbers and, therefore, a decision method for the full

6It is sometimes remarked that Grabner bases have been found already in 1964 by Hironaka (and
were called Standard bases there). But Hironaka gave only an indirect proof of the existence of
such bases. The main merit definitely lies in making this notion constructive, as it was done by
Buchberger.

181

elementary part of Euclidean geometry (and any other suitable geometry that is
interpreted over the real numbers like, for inst ance, Minkowskian geometry.) In
contrast to that, Buchberger's method works over the complex numbers. Its ap­
plication, therefore, is limited to geometry theorems that do not involve order or,
equivalently, whose formulation in PEg do not involve the basic geometric predi­
cate between. Moreover, the algebraic translation has to be of a certain form as is
requested by the following lemma proposed by (B. BUCHBERGER, personal commu­
nication). The proof of this lemma describes the method how to apply Buchberger's
algorithm GB.

LEMMA 4.1. Let <I> be an arbitrary Boolean combination of the polynomial

equations f1 = 0, ... , fn = 0, fi E Q[Yb'" Ym). Let Y = (Yb"" Ym) and a =
(a1, ... , am). Algorithm GB can be used to decide (Va E em)<I>y[a).

PROOF: The following proof, actually, constitutes an effective decision proce­
dure. For legibility we write (Va E em)<I>y[a) shortly as
(1) (Va)<I>[a).
By applying a disjunctive normal form algorithm to <I>, (1) can be transformed into
the equivalent formula

(2) (Va)((f:,1[a)C1,10 /\ ... /\ f:,r1[a)C1,r10) V ... V Uk',1[a)Ck,10 /\ ... /\ fk',rJa)Ck,rkO)),
where fi~j E {It,· .. ,fn} and Ci,j E {=,;f}. This, clearly, is equivalent to

(3) -f3a)(U:,1 [a)C~,1 0 V ... V R,r1 [a)C~,r1 0) /\ ... /\ Uk',1 [a)C~,1 0 V ... V fk',rk [a)C~,rk 0)),
where C:,j is the opposite of Ci,j' Application of Rabinowitsch's trick7 yields the
equivalent formula
(4) ..,(3a, b)((g1,da, b) = 0 V ... V g1,r, [a, b) = 0) /\ ... /\ (gda, b) = 0 V ... V gk,rk [a, b) =
0)),
where b:= (b1,1, .•. ,bk,rk) and gi,j E Q[Y1, ... ,Ym,Z1,1, ... Zk,r.) (Z1,1" .. ,Zk,rk new
variables) such that gi,j := fi~j in case C:,j is the '='-symbol and gij := fi~j . Zi,j - 1
otherwise. Finally, (4) is equivalent to

(5) ..,(3a,b)(g1,1··· g1,r,[a, b) = 0/\ ... /\ gk,1'" gk,rk[a,b) = 0),
which can be decided using Algorithm GB by applying (Solvability of polynomial
equations) from Theorem 3.1. n

For our geometry theorem proving application, Lemma 4.1 gives the following
theorem:

THEOREM 4.1. Buchberger's GriSbner bases method yields a decision procedure
for those theorems r of PEge1em that fulfill the following two properties:

(a) rAg (i. e. the translation of r into A9) is of the form (VY1, ... , Ym E R)<I>, where
<I> is an arbitrary Boolean combination of polynomial equations in Y1,"" Ym
with coefficients in Q.

(b) rAg is valid over the complex numbers, i. e. (VYl, ... , Ym E e)<I> holds.

Property (a) certainly is a strong restriction, since it excludes all theorems that

7(3a)f(a) f. 0 ¢} (3a,b)f(a)· b -1 = 0, b a new variable

182

involve order or the existence of certain objects. In fact, it is not necessarily the the­
orem itself that lies in this class or not, but the choice of the geometric specification
language and the choice of the algebraic interpretations of the language's elements
decide whether a theorem me ets (a) or not. We illustrate this observation with the
following simple example: "If A, B, C are collinear and B, C, D are collinear then
A, C, D are collinear." Suppose the theory includes just the incidence predicate on.
Then the theorem has to be formulated as follows:

(V points A, B, C, D)«3 line £1)(on(A,l\) 1\ on(B,£1) 1\ on(C, £1)) 1\

(3 line £2)(on(A, £2) 1\ on(B'£2) 1\ on(D,£2)) =*
(3 line £3)(on(A'£3) 1\ on(C,£3) 1\ on(D,£3)))

The algebraic translation of this formula is

(VXA' YA, XB, YB, Xc, Yc, XD, YD E R)(
(3a1' b1, C1 E R)«a1 i- 0 V b1 i- 0) 1\

a1xA + b1YA + C1 = 01\ a1XB + b1YB + C1 = 0 1\ a1XC + b1yc + C1 = 0) 1\

(3a2' b2, C2 E R)((a2 i- 0 V b2 i- 0) 1\

a2XA + b2YA + C2 = 0 1\ a2xB + b2YB + C2 = 0 1\ a2xD + b2YD + C2 = 0) =*
(3a3' b3, C3 E R)((a3 i- 0 V b3 i- 0) 1\

a3XA + b3YA + C3 = 01\ a3XC + b3yc + C3 = 01\ a3XD + b3YD + C3 = 0)),

which is not of the requested type (a). Extending the theory by definition with a
predicate collinear such that collinear(A, B, C) <=? (3 line £)(on(A, £) 1\ on(B, £) 1\

one C, £)) allows a much shorter formulation:

(V points A,B,C,D)
(collinear(A, B, C) 1\ collinear(A, B, D) =* collinear(A, C, D)).

Using the interpretation collinear A9«XA, YA), (XB, YB), (xc, YC)) :<=? (YB - YA)XC +
(XA - YB)YC + XBYA - XAYB = 0 yields the following algebraic translation meeting
(aJ:

(VXA,YA,XB,YB,XC,YC,XD,YD E R)

«YB - YA)XC + (XA - YB)YC + XBYA - XAYB = 0 1\

(YB - YA)XD + (XA - YB)YD + XBYA - XAYB = 0 =*
(yc - YA)XD + (XA - YC)YD + XCYA - XAYC = 0)

Our specification language from (KUTZLER 1988,1989) has been designed under
this aspect. Answering the question whether there exists an extension by definitions
of, let say PEg, together with suitable algebraic interpretations, such that a given
geometry theorem is of type (a) certainly is an interesting future research goal.

As our experiments and the experiments of Wu and Chou showed, most Eu­
clidean geometry theorems are also valid over the complex numbers. Property (b J,
therefore, is not very restrictive. However, there is no way other than using an
algorithm like Collins' method to decide whether a concrete theorem meets (b) or
not. The significance of Theorem 4.1 for proving Euclidean geometry theorems,
therefore, is as follows: In case the algebraic translation of a geometry theorem

183

fulfills property (a), it can be attacked by Buchberger's method: One has to de­
termine the set of products {gl,l'" gl,T, , ... ,gk,l ... gk,rk} mentioned in the above
proof and apply to it algorithm GE. If the result is {1}, the geometry theorem is
proved. Otherwise no conclusion can be drawn, since the theorem is wrong over C

but might still be true over R.

Buchberger's algorithm is available in most computer algebra systems. However,
the implementations vary greatly in efficiency. We experimented with R. Gebauer's
implementation in the SCRATCHPAD II computer algebra system. On an IBM
4341 our test theorem (Ex) was proved in 9.09 seconds. More experiments are
reported in Section 7.

5. Almost valid formulations. As became clear from the preceding sec­
tions, the algebraic approach to automated geometry theorem proving requires two
preparatory steps: (a) the formulation of the geometric situation as a theorem in a
suitable logical theory and (,8) the translation of this theorem into algebraic form.
(,8) has been completely investigated in (KUTZLER 1988,1989) and can, in partic­
ular, be fully mechanized. (a) is the step from the informal description to a formal
description, hence, no formal argument about its correctness is possible. Although
the user is responsible for (a), a rich specification language certainly facilitates it,
cf. the simple example from the last section.

But it still can happen that a formulation slightly differs from the "intended"
geometry theorem and, therefore, no proof is found. The following example is of
that kind: "On the two sides AC and BC of triangle ABC, two squares ACDE
and CBGF are drawn. M is the midpoint of side AB. Then the length of DF is
twice the length of CM." A formulation in pt:(; is

(\I points A, B, C, D, F, M)(triangle(A, B, C) A congruent(A, C, C, D) A

rightangle(A, C, D) A congruent(B, C, C, F) A rightangle(B, C, F) A
midpoint(M, A, B) =} double(F, D, M, C))

In this formulation the orientation of the two squares ACDE and CBGF is not
determined, hence, it allows the following four cases, in only two of which the
theorem holds (the leftmost and the rightmost). The intended case is the leftmost.

Zj{)-----
C G

B \

\
A M B

E

C

~
'\ D

_l..--

FA M B B

G G

For the algebraic translation of this example there exists a polynomial d that
"distinguishes" the valid from the invalid cases. We call the formulation of a theorem
for which this is the case almost valid. Finding such a polynomial certainly is
worthwhile, since it can be used to transform the almost valid formulation into

184

worthwhile, since it can be used to transform the almost valid formulation into
a valid one. However, its geometric value can be judged only if its retranslation
into geometric form can be done. But for this task no general solution exists so
far. Existing implementations are restricted to heuristical methods only. Therefore,
proving a geometry theorem subject to an algebraic subsidiary conditions without
doing further investigations on this condition can only be regarded as a "near­
proof" in the sense that the theorem is likely to be valid in this or a slighlty modified
version.

For finding such a polynomial one restricts interest to geometry theorems, whose
algebraic translation is of the fonn:

where hi, hj are the polynomials corresponding to the hypotheses of the theorem
and c is the polynomial corresponding to its conjecture. The algebraic problem of
automated geometry theorem proving, then, becomes

PROBLEM 5.1. Given polynomials hI' ... , hn, hi, . .. , hI" c E Q[Yb' .. , Yml. De­
cide whether (Va E Rm)(hl(a) = 0/\ ... /\ hn(a) = 0/\ hi(a) i- 0/\ ... /I h~(a) i­
o =} c(a) = 0) is valid. In case it is, the corresponding geometry theorem is
proved. Otherwise, find a polynomial d E Q[YI, ... , Yml such that (Va E Rm)(hi (a) =
0/\ ... /I hn(a) = 0/\ hi(a) i- 0/\ ... /I h/,(a) i- 0/\ d(a) i- 0 =} c(a) = 0) and
,(Va E Rm)(hl(a) = 0/\ ... /\ hn(a) = 0/\ hi(a) i- 0/\ ... /\ hk(a) i- 0 =} d(a) = 0),
or report that no such polynomial exists. In case a polynomial d is found, its
retranslation into geometric form gives the missing hypothesis.

In his method, Wu used only the "finding part" of this problem, most probably
because his careless translations almost always had hypotheses missing (even if the
formulation was correct). We refer to this as Wu's finding problem. Employing
J.F. Ritt's method of Characteristic sets, Wu gave an algorithmic solution for the
finding problem considered over an algebraically closed field. Wu's prover cannot
solve the above Problem 5.1. It generates (superfluous) subsidiary conditions also
for correct theorems.

6. Finding subsidiary conditions. Kapur described a method how to use
Buchberger's algorithm for solving Wu's finding problem over an algebraically closed
field. The remarkable fact about his procedure is that it suffices to test only finitely
many polynomials as possible candidates for d. It is, in fact, straightforward to
see that Kapur's prover, in particular, solves the above Problem 5.1 in case R is
replaced by c. Hence, for the case of Euclidean geometry, again, the method cannot

be used to prove a geometry theorem false. In the sequel let H = {hi,"" hn, ZI .

hi - 1, ... , Zk • hI, - I}, ZI, .•. , Yk new variables. We use Y as an abbreviation for

YI,'" ,Ym'

ALGORITHM 6.1. (KAPUR 1986)
(in: H,c,y)

185

G := G B(H U {z . c - I}) (using the lexical ordering such that Y < z)
if 1 E G then return 'theorem proved'

{gI,'" ,gtl := G n Q[y]
do l..!!!.. 1 ::::; i ::::; t

Gi := GB(H U {z· gi - I})
if 1 rt Gi then return 'theorem proved under the

nondegeneracy condition' {gil
enddo

return 'theorem not proved'

This prover was implemented in SCRATCHPAD II by (KUSCHE, KUTZLER
AND MAYR 1987). On an IBM 4341 our test theorem (Ex) was proved in 60.78
seconds. The example from the last section was proved to be valid subject to the
(algebraic!) condition YAXF - YBXD =I- 0 in 363.56 seconds. Kapur's prover requires
more computing time than the prover from Section 4 but, on the other hand, is more
powerful since it can generate subsidiary conditions for almost valid formulations.

Both the algorithm inherent in Lemma 4.1 and Kapur's prover are refutational
theorem provers. Our prover given below is constructive in the sense that it pro­
vides useful information about the geometric object considered. The algorithm re­
quires as additional input a distinction of the variables Y into independent variables

u = Yi" ... , Yi, (i.e. those variables corresponding to points that can be chosen a,bi­
trarily) and dependent variables x = YI, ... , Yi,-l> Yi,+1,' .. , Yi,-l> Yi,+l>' .. , Ym (i.e.
those variables corresponding to points that are constructed subject to conditions).

ALGORITHM 6.2. (KUTZLER AND STIFTER 1986)
(in: H,c,u,x)
G := GB(H) (using a lexical ordering such that u < x)
if G n Q[u] =I- 0 then return' wrong choice of indep. variables'

r:= NF(c,G)
if r = 0 then return' theorem proved'

(pr,D):= ITPSRED(r,G,u,x)
if pr = 0 then return' theorem proved under the nondegeneracy

condi tions) D
else; return 'theorem not proved)

ITPSRED (in: G,r,u,x; out: r,D)
D :=0
do while (::Jg E G,p)r r:g p

choose g E G, p such that r r: 9 p
r:= NF(p, G)
D := D U {lcQ(u)[x](g)}

enddo

Here, ITPSRED is a modified version of a normal form algorithm, using a new
notion of reduction, called pseudoreduction, which we introduced in 1986 and which
is defined as follows. (Below, ICQ(u)[x](g) denotes the leading coefficient of g regarded

186

as a polynomial in Q(u)[x].)

DEFINITION 6.1. r u-pseudoreduces to p modulo g iff [cQ(u)[x](g)· r -tt p and

Eg . For abbreviation we write r r::g p.

This prover is more in the spirit of the "Grobner bases method": In a first step
the hypotheses polynomials are transformed into Grobner basis form G, in a sec­
ond step the conjecture polynomial is processed with respect to G. This prover
solves a slightly different algebraic problem and is, in fact, not so powerful as Ka­
pur's prover (extensive experiments showed that it can prove only 90-95% of the
examples proved by Kapur's method). On the other hand it is often faster, the
preprocessing of the hypothesis allows to check various conjectures for the same
hypotheses with a minimal additional effort and, finally, the Grobner basis form of
the hypotheses gives useful information about the geometric object itself, since it
"solves" the hypotheses polynomials for the dependent variables. The test theorem
(Ex) gives the following basis (polynomials containing the new variables introduced
by Rabinowitsch's trick are not displayed), from which it is easy to compute the
coordinates of the constructed points E, M, S as soon as the triangle (i.e. the coor­
dinates of B, C) are fixed.

Ys - ~YC
Xs - ~xc - ~XB
YM - !Yc
XM - !xc - ~XB
XE - !XB

Again, the prover was implemented in SCRATCHPAD II by (KUSCHE, KUT­
ZLER AND MAYR 1987). The computation of the Grobner basis took 30.61 seconds
on an IBM 4341, the (pseudo)reduction of the conjecture took 0.34 seconds. The
example was proved without any subsidiary conditions.

We also gave the following algorithm as an alternative to Algorithm 6.2. While
in the above prover all computations were done over the rational numbers, this
prover does all computations over the rational function field obtained by adjoining
the independent variables u to Q. This allows to use the ordinary normal form
computation for step 2. However, the determination of the necessary subsidiary
polynomial d, if any, is quite complicated and involves complete tracing of Buch­
berger's algorithm.

ALGORITHM 6.3 (KUTZLER AND STIFTER 1986)
(in: H,c,u,x)
G:= GB(H) (computed in Q(u)[x])
if 1 E G then return' wrong choice of indep. variables.'

r:= NF(c,G) (computed in Q(u)[x])
D := all denominators appearing in c = LhEH fh . h
if r = 0 then return 'theorem proved under the nondegeneracy

condi tions' D
else return 'theorem not proved'

187

The determination of D is not contained in our implementation (KUSCHE, KUT­
ZLER AND MAYR 1987). The test theorem (Ex) took 9.58 seconds for the Grebner
basis and 0.74 seconds for the normal form computation. The Grebner basis in­
cludes the same polynomials as above.

7. Experiments. For our experiments we have selected twenty representative
theorems from plane Euclidean geometry, all taken from the existing literature on
automated geometry theorem proving. All examples are referenced only by their
name, full descriptions (including the formulation in PEg and the translation into
A9) can be found in (KUTZLER 1988). Some of the examples have been used in
two variants.

The table summarizes the computing times for the four provers discussed in this
paper, namely the prover based on the Theorem 4.1, the prover of Kapur (Algorithm
6.1), and the provers of Kutzler/Stifter (Algorithms 6.2 and 6.3). For the latter
three methods the times for two main steps are given separately. The symbol '00'
in dicates that the computation was aborted after approximately 3 hours CPU time,
the symbol 't' indicates that the computation could not be completed within 4MB
memory. For the answers we use the following symbols:

, or ' - theorem proved;

, * ' - theorem proved subject to an algebraic subsidiary condition;
, 0' - theorem not proved (prover stopped but no proof was found);
, ? ' - theorem proved or proved subject to a condition;

times in seconds using SCRATCHPAD II on an IBM 4341
Example var Thm. 4.1 A/g. 6.1 ([(apur) A/g. 6.2 ([(u/Sti A/g. 6.3 ([(u/Sti)

congr. of halves 10 11.48 or 13.13+ or 7.93+ 0.55 or 8.88+ 1.83
-"- 8 1.45 or 1.73+ or 0.80+ 0.48 or 2.64+ 1.85
Thales'Thm 6 1.15 or 1.64+ or 1.33+ 0.04 or 3.96+ 0.08
Thales' Inverse 6 2.29 or 3.22+ or 3.71+ 0.02 or 6.01+ 0.02
~ circumctr 6 0.81 or 1.39+ or 1.06+ 0.11 or 2.81+ 0.41
~ orthoctr 6 0.73 or 1.20+ or 0.95+ 0.08 or 2.71+ 0.27
6 centroid 11 3.44 or 5.89+ or 4.21+ 0.18 or 6.34+ 0.65
- - 9 1.80 or 1.80+ or 0.96+ 0.42 or 3.00+ 1.59
D. centr line 8 4.64 or 5.08+ or 3.20+ 0.40 or 6.02+ 1.23
Euler line 13 20.52 or 31.81+ or 30.86+ 0.59 or 9.06+ 1.84
centr line mldpnt 11 7.55 .r 9.71+ or 6.47+ 0.28 or 10.70+ 0.76
Ninepointcircle 12 94.14 or 944.65+ or 1556.36+ 0.27 .r 15.15+ 2.30
- - 9 32.70 .r 51.70+ or 49.49+ 1.14 or 7.70+ 8.69

isosceles b. 11 257.59 or 1140.11+ or 00 32.64+ 1.92
squares on b. 9 3.52 !Gl 15.66+ 13.13 * 7.23+ 0.42 !Gl 4.20+ 1.30
- - 13 3.57 or 3.81+ or 2.38+ 0.77 .r 3.90+ 1.50
circle secants 11 4.94 or 9.76+ or 9.90+ 0.88 or 11.13+ 6.85
Simson's Thm 10 6678.26 0 00 5264.62+ 193.55 * 7.63+ 16.33
compi quadrangle 20 14.59 or 00 00 13.60+ 6.73
Pascal's Thm 25 t 00 00 00

Desargue's Tlun 21 00 00 00 41.72+ 36.61
Desargue's Inverse 25 00 00 00 3948.21+ 3.25
- - 20 7736.87 .r 00 00 3686.39+ 0.60
5-Star 16 00 00 00 4133.45+ 408.08
MacLane 8-3 10 6768.85 0 00 00 159.65+ 0.13

7
?
?
?
?

?
?
?
?
?
?

?
?

?
0
?

?

?
?

?
?
?

7
0

188

8. Conclusion. Buchberger's method of Grebner Bases certainly is a powerful
technique for proving geometry theorems. Its practical applicability is much better
than for the provers based on the logical approach or for Collins' method. However,
the price for this is the provers' incapability of detecting wrong theorems.

In more general, algebraic methods are becoming more and more important for
solving non-linear problems in geometry. A comprehensive survey on first results is
(BUCHBERGER, COLLINS AND KUTZLER 1988).

The main shortcoming of most existing attempts to use algebraic methods for
solving geometry problems is that useful geometric information, in many cases,
cannot be employed by these methods. Often, geometry theorems that are readily
proved by an experienced geometer by "looking at it from the right side" are not
mastered by the machine provers within reasonable time, because the algebraic
problem does not reflect this fact. A worthwhile goal for future research, therefore,
is to find ways of transforming geometric reasoning techniques to the algebra level.

REFERENCES

B. BUCHBERGER 1970, Ein algorithmisches Kriterium fur die Lasbarkeit eines algebraischen Gle­
ichungssystems (An algorithmic criterion for the solvability of algebraic systems of equations),
Aequationes Mathematicae, vol. 4, pp. 374-383.

B. BUCHBERGER 1979, A criterion for detecting unnecessary reductions in the construction of
Grabner bases, Proc. EUROSAM'79, Marseille, June 1979, ed. W. Ng, Lecture Notes in Com­
puter Science, vol. 72, pp. 3-21, Springer.

B. BUCHBERGER 1985, Grabner bases: An algorithmic method in polynomial ideal theory, N.K. Bose
(ed.): "Multidimensional Systems Theory", pp. 184-232, D. Reidel Publ. Comp., Dordrecht.

B. BUCHBERGER 1987, Applications of Grabner bases in non-linear computational geometry, Proc.
Workshop on Scientific Software, IMA, Minneapolis, March 1987, e. J .R. Rice, pp. 59-88,
Springer Verlag; also: Proc. Int. Symp. Trends in Computer Algebra, Bad Neuenahr, FRG,
May 19-21, 1987, ed. R. JanBen, Lecture Notes in Computer Science, pp. 52-80, Springer Verlag
Berlin.

B. BUCHBERGER, G.E. COLLINS AND B. KUTZLER 1988, Algebraic methods for geometric reason­
ing, Annual Review of Computer Science, vol. 3, pp. 85-119.

S.C. CHOU 1985, Proving and discovering geometry theorems using Wu's algorithm, PhD Thesis,
U Texas at Austin, USA, 78 p.

H. COELHO AND L.M. PEREIRA 1979, GEOM: A PROLOG geometry theorem prover, Laboratorio
Nacional de Engenharia Civil Memoria no. 525, Ministerio de Habitacao e Obras Publicas,
Portugal.

H. COELHO AND L.M. PEREIRA 1986, Automated reasoning in geometry theorem proving with

PROLOG, J. Automated Reasoning, vol. 2, pp. 329-390.

G.E. COLLINS 1975, Quantifier elimination for the elementary theory of real closed fields by cylin­
drical algebraic decomposition, Proc. 2nd GI Conf. Automata Theory and Formal Languages,
ed. H. Brakhage, Lecture Notes in Computer Science, vol. 33, pp. 134-183, Springer Berlin.

H. GELERNTER 1963, Realization of a geometry theorem proving machine, E.A. Feigenbaum, J.

189

Feldman (eds.): "Computers and Thought", pp. 134-152, McGraw Hill.

D. KAPUR 1986, Geometry theorem proving using Hilbert's Nullstellensatz, Proc. Symp. Symbolic
and Algebraic Computation (SYMSAC'86), Waterloo, Canada, July 21-23,1986, ed. B.W. Char,
pp. 202-208, ACM Press.

K. KUSCHE, B. KUTZLER AND H. MAYR 1987, Implementation of a geometry theorem proving

package in SCRATCHPAD II, Proc. Int. Symp. Symbolic and Algebraic Computation (EURO­
CAL'87), Leipzig, GDR, June 2-5,1987, ed. J. Davenport, Lecture Notes in Computer Science,
Springer Verlag (to appear).

B. KUTZLER AND S. STIFTER 1986, Automated geometry theorem proving using Buchberger's al­
gorithm, Proc. Symp. Symbolic and Algebraic Computation (SYMSAC'86), Waterloo, Canada,
July 21-23, 1986, ed. B.W. Char, pp. 209-214, ACM Press.

B. KUTZLER 1988, Algebraic approaches to automated geometry theorem proving, PhD Thesis, U
Linz, Austria, 161 p.

B. KUTZLER 1989, Careful algebraic translations of geometry theorems, Proc. Int. Symp. Symbolic
and Algebraic Computation (ISSAC'89), July 17-19, 1989, Portland, Oregon, USA (to appear).

A. TARSKI 1948, A decision method for elementary algebra and geometry, RAND Corp., Santa
Monica; also: University of California Press, Los Angeles (2nd edition 1951).

W. TRINKS 1978. Uber B. Buchberger's Verfahren, Systeme algebraischer Gleichungen zu lasen
(On B. Buchberger's method for solving systems of algebraic equations), J. Number Theory, vo!.
10, pp. 475-488.

W.T. Wu 1978, On the decision problem and the mechanization of theorem proving in elementary

geometry, Scientia Sinica, vo!' 21, pp. 159-172; also: Contemporary Mathematics, vo!' 29 (1984),
pp. 213-324.

W.T. Wu 1984, Basic principles of mechanical theorem proving in elementary geometries, J. Sys­
tems Sciences and Mathematical Sciences, vo!' 4, pp. 207-235.

LIE TRANSFORM TUTORIAL - 11*

KENNETH R. MEYERt

I. Introduction. This survey paper is an extension of Meyer (1990) since it
contains complete proofs of the main theorems and some generalizations of Lie
transform theory. However, the first part of this paper deals with the applications
of Lie transforms to various perturbation problems leaving the technical proofs to
the later sections.

Over the years many different techniques have been developed for handing vari­
ous perturbation problems. Some are suited for a few special problems while others
are quite general, but almost all were developed before the computer age. To our
knowledge only one general technique was developed specifically to be used in con­
junction with a computer algebra system, namely the method of Lie transforms. It
is truly an algorithm in the sense of modern computer science: a clearly defined
iterative procedure.

The method was first given in Deprit (1969) for Hamiltonian systems of differ­
ential equations, then generalized to arbitrary systems of differential equations by
Kamel (1970) and Henrard (1970). The predecessor of this method was a linilted set
of formulas given in Hori (1966). All these papers appeared in astronomy journals
which are far from the usual journals of perturbation analysis. Through the seven­
ties only a few papers on this subject appeared outside the astronomy literature.
Recently, several books have presented the method but only in the limited context
in which it was initially developed.

In this paper we would like to indicate the great generality of the method by
illustrating how it can be used to solve perturbation problems that are typically
solved by other methods, often special ad hoc methods. In most cases we have
chosen the simplest standard examples. There are many topics of current research
that are not considered here since this is to be a tutorial, not a summary of new
results.

Below we will indicate how the method of Lie transforms can be used to: calcu­
late the function given by the implicit function theorem; calculate the coordinates
given in the splitting lemma of catastrophe theory; calculate the center and stable
manifolds of a critical point; calculate a limit cycle or an invariant torus; calculate
the Poincare normal form for a center; do classical averaging to arbitrary order;
calculate Floquet exponents; calculate the Darboux coordinates of symplectic ge­
ometry. All these seemingly distinct calrulations can be done with one simple
algorithm - the method of Lie transforms.

Most of the first part of the paper consists of examples of problems that can be
solved by Lie transforms, without spending too much time on the derivation or the

*This research was supported by a grant from ACMP/DARPA administered by NIST.
tDepartments of Mathematics and Computer Science, University of Cincinnati, Cincinnati,

Ohio 45221

191

theory. One main theorem summarizes the power of the method and it is giyen in
Section II. The proof of this general theorem is postponed until Section VIII. The
middle sections are all examples.

Section VIII is written independently of most of the paper so if you are interested
in the proof itself you can skip the examples and go directly from Section II to
Section VIII. On a first reading this might be the best approach.

II. The Main Theorem of the Theory. In the traditional setting of pertur­
bation theory one is given a differential equation depending on a small parameter c.
When c = D the differential equation is simple and well understood, say for example
a harmonic oscillator. The problem is to understand the solutions of the equations
when c is non-zero but small. To gain generality think of any smooth tensor field
defined on some open set D c Rn depending on a small parameter. The tensor
field might be a function; a contravariant. vector field, i.e. an ordinary differential
equation; a covariant vector field, i.e. a differential form; a Riemannian metric; a
symplectic structure; or any of the other classical tensors of differential geometry.
The important thing about these objects is that there is a Lie derivative defined for
them.

Let F be a smooth tensor field defined on an open set D E Rn, that is for each
point xED there is assigned a unique tensor, F(x), of a fixed type say p-covariant
and q-contravariant. Let W be a smooth autonomous ordinary differential equation
defined on D, i.e. a contravariant vector field on D, and let ¢J(r,O be the solution
of the equation which satisfies ¢J(D, 0 = e. The Lie derivative, £'W F, is simply the
directional derivative of F in the direction of lV and is a tensor field of the same
type as F itself. The general definition is given in any non-elementary book on
differential geometry and in Section VIII. For now we shall simply give examples.

Differential geometry has used many different notations which still persist today
making a general presentation difficult. For example the object W given above
might be called an autonomous differential equation on D and so W is thought of
as a smooth function from D into Rn and is denoted by

(1)
dx
- = W(x).
dr

Then W is considered as a column vector with components WI, ... , W n . In classical
tensor terminology W is I-contravariant and we write Wi where i is a free index
ranging from 1 to n - here the superscript tells you it. is contravariant. More recent

notation is

(2)

In any case let ¢J(r, 0 be the solution satisfying the initial condition ¢J(D, 0 = e.
The simplest tensor field is a smooth function f: D ~ RI , i.e. to each point of D
you assign a scalar. The Lie derivative of f along lY, £'W f, is a smooth function
from D to RI also and is defined by

(3) £'wfex) = :rfe¢J(r,mlr=o = Vf(x)· W(x),

192

the dot product of the gradient of f and W.

The next simplest tensor field is a vector field, either covariant or contravariant.
First let X be a contravariant vector field or differential equation on D. Using
differential equation notation for X we write

(4) X: x = F(x)

where· = !. The column vector F is a representation of the contravariant vector

field X in the x coordinates. Do not confuse t and r they are different parameters

for different vector fields. Changing variables in (4) from x to e by x = r/>(r, °
where r is simply a parameter gives

(5) . (Or/>)-1 e= ae(r,O F(r/>(r,O)=G(r,O·

G is the representation of X in the new coordinate system e. The Lie derivative,
..cwX, is defined by

(6) a I of oW ..cwX(x) = -8 G(r,O = -;:;-W(x) - -;:;-(x)F(x).
r T=O uX uX

Note that x and e are the same when r = o . ..cWX is a smooth contravariant vector
field on D. We usually abuse the notation and confuse the vector field X with its
representation F in a coordinate system by writing ..cwF for (6).

Let T/ be a I-covariant vector field on D, i.e. a differential form, so

n

(7) T/ = ~hi(X)dxi.
i=l

Think of h as the column vector (hI, . .. , hn)T and change variables from x to e by
x = r/>(r,e) to get

n

(8) T/ = ~ ki(Odei
i=l

where k is a column vector related to h by

(9)

The vector k is the components of the differential form T/ in the new coordinates e.
The Lie derivative of T/ in the direction of W, ..cWT/, is a one form whose component
vector is given by

a I oh T oW T
(10) ..cWT/(x) = ork(r, e) T=O = ox(x) W + &x(x) hex).

193

The Lie derivative of other tensor fields in the direction W are defined in the same
way and the reader can find a complete discussion in a book on differential geometry.

Let :Jpq = :Jpq(D) denote the vector space of all smooth p-covariant and q­

contravariant tensor fields D. A symmetric notation for £wK is [K, W], the Lie
bracket of K and W. For fixed W the map £w = [', Wj is a linear operator from
:Jpq into itself. The set, V = V(D) = :Jo1 (D), of all smooth contravariant vector
fields on D is a vector space and [K, .j, for fixed K, is a linear from V into :Jpq . Thus
[".J : :Jpq X V --> :Jpq is bilinear.

Suppose that the perturbation problem is given as a tensor field Z* on D which
has a formal expansion in a small parameter e:. In many cases e: is simply a scale
parameter. Consider

(11) Z* = Z*(x,e:) = f (~~) ZJ(x)
j=O J

where each ZJ is a tensor field of fixed type. Specifically assume that

(12) ZJ E Pj c :Jpq , for j = 0,1,2, ...

where Pj is a linear subspace of :Jpq . In order to simplify the problem the method
of normal forms seeks a near identity change of variables of the form x = e + O(e:)
such that the tensor field Z* in the new coordinates is simpler.

The traditional approach is simple: assume a general series for the change
of variables, substitute it in the series for Z., collect terms, and try to choose
the coefficients in the change of variables series so that the tensor Z. in the new
coordinates is as simple as possible. For simple problems that will suffice, however
there are several disadvantages to this approach. The bookkeeping of the terms of
the series can become a major problem especially if the problem has some special
structure or symmetry. For example if Z* is a Hamiltonian vector field one would
want the vector field in the new coordinates to be Hamiltonian also. Or if Z. is
invariant under some symmetry group one would want this to be true in the new
coordinates also. Figuring out what the form of the nth term in new series can be
quite difficult using the straight plug and chug method. Also, this procedure is not
easily coded in a symbolic computer language.

Hori (1966) was interested in perturbation theory for Hamiltonian vector fields
and suggested that the near identity transformation be given as the solution of
an autonomous ordinary differential equation. Unfortunately, not all near identity
transformations are solutions of autonomous equations and so Hori was not able to
develop a general theory. Deprit (1969) took Hori's idea one step further by using
non-autonomous equations. He was able to give a simple set of recursive formulas

that overcomes the objections given above. Hori and Deprit worked with Hamilto­
nian systems, but soon afterwards Kamil (1970) and Henrard (1970) considered the

general case.

Thus to simplify the perturbation problem given hy Z. in (11) we seek a near
identity change of coordinates of the form

(13)

194

where x(~,e:) is constructed as a formal solution of the system of equations and
initial conditions

(14) dx 00 (e:i) - = W(x,e:) =:L """'I
de: . J. }=o

x(O) =~.

It can easily be shown that for any change of coordinates of the form (13) there is
a unique differential equation of the form (14) for which it is the solution function.
The W above is a smooth vector field on D for each e:, so we take

(15) Wi E ~ C V, for all i = 0,1,2, ...

where ~ is a linear subspace of V, the space of smooth vector fields on D. The
problem defined by Z. may have some special symmetry, like a reflective symmetry,
or a special structure, like being Hamiltonian, and this is reflected in the assumption
that we have identified the subspace Pi to which the Zi belong. To preserve this
symmetry or structure it may be necessary to restrict the change of variables by
requiring the Wi to lie in the subspaces ~.

In the new coordinates ~ the tensor Z.(x,e:) becomes

(16) Z' = Z'(~,e:) = f (~~) ztCO·
j=O J

We say (13) or (14) transforms (11) into (16). Also we shall say the tensor Z·
in (16) is in normal form and hence simplified by definition if we have identified
subspaces ji, i = 1,2 ... such that

(17) Z~EjiCPi' fori=I,2,3, ...

The fundamental theorem of the theory is:

THEOREM 1. Assume i) [Pi'~i] C Pi+i i,j = 1,2,3, ... and ii) for any i =
1,2,3, ... and for any A E Pi there exists B E ji and C E ~ such that

(18) B = A + [zg, C].

Then one can compute a formal expansion for W as given in (14) with Wi E ~i for
all i which transforms (11) to (16) where zj E ji for all i.

The proof of this theorem in almost this level of generality can be found in
Meyer and Schrnidth (1977) and is given in sightly more generality in Section VIII,
see Theorem 5. The proof is completely constructive in the sense that an effective
algorithm is given to find the expansion of IV and Z· term by term. In practice Zo
is given and so one takes the subspaces Pi as small as possible. The spaces ji and
~ corne from an analysis of the equation in (18).

195

III. Function Applications. In this section we will show some applications
of the method of Lie transforms when the problem involves simply functions as
opposed to vector fields.

The implicit function theorem. One of the fundamental theorems of analysis is
the implicit function theorem. We will show how to compute the implicitly defined
function using Lie transforms.

Consider a function (or formal power series) f(u, x) defined in neighborhood of

the origin in Rm x Rn into Rn such that f(O, 0) = 0 and ~~ (0, 0) = Dis nonsingular.

Then the implicit function theorem asserts that there is an analytic function (or
formal power series) 1j;(u) defined in a neighborhood of the origin in Rm into R"
such that 1j;(0) = 0 and f(u,1j;(u)) == O. Introduce a small parameter c; by scaling
u -+ c; 2u, X -+ c;x and f -+ C;-1 f, that is define F* by

(1)

and Fg(u, x) = Dx. Let x be the variable and treat u simply as a parameter in the
problem. The functions FPC u, x) are vectors of polynomials in u and x and so let
Pi be the vector space of such vectors of polynomials in u and x.

By Theorem 1 we must be able to solve (18) where A is any polynomial. In
this case the Lie bracket is [Fg, C] = DC. Clearly we can solve [Fg, C] + A = B by
taking B = 0 and C = _D- 1 A. Thus if we define ji = {OJ and:R; = Pi, then for any
A E Pi, we can solve (18) for BE ji = {OJ and C E :R; = Pi. Thus one can compute
a transformation such that F(u,~,c;) = D~. But F*(u,~,c;) = F*(u,¢>(u,~,c;),c;) =

C;-1 f(C;2u,C;¢>(u,~,c;)). So ¢>(u, 0, 1) = 1j;(u) satisfies f(u,1j;(u)) == O. This shows that
the implicit function can be computed by Lie transforms. In general the method of
Lie transforms only produces a formal series, but in this case the implicit function
theorem assures that formal series converges when the series for f does. Note that
the parameter c; was only used to order the terms in the series since it was set to 1
in the end.

The splitting lemma. The splitting lemma is an important tool in the analysis
of critical points of a function and catastrophe theory (see Poston and Stewart
(1978)). Let Vex) be a real value analytic function defined in a neighborhood of
the origin in Rn and x ERn. Assume that the origin is a critical point for V and

for simplicity assume that 17(0) = o. Assume that the rank of the Hessian, ~:~ (0),

is s, 0 :::; s :::; n. Then splitting lemma says that there is a change of coordinates
x = ¢>(y) such that in the new coordinates

(2)

Scale by x -+ c;x, and V -+ c;-217 or define

(3)

196

Here the UP(x, fl) are polynomials in x of degree i + 2, so let 1'; be the vector space
of such polynomials. ug (x) is a quadratic form in x and so by making a linear
change of variables if necessary we may assume that

(4) ug(x) = (±xi ± x~ ± ... ± x;)/2.

To solve (ILlS) let

(5) C = CX~" •• x~n

be a monomials of degree i + 2 and where C = (CI,'" ,cn)T is an n-vector. then

so the kernel of [Ug, C] consists of all homogeneous polynomials of degree i + 2
in X s ,' .. ,Xn and the range of [ug, C] consists of the span of all monomials which
contain one of Xl, •.• , x s to a positive power or equivalently those polynomials which
are zero when Xl = ... = Xs = O. Thus we can solve (ILlS) by taking 1'; as the
space of all scalar homogeneous polynomials of degree i + 2, j; the subspace of 1';
consisting of all scalar homogeneous polynomials of degree i + 2 in x., ... ,Xn alone,
and ~ the space of all n-vectors of homogeneous polynomials of degree i + 1 in

Xl,'" ,Xn -

Thus the method of Lie transforms will construct a change of coordinates so
that in the new coordinate

(7)

where for i 2: 1 the Ud(y) depend only on y., . .. ,Yn' Setting c: = 1 gives the form
given by the splitting lemma in (2).

In Meyer and Schmidt (1987) the problem for finding bifurcations of relative
equilibria in the N -body problem was reduced to finding the bifurcation of critical
points of the potential constrained to a constant moment of inertia manifold. The
constraint equation was solved by the method of Lie transforms to compute the
implicitly defined function. Then by applying the splitting lemma algorithm we
obtained the bifurcation equations in a form that could be analyzed by hand.

IV. Autonomous Differential Equations. In this section we will show how
the Theorem 1 can be used to study autonomous differential equations. There are
many more applications than the ones given here.

The classical normal form. Consider the equation

(1) x=Lx+f(x)

where x E Rn, L is an n x n constant matrix, f is an analytic function defined in a
neighborhood of the origin in Rn whose series expansion starts with second degree

197

terms. Scale the equations by x -+ eX and divide the equation by e so that (1)
becomes

(2) x = f (%) Fl(x),
1=0

where Fg(x) = Lx and FP is an n-vector of homogeneous polynomials of degree
i + 1 so let Pi be the space of all such polynomials.

Assume that L is diagonal so L = diag(AI"'" An). In order to solve (ILlS) let

(3)
A = axk, B = bx\ C = cx k

k = (k I , ••• ,kn), x = (Xl, ... ,Xn), Xk = X~'" 'X~n

and substitute into (ILlS) to get

(4)

The coefficient matrix, L - (~K8A8)I, of cxk is diagonal with entries Aj - ~k8A8'
So to solve (ILlS) take

(5)
Cj = -aj , bj = 0 when Aj - ~k8A8 =I 0

Aj - ~k8A8

Cj = 0 , bj = aj when Aj - ~k8A8 = 0

Let ej = (0, ... ,0,1,0, ... , O)T be the standard basis for Rn. From the above we
define

(6)
jj = span{ejxk : Aj - ~k8A8 = 0, ~k8 = i + I}

:Ri = span { ejxk : Aj - ~k8A8 =I 0, ~k8 = i + I}

so the condition in ii) of the Theorem 1 is satisfied. So (27) can be formally trans­
formed to

(7) y = f (%) F~(y),
.=0

where FJ E ji for all i 2: 1. Setting f = 1 brings the equations to the form

(S) y = Ly + g(y)

where the terms in g lie in some .'ii. It is easy to check that a term hey) is in some
.'ii if and only if h(eLty) = eLth(y) for all y and t. Thus g in (7) satisfies

(9)

198

This formulation for the normal form does not require that L be in diagonal
form (L must be diagonalizable!). This is the classical normal form as found in
Diliberto (1961) et al. For example if n = 3 and

(10)
-1

o
o j)

so L has eigenvalues -1, and ±i then the normal form is

(11)

where the a, b and c are arbitrary series. This normal form yields the so called
center manifold since the plane w = 0 is invariant and the equations on this center
manifold are in Poincare's normal form for a center.

Invariant tori. Consider a system of coupled van der Pol equations written in
polar coordinates. Or more generally a system of the form

(12)

r = R.(r,(},c:) = ~ (~) R?(r,(})

e = (}*(r,(},c:) = ~ (~) e?(r,(})

where r is am-vector, () is an n-vector of angles, R? and e? have finite Fourier
series in the (}'s with coefficients which are polynomials in the r variables. Let Pi
be the space of all such functions.

Assume that eg = w is a constant vector, Rg = per) and that there exists a

constant vector ro such that P(ro) = 0 and 0:. (ro) has no eigenvalue with zero

real part. Then there is a formal change of variables (r, ()) -+ (p,.p) such that the
equations (11) are of the form

(13)

p = R*(p,.p,c:) = ~ (~) R~(p,.p)

¢ = if!*(p,.p,c:) = ~ (~) if!~(p,.p)

where R* and if!* are like R* and e* but have the additional property that

(14) R*(ro,.p,c:)=O and if!*(ro,.p+wt,c:) =0.

199

The first condition in (14) says that r = ro is an invariant torus for the equations
(13) and the second condition says that the equations on the invariant torus are in
normal form. IT there are no resonances among the frequencies w then cI!* (ro, </>, c:) ==
o.

Here

(15)

then

(16)

Zo _ (P(r))
0- w ' c = (U) = (u(r)e: k9

)
V v(r)e·k9

_ (a(r)eik9) _ (b(r)eik9)
A - a(r)e ik9 ,B - f3(r)e ik9

(
OP

[zg,C] = efr (
OU

~)(~)- Bv
Or

-ue
Or (
OP ik9

OU)
B~ (~) =
08

_ ((b - a)eik9)
- (f3 - a)eik9 •

To solve the second set of equations take

a f3 = da .!:..- when kw "I- 0 v=-
(17) kw dr kw

v=o f3=a when kw = o.

For the first equation in (16) first let D = 0;: (ro) and note that u = (D -ikwI)-la

solves Du - ikw u = -a for all k since D has no eigenvalue with zero real part by
assumption. So we take

(18)

This formulas satisfy the equations and clearly b(ro) = o. The space ji is the span
of all the solutions given for B and the space :R.; is the span of all the solutions given
for C above. Thus we have verified the conditions of the Theorem 1. This was the
procedure used in Meyer and Schmidt (1977) to calculate the regions in parameter
space where two coupled van der Pol oscillators had frequencies that were locked
in. The so called entrainment domains.

200

V. Non-Autonomous Differential Equations. In many applications the
differential equations involve time explicitly so one must consider equations of the

form:i; = f(t,x). In this case one would allow the transformation generated by W
to depend on t also. But this case can be reduced to the previous case by replacing

the original system with the equivalent autonomous system :i; = f(T, x), + = 1
where T is a new variable.

Consider the system

(1) . ~(c:j) x =Z*(t,x,c:) = ~ -:y ZJ(t, x),
j=O J

and the near identify transformation

(2) x = x(t,e,c:) = e + ...

generated as a solution of the equation

(3) dx n (c: j) d = W(t,x,c:) = L """'T
c: j=O J.

x(O) = e

which transforms (1) to

(4) e = Z*(t,e,c:) = t (~~) zg(t,e).
}=o J

The translation of the Theorem 1 to the non-autonomous case goes as follows.

THEOREM 2. Let :Pj (::Rj respectively) be linear spaces of smooth time de­
pendent tensor (respectively vector) fields defined for j = 1,2, ... , xED C Rn

and t E R and let jj be a subspace of :Pj . If i) ZJ E :Pj for j = 0,1,2, ... ii)

[:Pi, ::Rj] C :PHi> i,j = 0,1,2, ... iii) for any i = 1,2,3, ... and any A E :Pi there
exist B E ji and C E ::R; such that

(5) B = A+ [zg,C]- 6,

then one can construct W as in (3) with lYi E ::Ri which generates a transformation

(2) which takes (1) to (4) with Z& E:J;.

The method of averaging. The method of averaging is a special case of the normal

form theorem given above. The method of averaging deals with a periodic system

ofthe form (1) where zg = 0, i.e. :i; = c:Zr(t,x) + One seeks a periodic change

of variables, so the function W must be periodic in t also. Equation (5) reduces

B = A - 6. Given a periodic A in order to have a periodic C it is necessary and

sufficient that we take B as the average over a period of A., so B is independent

of t, and C as any indefinite integral of A-B. This shows that the normalized

201

equation (4) are autonomous, i.e. ZJ is independent of t. The name comes from
the fact that Z6 is the time average of Zf.

The Floquet exponents and the Liapunov transformation. A classical problem is
to compute the characteristic exponents of Mathieu's equation x + (a+b cos 21l't)x =

o or other similar linear periodic systems. Assume that zg (t, x) = Lx where L is

diagonal matrix L = diag(Ai"" ,An) and Z?(t, x) = Aj(t)x where Ai(t) in an n x n
21l'-periodic matrix, so let :Pi be the space of all linear 21l'-periodic systems. Seek a
linear 21l'-periodic change of variables, so seek Wi(t,x) = Ci(t)x where Ci(t) is to
be 21l'-periodic also and take ~ be the space :Pj. Equation (5) becomes

(6) B(t) = A(t) + C(t)L - LC(t) - G(t)

where A, Band C are matrices. The equation for the ijth component is

(7)

This is a linear first order differential equation in Cjj. Let Aj - Aj 1= n v'-1 for
i 1= j. Then when i 1= j take bij = 0 and Cjj as the unique 21l'-periodic solution
of (7). When i = j take bji as the average of ajj and Ci; as any indefinite integral
of (-aii + bii). Thus the space j; is all linear systems with constant diagonal
coefficient matrices. Thus we can compute a linear periodic change of coordinates
which reduces the linear periodic system (1) to the linear diagonal constant system
(4), this transformation is known as the Liapunov transformation. The entries on
the diagonal are the Floquet exponents. The equation (6) has been studied in the
more general case when L is not necessarily diagonal. The presentation given here
is merely a simple example.

A very similar problem is to calculate the series expansion of a solution of a
linear differential equation at a regular singular point.

VI. The Computational Darboux Theorem. To our knowledge the method
of Lie transforms has not been used on tensor fields more complicated than vector
fields. Here we will give a somewhat frivolous example to illustrate the generality
of the method. In order to avoid the notational overload found in modern treatises
like Kobayashi and Nornizu (1963) or Abraham and Marsden (1978), we shall use
classical tensor notation. Thus repeated indices are summed over. Since the prob­
lem is a computational one we must use coordinates in the end anyway. Flanders
(1963) is a highly recommended introduction to differential forms. The fundamental
geometry of Hamiltonian mechanics is embodied in a symplectic structure, 0, i.e. a
closed, non-degenerate 2-form. In a neighborhood of the origin in R2 n

(1)

where we have used the summation convention,Oij = -Ojj, and the Ojj(x) are the
real analytic in x. {Oij} is a 2-covariant tensor, so if you change coordinates by
x = x(y) then the tensor in the y coordinates is

(2) () r'\ ((» ox j ox j d m d n o y = Hij X Y oym -- y 1\ y. oyn

202

Sometimes we will think of O(x) as the skew-symmetric matrix (Oij(X)), the coef­
ficient matrix of the form (1). 0 is non-degenerate means that the matrix O(x) is
nonsingular for all x. (1) means that the matrix 0 transforms by

(3) 0-+ axT 0 ax .
ay ay

o is closed means that

(4) dO = aOij dx i /\ dx j /\ dx k = O.
aXk

Since we are working locally, a closed form is exactly hy Poincare's lemma so there
is a one form a(x) = ai(x)dxi such that 0 = da.

This matrix 0(0) is nonsingular and skew symmetric so there is a nonsingular
matrix P such that

(5) pTO(O)P = J = (0 I),
-I 0

which means that after a linear change of coordinates the coefficient matrix of 0(0)
is J. Darboux's theorem says there is a nonlinear change of coordinates defined in a
neighborhood of the origin in R2n so that in the new coordinates the coefficient ma­
trix of 0 is identically J in the whole neighborhood. Our computational procedure
follows the proof given by Weinstein (1971).

Assume that the linear change of variables has been made so that ncO) = J and
scale by x -+ e;x, 0 -+ e;-ln so that

(6) n = f (:;) w~ ,
8=0

where w~ is closed 2-form with coefficients that are homogeneous polynomials in x

of degree s. Let p. be the vector space of such forms and j. = {O}. Let A E P.,
B = 0 E .1., and C E !R., where !R. is the vector space of vector fields which are
homogeneous polynomials of degree s + 1. In coordinates, equation (ILlS) for this
problem is

(7)

(In general there would be a term + aaJ8m C i in (7) but this term is zero since J is x,
constant.)

Since A is a closed two form there is a one form a such that A = da so (7)

becomes

(S)

This equation has a solution C i = ai+n for 1 ::; i ::; n, C i = -ai-n for n ::; i ::; 2n,
or C = Ja. Thus there is a solution of (ILlS) and so the coordinate change given
by Darboux's theorem can be computed by Lie transforms.

203

VII. Hamiltonian Systems. For Hamiltonian systems the Lie bracket is re­

placed by the Poisson bracket. Let F, G and H be smooth real valued functions

defined in an open set in R2n, the Poisson bracket of F and G is the smooth function

{F, G} defined by

(1) {F,G} = OFT J oG
Ox Ox

where J is as in (VI.5) the usual 2n x 2n skew symmetric matrix of Hamiltonian

mechanics. A Hamiltonian differential equation (generated by the Hamiltonian H)
IS

(2) ±=JOH .
Ox

The Poisson bracket and the Lie bracket are related by

(3) J~ {F,G} = [J OF, JOG]
Ox ox Ox

so the Hamiltonian vector field generated by {F, G} is the Lie bracket of the Hamil­

tonian vector fields generated by G and F, see Abraham and Marsden (1978).

Consider a HaJniltonian perturbation problem given by the Hamiltonian

(4) H*(x,e) = t (~~) HJ(x).
j=O J

A near identity symplectic change of coordinates x = 1>(~, e) = ~ + . .. can be
generated as the solution of the HaJniltonian differential equations

(5)
dx oW
de = J &(x,e), x(O) = e, W(X,e) = t (~~) Wj+l(x).

j=O J

It transforms (4) to

(6) H*(x,e) = t (e.~) Ht(x).
j=O J

THEOREM 3. Let Pj,.'lj, and :Rj be vector spaces of smooth Hamiltonians on
D with.'lj c Pj. Assume that i) ZJ E Pj for j = 1,2,3 ... ii) {Pi,:Rj} c PHj for

i,j = 1,2,3, ... iii) for any j and any A E Pj there exist B E .'lj and C E :Rj such

that

(7) B = A+ {Hg,C}.

Then one can compute a formal expansion for W in (5) with Wj E :Rj for all j

which transforms (4) to (6) where Ht E.'lj for all j.

The classical Birkhoff normal form for a Hamiltonian system near an equilibrium

point is as follows. Assume that the HaJniltonian (4) came from scaling a system

204

about an equilibrium point at the origin. That is, H8(x) is a quadratic form and HJ
is a homogeneous polynomial of degree j + 2. Assume that the linear Hamiltonian
system

(8) . J aH8 x= -- =Ax
ax

is such that A is diagonalizable. Then one can compute a symplectic change of
variables generated by (5) which transforms (4) to (6) with

(9) H*(eAtx,c) = H*(x,c).

For a Lie transform proof see Meyer (1974).

Kummer (1976) has shown that Lie algebra theory is useful in studying normal
forms in some special cases in celestial mechanics. Taking this lead Cushman, Deprit
and Mosak (1983) have used results from representation theory to give a complete
description of the normal forms for Hamiltonian systems without the diagonalizable
assumption.

VIII. The General Lie Transform Algorithm. In this section we will give
a proof of the main algorithm of Deprit, Theorem 4, and the main perturbation
algorithm, Theorem 5, for general tensor fields. Theorem 5 is a slight extension of
Theorem 1. A general reference for the tensor analysis and notation used here is
Abraham and Marsden (1978).

Let E, F, G and El , ... , Ek be vector spaces over K where K is the real numbers
Fil or the complex numbers C; L(E; F) be the space of bounded linear functions
from E to F; E* = L(E, K) be the dual space of E; and Lk(El , ... , Ek ; K) be the
space of bounded multilinear maps from El X ... X Ek into K. Define T;(E) =

Lr+s(E*, . .. ,E*, E, ... , E; K) - r copies of E* and s copies of E, so if Z E T;(E)
then Z : E* x ... x Ex· .. x E -> K is linear in each argument. The elements,
Z E T;(E) are called r-contravariant, s-covariant tensors or simply (r, s)-tensors. In
the case r = s = 0 we define Tg(E) = K. If A: E -> E is an invertible linear map and
A* : E* -> E* is the dual map, then A~ : T;(E) -> Tr(E) is the invertible linear map
defined by (A~Z)(o:l, ... ,o:r,(Jl, ... ,(Js) = Z(A*o:l, ... ,A*o:r,A-l (Jl, ... ,A-l (Js)'

Let M be a smooth manifold modeled on a vector space E and p E M any point.
In the classical and still most important case M is simply an open set D in Rm and
E is Film itself. The tangent space to M at p, denoted by TpM is isomorphic to E
itself; the cotangent space to M at p, denoted by T; M, is the dual of TpM; and the
space of r-contravariant, s-covariant tensors at p is T;(Tplvl). The vector bundles
built on TpM, T;M, and T;(TpM) are respectively: TM, the tangent bundle;
T* M, the cotangent bundle; and T; M, the (r, s)-tensor bundle. Smooth sections
in these bundles are called respectively: vector fields (or contravariant vector fields
or ordinary differential equations); covector fields (or one forms); and (r,s)-tensor
fields. Let ':reM) be the space of smooth vector fields, reM) the space of smooth
one-forms, and 'Y.(M) in the space of smooth (r, s)-tensors. Let V: M -> M be
a diffeomorphism, p E M, q = V(p) and DV(p): TM -> TIM be the derivative of

205

V at p then DV;(p): T;(TpM) -> T;(TqM). The results of this section are quite
general so M could be a Banach manifold modeled on a reflexive Banach space E,
but the author has no examples which require this level of generality.

Consider the case where M is an open set in Rm with coordinates (xl, ... , xm).
A (0,0)- tensor field is simply a smooth function Z: M -> K. A vector field, Z, is
given by

(1)

where Zl, ... ,zm are smooth real valued functions on M. The vector field Z is the
same as the differential equation

(2)

A covector field, Z, is given by

(3)

where again Zl, ... ,Zm are smooth functions.

Let U be a smooth vector field (autonomous differential equation) on }'1 and
let X (r, y) be the general solution of the differential equation

(4) , dx () x=-=Ux
dr

which satisfies X(O,y) = y. That is, X'(r,y) = U(X(r,y)). Assume that there
is an ro > ° such that X: (-ro, ro) x M -> M is defined and smooth. X is a
function of two arguments and let' denote the partial derivative with respect to the
first argument, ' = B/Eh, and let D denote the partial derivative with respect to
the second argument, D = B/By, thus DX(r,p): TpM -> TqlYI, q = X(T,p) and
DX;(r,p): T;(TpM) -> T;(TqM). Let Z: M -> 'Y.(M) be a smooth (1', s)-tensor
field on M, p E M,q = X(r,p). Then Z(p) E T;(TpM), Z(X(r,p)) E T;(TgM),
and A(r) = DX;(r,p)-l Z(X(r,p)) E T;(TpM), so A(r) is a smooth curve of (t·, s)­
tensors in the fixed tensor space T;(TpM). The Lie derivative of Z in the direction

of U (or along U) is denoted by [Z, UJ and is defined as

Since A(r) E T;(TpM) for all r its derivative is in T;(TpM) so [Z, U](p) E T;(TpM)
and [Z, UJ is a smooth (1', s)-tensor field also and [.,.J : 'Y.(M) x :T(.H) -> 'Y.(M) is
bilinear. [.,.J is called the Lie bracket.

If M is an open set in Rm and Z: M -> R is a smooth function ((0, D)-tensor
field) then in classical notation

(6) [Z, UJ(x) = ~Z(x). U(x)

206

so [Z, U] is the directional derivative of Z in the direction U. If Z is a smooth vector
field (ordinary differential equation) as in (2) then

(7)
az au

[Z, U](x) = ax (x)U(x) - ax (x)Z(x)

where z and U are column vectors. If Z is a one form though of as a column vector
then

(8)
az au

[Z,U](x) = ax (xfu(x) + ax (xfZ(x).

Suppose that the perturbation problem is given as an (r, s)-tensor field Z = Z.
on M which has a formal expansion in a small parameter c:. Consider

(9) Z(c:,x) = Z.(c:,x) = f (~~) ZJ(x)
)=0 J

where each ZJ: M -+ T:;M is an (r,s)-tensor field.

To simplify the perturbation problem given by Z. in (9) we seek a near identity
change of coordinates of the form

(10) x = X(c:, y) = y + ...

where X(c:, y) is constructed as a formal solution of the nonautonomous system of
differential equations

(11) dx <Xl (c: j) d = W(x, c:) = L ""7j"
c: j=O J.

satisfying the initial condition

(12) x(o) = y

where each Wj: M -+ T M is a smooth vector field.

The Lie transform of Z(= Z.) by T-V, denoted by ,c(W)Z or Z· for short, is
the tensor field Z. expressed in the new coordinates and so is an (r, s)-tensor field
depending on the parameter c: also. Specifically,

(13)

In the new coordinates y the tensor Z.(x,c:) becomes

(14) Z'(c:,y) = 'c(W)Z(c:,y) = f (c:.~) zgCy).
j=O J

We say (10) or (11) transforms (9) into (14). The method of Lie transforms intro­
duces a double indexed array of tensor fields {Zj}, i,j = 0, 1, ... which agree with
the definitions given in (9) and (14) when either i or j is zero. The other terms are
intermediary terms introduced to facilitate the computation. The main theorem on
Lie transforms by Deprit (1969) in this general context is the following.

207

THEOREM 4. Using the notation given above, the tensor fields {Zj},i = 1,2, ... ,j =

0,1, ... satisfy the recursive identities

(15) Zi = Zi-l + ~ (j) [Zi-l W]
; ;+1 ~ k j-k' k+l·

k=O

REMARKS. The above formulas contain the standard binomial coefficient (~) = .,
k!UJ ~ k)!' Note that since the transformation generated by W is a near identity

transformation the first term in Z. and Z* are t.he same, namely zg. Also note that
the first term in the expansion for W starts with WI' This convention imparts some
nice properties to the formulas in (15). Each term in (15) has indices summing to
i + j and each term on the right hand side has upper index i - 1.

The interdependent of the {zj} can easily be understood by considering the Lie
triangle

(16)

The coefficients of the expansion of the old tensor field Z. are in the left column
and those of the new tensor field Z* are on the diagonal. The formula (15) says
that to calculate any element in the Lie triangle you need the entries in the column
one step to the left and up.

Proof of Theorem 4. Let Y(c:,x) be the inverse of X(c:,y) so Y(c:,X(c:,y)) ==
y, X(c:, Y(c:, x)) == x, DX(c:,y)-1 = DY(c:,X(c:, y)),and DX;(c:, y)-1 = DY;Cc:,X(t:,
Thus (13) becomes £(W)Z(c:,y) = DY;(c:,X(c:,y))Z*(c:,X(c:,y)).

Define the differential operator 1) = 1)w acting on (r, s)-tensor fields depending
on a parameter c: by

(17)
oJ{

1)J{(t:,x) = &(c:,x) + [J{, W]Cc:,x).

In computing the Lie bracket in (17) the c: is simply a parameter and so held fixed
during any differentiation. With this notation we have

(18) : {Dy;(c:,X)J{(t:,X)1 } = DY;(c:,x)1)J{(c,X)1 . .
c: x=X(e,y) x=X (e,y)

208

Define new functions by ZO = Z, Zi = '])Zi-l, i 2: 1. Let these functions have
series expansions

(19)

so

(20)

Zi(C'X)='])f=(~:) Z~-l(x)=
k=O

~ C:~-~)!) Z!-l(X) + ~ [e:) Z!-l(X), ~ (:;) WS+l(X)]

f= (c.~) (Z;+~ + t ({) [Z;=k, Wk+ll] .
J=O J k=O

So the functions zj are related by (15). It remains to show that Z. = G has the
expansion (14). By Taylor's theorem and (18)

In the cases of interest the tensor field is given and the change of variables is
sought to simplify it. When the field is sufficiently simple it is said to be in 'normal
form'. The main Lie transform algorithm starts with a given field which depends
on a small parameter, c, and constructs a change of variables so that the field in the
new variables is simple. The algorithm is built around the following observation.

COllsider the series (9) as given so all the Z? are known. Assume that all the
entries in the Lie triangle are known down to the N row, so the zj are known for

i + j :::; N and assume the Wi are known for i :::; N. Let z.~ be computed from

the same differential equation, so z.? = Z? for all i, and with WI"'" W N where
Wi = Wi for i = 1,2, ... , N - 1 but W N = O. Then

Z; = z.~ for i + j < N

Z;=z.~+[ZS, WNl for i+j=N.
(22)

This is easily seen from the recursive formulas in Theorem 4. Recall the remark
that the sum of all the indices must add to the row number, so TVN does not effect
the terms in the first N - 1 rows. The second equation in (22) follows from a
simple induction across the Nth row. The algorithm can be used to prove a gpneral
theorem which includes almost all applications, see Meyer and Schmidth (1977).

209

THEOREM 5. Let {P;}~o' {Q;}~I and {~}~I be sequences of linear spaces
of smooth fields defined on a manifold M where {P;}~o and {Q;}~I are (r, s)-tensor
fields and {Ri} ~I are a vector fields. Assume:

i) Qi C Pi, i = 1,2, ...

ii) Zp E Pi, i = 0, 1,2, ...

iii) [Pi, ~j] C PHj, i, j = 0,1,2, ...

iv) for any A E Pi, i = 1,2 ... there exists B E Q i and C E ~ such that

(23) B = A+ [zg, C].

Then there exists a W with a formal expansion of the form (11) with Wi E ~i, i =
1,2, ... , which transforms the tensor field Z. with the formal series expansion given
in (9) to the field Z· with the formal series expansion given by (14) with Z& E Qi, i =

1,2, ...

Proof Use induction on the rows of the Lie triangle. Induction Hypothesis In:

Let zj E Pi+j for 0:::; i + j :::; n and Wi E~, Z& E Qi for 1 :::; i :::; n.

Io is true by assumption and so assume In-I. By (15)

(24)

The last term is singled out because it is the only term that contains an element,
Wn , which is not covered either by the induction hypothesis or the hypothesis of
the theorem. All the other terms are in Pn by In-I and iii). Thus

(25)

where [{I E Pn is known. A simple induction on the columns of the Lie triangle

using (15) shows that

(26)

where [{S E Pn for s = 1,2, ... ,n and so

(27)

By iv) solve (27) for Wn E ~ and Zr; E Qi. Thus In is true. 0
The theorem given above is formal in the sense that the convergence of the

various series is not discussed. In interesting case the series diverge, but useful
information can be obtained in the first few terms of the normal form. One can
stop the process at any order, N, to obtain a W which is a polynomial in E and so
converges. From the proof given above it is clear that the terms in series for Z· up
to order N are unaffected by the termination.

210

REFERENCES

ABRAHAM, R. AND MARSDEN J .E. 1978:, Foundations of Mechanics, Benjamin/Cummings Pub!.
Co., Reading, Mass ..

BIRKHOFF, G.D. 1927:, Dynamical Systems, Am. Math. Soc., Providence, R.I..

CUSHMAN, R., DEPRIT, A. AND MOSAK, R. 1983:, Normal forms and representation theory, J.
Math. Phy. 24 (8), 2102-2116.

CUSHMAN, R., AND SANDERS, J. 1986:, Nilpotent normal forms and repr"sentation theory of
81(2, R), Contemporary Mathematics 56, Amer. Math. Soc., Providence, R.I., 31-5l.

DEPRIT, A. 1969:, Canonical transformation depending on a small parameter, Celestial Me­
chanics 72, 173-79.

DILIBERTO, S.P. 1961:, Perturbation theorems for periodic systems, Circ. Mat. Palermo 9 (2),
265-299, 10 (2), 111-112.

DILIBERTO, S.P. 1967:, New results on periodic surfaces and the averaging principle, Differential
and Integral Equations, Benjamin, New York, 49-87.

FLANDERS, H. 1963:, Differential Forms, Academic Press, New York.

GANTMACHER, F.R. 196·0:, The Theory of Matrices, Chelsea Pub!., New York.

HENRARD J. 1970:, On a perturbation theory using Lie transforms, Celestial Mech. 3, 107-120.

HORI, G. 1966:, Theory of general perturbations with unspecified canonical variables, Pub!.
Astron. Soc. Japan 18 (4), 287-296.

KAMEL, A. 1970:, Perturbation method in the theory of nonlinear oscillations, Celestial Me­
chanics 3, 90-99.

KOBAYASHI, S. AND NOMIZU 1969:, K, Foundations of Differential Geometry, Interscience, New
York.

KUMMER 1976:, M., On resonant non-linear coupled oscillators with two equal frequencies,
Comm. Math. Phy. 48,137-139.

MEYER, K.R. 1974:, K.R., Normal forms for Hamiltonian systems, Celestrial Mech. 9, 517-522.

MEYER, K.R. 1984:, Normal forms for the general equilibrium, Funkcialaj Ekv. 27 (2), 261-27l.

MEYER, K.R. 1990:, A Lie transform tutorial, to appear in the Proceedings of the Conferences
on Symbolic Computations at IBM, Yorktown Heights.

MEYER, K.R. AND SCHMIDT, D.S. 1977:, Entrainment domains, Funkcialaj Ekvacioj 20 (2),
171-92.

MEYER, K. R. AND SCHMIDT, D.S 1988:, Bifurcations of relative equilibria in the N-body and
Kirchhoffproblems, SIAM J. Math Ana!. 19 (6), 1295-1313.

POSTON, T. AND STEWART, 1. 1978:, Catastrophe Theory and its Applications, Pitman, Boston.

WEINSTEIN, A. 1971:, Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6,
329-346.

INTERVAL TOOLS FOR COMPUTER AIDED PROOFS
IN ANALYSIS

RAMON E. MOORE*

Abstract. A brief survey of theory and software implementations of interval and related tech­
niques for computing with machine representable sets is presented with applications to computer
aided proofs in analysis. Recent work on variable precision software is discussed.

1. Introduction. During the past three decades, a body of theory and com­
puter software has evolved enabling computations with finitely representable sets.
In the references are listed some 24 books dealing exclusively or partly with these
techniques. There are a few other books in English, which have been omitted, with
only brief discussions. New books are in progress and there are some in other lan­
guages (German, Russian, and Chinese, for example), also omitted. Only a few
papers are listed, but bibliographies containing thousands of others are included.

New developments involving variable precision computation are discussed.

Fritz Kruckeberg [27] has presented an excellent research plan for the develop-
ment of a "three-layered methodology":

• computer algebra procedures

• numerical algorithms

• an interval arithmetic with variable and controllable word length.

He envisions feedback from levels 2 and 3 to earlier levels. To do this I would
like to add the remark that, with interactive programming, a user can and will often
want to get involved in such feedback. I would like to see the explicit development
of more tools within programming languages to facilitate interactive computing.
Automation is powerful and has its place, but it is, after all, only a tool to assist the
human brain. A computer can be much more powerful than otherwise if the brain
of a mathematician is allowed as one of the "peripherals". It can be argned that
such a practice will slow things down intolerably. To this it may be countered that
it is absurd to allow an expensive automated tool to run away at breakneck speed
in some useless direction. Especially in exploratory computations such as those
involved in preliminary designs with somewhat conflicting constraints or desiderata,
it makes sense to invite the human designer to participate in decisions regarding
reasonable compromises. The same goes for many "real time computations". In
spite of airplane accidents often being attributed to "pilot error", I would have
strong misgivings about embarking on a flight that was going to be on auto-pilot
the whole trip including take-off and landing.

With a pair of machine numbers, we can represent an interval on the real line.
With vectors of these, we can represent sets in finite-dimensional spaces, and with
unions, more complicated sets. Using polynomials with interval coefficients, we can

*Department of Computer and Information Science, Ohio State University

212

represent on computers, sets in function spaces. Again we can deal with vectors
of such sets. We can program a test for empty intersection of two such sets and
and for inclusion of one such set in another. ¥lhen two such sets have non-empty
intersection, we can find the intersection.

We can extend the arithmetic operations of the real number field to arithmetic
operations on intervals, using elementary properties of inequalities: a S x S b and
c S y S d imply a + c S x + y S b + d, etc. See [5], [15], [17] for discussions of
properties of interval arithmetic. It turns out that interval numbers no longer
form a field; many of the nice algebraic properties of real numbers are lost in the
extension. For example, distributivity, x(y + z) = xy + xz, is replaced by sub­
distributivity, X(Y + Z) is contained in XY + X Z. On the other hand, it
turns out that we can compute, in a finite number of machine operations, intervals
containing the range of values of programmable functions in this way, whether or
not the functions are monotone. It is efficient, of course, to make use of monotonicity
whenever possible.

In the complex plane, we can represent sets conveniently either by rectangles
(vectors of intervals) [5] or by discs, or circular rings [22], with appropriate exten­
sions of complex arithmetic for such sets.

Using directed rounding [5], [10], [15], [17], [24], we can be certain that machine­
computed intervals really do contain the sets of all possible results of real (infinite­
precision) arithmetic operations. Thus, we have a means of rigorously bounding the
effects of rounding error in any machine computation.

We can extend integration to interval-valued functions [14], [15], [17], [28]. By
these procedures the classical inequalities generalize to inclusion relations. Recall
the completely general "sub-set property": for an arbitrary mapping, f: X --t Y,
where X and Yare arbitrary sets, we have

ZQ.X implies f(Z)Q.f(x).

This property is enjoyed also by natural interval extensions of programmable func­
tions and by their outwardly rounded computer implementations. It is also pre­
served by integration. It follows that the classical integral (and differential) in­
equalities can be generalized to inclusion relations for set-valued mappings with no
assumptions about monotonicity of any kind for the operators [13], [17] and [28].

In keeping with Kruckeberg's program, we should definitely include, among the
computer algebra routines to made available in connection with interval algo­
rithms: pre-conditioning transformations for linear systems [4], [5], [8], [17]; recur­
sive automatic differentiation [15], [17], [23], [29]; special transformation (centered
forms, etc.) for sharper bounds on ranges of values [8], [15], [17], and especially
[25]; coordinate transformations to fight the effect of "wrapping error" in initial
value problems in ordinary differential equations [7], [8], [15], [17], [20], [21], [22],
[24]; in addition to any algebraic routines available for carrying out factorizations
or symbolic cancellations to avoid or reduce loss of significant digits, e.g. through
subtraction of nearly equal numbers in the computer.

213

2. Tools for what? What kind of computer aided proofs in analysis can we
do with the sorts of interval tools mentioned in the introduction? These include at
least the following.

2.1 Existence. We can program computer verification of sufficient conditions
for existence theorems, for example via fixed point theorems involving continuous
mappings of compact convex sets into themselves. Since we can compute, using
interval methods, sets (such as multi-dimensional intervals) containing ranges of
values of mappings, we can test whether such sets are contained in a given set of
arguments. If so, we have a computer aided existence proof; for this and many
other techniques for proving existence, see e.g. [3], [4], [5], [9], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [24], [26], [27], [28].

2.2 Non-existence. By testing for empty intersections, for instance, a com­
puter can determine that no solutions exist in a certain set. See the same set of
references as in 2.1 above. As a simple example, if the computer finds, using inter­
val computation or otherwise, that f(X) does not contain 0, then f has no zero in
the set X. As another example, interval Newton methods for nonlinear operator
equations in finite or infinite dimensional spaces (see e.g. [4], [17], [19]) involve some
mapping, say P, with the property that if X contains a solution then so does P(X).
If the computer finds that X has empty intersection with P(X), then it has proved
that there is no solution in X. This procedure is used very effectively in interval
methods for global optimization [19], [26] and in other application areas as well.
In optimization problems, tests for feasibility follow along similar lines, based on
set inclusions verified by the computer.

2.3 Uniqueness and convergence. Computationally verifiable conditions for
uniqueness and for convergence of iterative methods are also discussed extensively
in the references given.

2.4 Finite termination. A general theory of finite termination of computer
programs of certain types is discussed in [17]. Many iterative interval methods have
the form X n+1 = P(Xn)' with a mapping P with the property that P(X) still
contains a fixed point x whenever X does. If we implement an outwardly rounded
evaluation in fixed precision of P, say P, then we can compute the sequence

X n+1 = P(Xn) n X n, (where n means intersection).

As long as we know by construction that P has the subset property (inclusion
isotonicity: X contained in Y implies P(X) contained in P(Y», then, if we can
find an Xo such that P(Xo)QXo, it follows that the sequence {Xn} is nested and
converges in a finite number of steps to an interval (or interval vector) which satisfies
the computationally verifiable test: X n+1 = X n . This is so because there is only a
finite set of different machine numbers in fixed precision.

Search procedures for finding such an Xo are also discussed in [17], [26] based in
part on exclusion tests for non-existence. We can start with a large region and throw
away parts shown not to contain a solution or a fixed point or a global minimum

214

as the case may be. It can be shown that such procedures will terminate in a finite
number of steps with the information that the initial region contains no solution
or else that there are solutions in certain computed sub-regions and perhaps still
others in regions to be further analyzed with higher precision.

2.5 Computable rigorous bounds. Interval algorithms discussed in the ref­
erences given can provide machine computable sets guaranteed to contain solutions
for standard classes of problems: roots of polynomials, zeros of functions, solutions
of linear systems and non-linear systems, values of definite integrals, solutions of
initial and two-point boundary value problems for linear and nonlinear ordinary dif­
ferential equations, certain types of problems in partial differential equations (much
remains to be done in this area!), global optimization (see the recent excellent book
[26]), and much else.

3. Dichotomy vs. trichotomy. When testing a relation such as: [x ~ y?],
when x and yare computed numbers, a simple yes or no answer may not be ap­
propriate. If the algorithm involved supposes x and y to be produced by certain
operations and the computer instead only approximates those operations, then a
wrong logical path may be followed because of approximation error in x or y. Thus,
for example, even the seemingly safe bisection method for finding real zeros of con­
tinuous functions can go wrong on a computer because of approximation error (for
example round-off error) in evaluating a function. Such flaws in standard methods
of computing can be avoided easily with outwardly rounded interval computation
and three-valued logic.

If we compute intervals X and Y known to contain the (unknown) exact values
of x and y, then we can test: [X ~ Y?]. There are now three possible outcomes.
Suppose X = [a, b] and Y = [e, dJ. (1) If b ~ e, then certainly [x ~ y] is true; (2) If
d < a, then certainly [x ~ y] is false; (3) Otherwise we don't know whether [x ~ y]
is true or false, so we must take other action depending on the situation-perhaps
stop or perhaps repeat part or all of the computation with higher precision. In this
way we can, for instance, make the bisection method completely rigorous.

Similarly, if for intervals or other sets, X QY implies existence say, and an empty
intersection of X and Y implies non-existence in a certain situation, then there is
still a third possibility, namely that X and Y overlap without satisfying either of the
first two conditions. In that case, we draw no conclusion but proceed to appropriate
further analysis.

4. Fixed precision interval software. While a number of computer pro­
grams and software systems employing interval computation were written as long
ago as 1959 or earlier, it is not until very recently that readily available portable
software packages have appeared. We now have ARITH, a package of FORTRAN
subroutines, and FORTRAN-SC (for Scientific Computation) [19] which run on
IBM mainframes of recent vintage. FORTRAN-SC is a very high level language
with many features intended to make it user friendly such as allowing vectors and
matrices to be defined as data types and even user defined operators and data types.
We also have PASCAL-SC [6] which runs on IBM and other PC's and is similarly

215

powerful. Automatic differentiation routines are also available in PASCAL-SC.

These systems enjoy an additional keen advantage. They provide maximally
accurate inner products at very high efficiency by use of long virtual accumulators
and an algorithm of Bohlender [6], [10], [19]. This enables such software to obtain
very high accuracy in the solution of even ill-conditioned linear systems for example.

These are very powerful programming languages for implementing the kinds of
interval algorithms discussed in this paper and deserve extensive use.

5. Variable precision interval software. To my knowledge the first re­
ported variable precision interval programs were those of F. Kruckeberg [27], pages
95-101, in 1985, mentioned in the introduction of this paper. He reported results
of guaranteed accuracy for a system of three differential equations, for example, to
50 and 70 decimal digits.

More recently, there has appeared the remarkable book of Oliver Aberth [3].
It comes complete with floppy disks for IBM-PC's. It allows up to 122 decimal
digits of precision. The precision, number of digits carried, can be varied during the
course of a computation. Aberth's implementation of interval arithmetic is aimed
mainly at problems with precise inputs, so he used a form of interval arithmetic he
calls "range arithmetic", carrying the midpoint of an interval represented by up to
122 decimal digits and a "range" represented by two decimal digits and indicating
± that amount in the last two digits carried.

Aberth's work [3] also includes exact computation with rational numbers with
application to exact solution of linear systems with rational coefficients.

In range arithmetic with variable precision, he provides, in addition to the
general programming language PBASIC, some problem solving routines all of which
provide answers correct to the last decimal place displayed. These include: function
evaluation, zeros of functions, solving systems of linear equations, finding real and
complex zeros of polynomials, finding eigenvectors of symmetric square matrices,
derivatives of functions, definite integrals, linear differential equations with constant
coefficients, first and second order nonlinear differential equations.

The idea in all this variable precision work is to allow a user to specify the
accuracy he wants and the computer gets it. And guarantees it. The work of Aberth
is a giant step in that direction. To some extent he has already done it. I think what
remains is to extend problem domains, and improve portability and efficiency and
"user-friendliness". Of course portability and efficiency are somewhat conflicting
goals. The closer to the hardware we get in our implementations the more efficient
but the less portable and vice versa. Perhaps the best approach at the moment
seems to be two versions: one very portable and the other very efficient (machine
dependent, largely in assembly language or even microprogrammed).

Variable precision interval software [3] offers important new tools for those in­
terested in computer aided proofs in analysis.

REFERENCES

[1] G.F. CORLISS ET AL., Bibliography on interval methods for ODEs, Marquette University,
Dept. of Math., Stat. & C.S., Tech. Rept. no. 289 (September, 1988).

216

[2] J. GARLOFF ET AL., Interval Mathematics-a bibliography, Freiburger Intervall-Berichte 85/6
and 87/2 (331 pp.).

[3] O. ABERTH, Precise Numerical Analysis, Wm. C. Brown Pub!. (with variable-precision soft­
ware on IBM-PC disks) (1988).

[4] G. ALEFELD AND R.D. GRIGORIEFF (EDS.), Fundamentals of Numerical Computation (Com­
puter-oriented Numerical Analysis), Computing Supplementum 2, Springer (1980).

[5] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Academic Press
(1983).

[6] G. BOHLENDER, C. ULLRICH, J. WOLFF VON GUDENBERG, AND L.B. RALJ", Pascal-SC. A
Computer Language for Scientific Computation, Academic Press (1987).

[7] J.W. DANIEL AND R.E. MOORE, Computation and Theory in Ordinary Differential Equa­
tions, Freeman (1970).

[8] E.R. HANSEN (ED.), Topics in Interval Analysis, Oxford U. Press (1969).
[9] E.W. KAUCHER AND W.L. MIRANKER, Self-validating Numerics for Function Space Prob­

lems, Academic Press (1984).
[10] U.W. KULJSCH AND W.L. MIRANKER, Computer Arithmetic in Theory and Practice, Aca­

demic Press (1981).
[11] , A New Approach to Scientific Computation, Academic Press (1983).
[12] U.W. KULISCH AND H.J. SETTER (EDS.), Scientific Computation with Automatic Result

Verification, Springer (1988).
[13] V. LAKSHMIKANTHAM, S. LEELA, AND A.A. MARTYNYUK, Stability Analysis of Nonlinear

Systems, Marcel Dekker, Inc. (1988).
[14] R.E. MOORE, Interval Arithmetic and Automatic Error Analysis in Digital Computing, Ap­

plied Math. and Stat. Lab. Report No. 25 (1965).
[15] , Interval Analysis, Prentice-Hall (1966).
[16] , Mathematical F:lements of Scientific Computing, Holt, Rinehart and Winston

(1975).
[17] , Methods and Applications of Interval Analysis, SIAM Studies in Applied

Mathematics (1979).
[18] , Computational Functional Analysis, Ellis Horwood and John Wiley (1985).
[19] (EDs), Reliability in Computing. The Role of Interval Methods in Scientific

Computing, Academic Press (1988).
[20] K. NICKEL (ED.), Interval Mathematics, Lecture Notes in Computer Science, No. 29, Springer

(1975).
[21] , Interval Mathematics 1980, Academic Press (1980).
[22] , Interval Mathematics 1985, Lect. Notes in C.S., Springer, No. 212 (1985).
[23] L.B. RALL, Automatic Differentiation, Lecture Notes in Computer Science, No. 120, Springer

(1981).
[24] (EDS.), Error in Digital Computation, Vol. I and II, Wiley (1965).
[25] H. RATSCHEK AND J. ROKNE, Computer Methods for the Range of Functions, Ellis Horwood

and John Wiley (1984).
[26] , New Computer Methods for Globel Optimization, Ellis Horwood and

John Wiley (1988).
[27] F. KRUCKEBERG, Arbitrary accuracy with variable precision arithmetic, In K.Nickel (1985),

pp. 95-10l.
[28] R.E. MOORE, Set-valued extensions of integral inequalities, Journal of Integral Equations 5

(1983), pp. 187-198.
[29] R.D. NEIDINGER, An efllcient method for the numerical evaluation of partial derivatives of

arbitrary order, personal communication (March, 1989).

TOOLS FOR MATHEMATICAL COMPUTATION

L. B. RALL*

Abstract. Methodology for the validation of computation of values of functions using fioating­
point arithmetic is discussed and illustrated by an example.

1. Mathematical Computation. The term mathematical computation will
be used here to denote areas of scientific computation in which goals include ob­
taining assertions about the validity of results in addition to the results themselves.
This includes computations which are inherently exact, such as those with logical
variables or integers (provided sufficient precision is available), and also symbolic
computation. In the absence of hardware or software bugs, which usually make
themselves manifest in one way or another, one can depend on the result of this
kind of computation in much the same way as on the result of a carefully proved
theorem. However, in the case of computations based on real numbers or other
objects without finite representations, one is forced to work with approximations,
and assertions of validity of results may not be easy to obtain. Attention will be
devoted here to some helpful computational tools to assist with this problem.

Close examination of the problem of validation of numerical calculations shows
that it goes beyond classical error analysis. Such analysis is tedious and usually
has to consider worst cases, so gross overestimates of actual error are common. A
better approach is to design the computation itself to produce the desired guar­
antees of validity of its results [7]. Progress in this direction turns out to involve
interaction between computer arithmetics, programming languages, and mathemat­
ical algorithms. This is a wide-ranging topic, since computer arithmetics are inti­
mately related to computer hardware itself, and mathematical algorithms suitable
for computational validation of results are still in the research stage in certain ar­
eas. Programming languages occupy a central position in this scheme. On one hand,
it should be easy to program the chosen algorithm correctly in a way accessible to
others. On the other, the programming language should permit direct access to fea­
tures of the computer arithmetic necessary for validation (such as directed rounding,
high-precision scalar products and standard functions, for example). While consid­
erable progress has been made to date, there is room for advancement on all fronts.

Some directions will be indicated below.

2. Maximum quality computer arithmetic. In the past, analysis and
implementations of computer arithmetics has tended to focus on the details of rep­
resentation of floating-point numbers, such as their radix, precision (number of dig­
its), and exponent range. A breakthrough was made in this area by an axiomatic
formulation of computer arithmetic which is independent of these details [6],[8]. If
the arithmetic unit of the computer is built in conformance with these axioms, then

*Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706

218

its behavior can be deduced. In the case of real arithmetic, these axioms yield a
floating-point computer arithmetic of maximum quality, as defined below.

Given the real numbers R and a finite set of floating-point numbers F, a floating­
point number ~ E F is said to be an approximation of maximum quality to a real
number x E R, if there is no floating-point number"., between ~ and x. The concept
of maximum quality is independent of the actual construction of the floating-point
numbers being used, while the more usual idea of the accuracy of ~ as an approx­
imation to x is determined by the spacing of the floating-point grid. Thus, while
real numbers cannot in general be represented exactly on a computer, there always
exists a floating-point approximation of maximum quality to a given real number.
Furthermore, real numbers between the least and greatest elements of F (assumed
to be the case in what follows) always can be enclosed by an interval with floating­
point endpoints. Such an interval enclosure X of a real number x E X is said to be
of maximum quality if the interior of X contains at most one floating-point number.
If int(X)nF = 0, then each endpoint of X is an approximation of maximum quality
to x, otherwise, 'f/ E int(X) is an approximation of maximum quality to x.

The problem of validation would be solved if it were possible to compute a
maximum quality floating-point approximation to the exact answer for each prob­
lem, or an interval inclusion of maximum quality. While this is probably not a
reasonable goal for most problems, it certainly can and should be a minimum stan­
dard for floating-point computer arithmetics, which will be considered to consist of
arithmetic operations and the set q; of standard functions defined in the program­
ming language used. For example, in Pascal al!d Pascal-SC [16], one has arithmetic
operators +, -, *, /, and the set of standard functions

(2.1) q; = {abs,sqr,sqrt,exp,ln,sin,cos,arctan}.

Of course, these sets can be augmented by additional useful operators and functions
in actual implementations or other languages.

The axiomatic approach to computer arithmetic is based on requirements which
a mapping 0 : R -+ F (naturally called a rounding) must satisfy. It follows from

(1) O~=~ and (2) x::; y '* 0 x ::; 0 y

for all ~ E F and x, y E R that the rounding 0 is of maximum quality, that is, there
is no floating-point number 'f/ between the real number x and its rounded value
~ = 0 x. Maximum quality floating-point arithmetic operations [Q] are defined in
F by

(3) ~[Q]'f/= O(~o".,), o E {+,-,*,/},

division by a of course being excluded, where ~ 0 'f/ denotes the exact result in R.
In actual practice, operations overflowing the range of real values represented in
F are also undefined. The value of ~ 0 'f/ does not have to be computed exactly
to implement this axiom, all that is required is an approximation which can be
guaranteed to be of maximum quality, or a maximum quality interval inclusion of
the exact result. If the final axiom

(4) O(-x)=-(Ox)

219

is satisfied for all x E R, then the mapping 0 is said to be a semimorphism. Axiom
(4) also defines the unary negation operator B in F. (It is assumed that F contains

-e for all e E F.)

Computer arithmetics satisfying these axioms are not hard to implement in
hardware (or emulate in software with less efficiency). For example, rounding to the
closest floating-point number toward or away from 0 is satisfactory, as is rounding
to the closest floating-point number if (4) is used to break ties. Implementations
of standard functions should also be of maximum quality, which means that the
floating-point standard functions 0 </l should satisfy

(2.2) (0 </l)(O = 0 (</l(O)

for all </l E <I> and e E F, where </l(0 again denotes the exact value in R. Pascal-SC [2]
requires maximum quality arithmetic operations and standard functions, but most
current languages require neither. An exception is Ada, which requires maximum
quality only for arithmetic operations. In order to provide users with consistent,
dependable numerical results, standards for programming languages should include
requirements of maximum quality for arithmetic operations and standard functions.
Furthermore, the same holds for implementations of language extensions which
include additional arithmetic operations or standard functions.

3. Directed rounding and interval arithmetic. One way to validate a
numerical computation is to obtain a floating-point interval which can be guaranteed
to contain the exact result. Even if the inclusion is of not of maximum quality, the
interval may be narrow enough to show that some floating-point number which it
contains approximates the exact result with sufficient accuracy. On the other hand,
an interval inclusion may be too wide initially to be useful. In this case, it may
be possible to reduce its width by subsequent calculations. Since its introduction
by R. E. Moore for this purpose [9], [10], interval arithmetic has been one of the
fundamental tools of validation of numerical computation (see also [1]).

The concept of maximum quality inclusion of a real interval X = [x, y] E R by
a floating-point interval:::: = [e,1)] E F is similar to the idea developed for the real
case. Here, e is the approximation of maximum quality to x such that e s x, and
1) is the maximum quality approximation to y such that y S 1). Hence, there are no
floating-point numbers between e and x, and none between y and 1). In other words,
:::: is the smallest floating-point interval which contains X or, stated differently, ::::
is the intersection of all floating-point intervals Y such that X c;:; Y.

Maximum quality floating-point interval arithmetic can be implemented using
real floating-point arithmetic with directed roundings [10]. These roundings are
denoted respectively by V (downward) with .Vx S x and t- (upward), for which
x S t-x. If (1) and (2) are satisfied, then V, t- will be of maximum quality. The
corresponding arithmetic operations 'V, a with directed rounding are defined by (3)
for 0 E {+, -, *, n. Instead of (4), one has

(3.1) V(-x) = -(t-x), t-(-x) = -(Vx),

220

for all x E R.
In addition to forming the basis for floating-point interval arithmetic, directed

rounding can be used to compute guaranteed lower or upper bounds for quantities
of interest. This could be crucial to the verification of hypotheses of theorems, for
example. However, implementation of directed rounding in the computer arith­
metic is not sufficient for these purposes unless the programming language permits
easy access to this capability. This is another failure of most current languages.
Pascal-SC, however, provides the operator symbols + <, - <, * <, I < for the
corresponding downwardly rounded arithmetic operations, and + >, - >, * >, I >
for upward rounding, with the ordinary symbols +, -, *, I representing rounding
to nearest. Thus, programming languages should have an adequate set of operator
symbols and provision for introducing others and "overloading" the meanings of
existing symbols. For example, it should be possible to use "+" to denote addition
of integers, floating-point real and complex numbers, intervals, vectors, matrices,
and so on. Pascal-SC and Ada are examples of languages in which introduction
of operators and overloading of operator symbols are possible. Rounding to near­
est, downward, and upward actually yield twelve different arithmetic operations
on floating-point numbers. If maximum quality rounding toward and away from
o is also needed, then the number of distinct arithmetic operations increases to
twenty. The important point is that the programmer should have convenient access
to whatever provided operations are significant to the computation being done.

A useful operation based on directed rounding is the outward rounding 0 of real
numbers and intervals to floating-point intervals defined respectively by

(3.2) Ox = O[x, x] = [\lx, tlx], O[x, y] = [\lx, tly].

4. Maximum quality scalar products. A cornerstone of the theory of
computer arithmetic developed by Kulisch and Miranker [6], [8] is the maximum
quality scalar product

(4.1) uDv= D(u,v)= 0 (tUi*Vi)
.=1

of floating point vectors u = (Ul, U2,' .. ,Un) and v = (VI, V2,' .. ,Vn) of arbitrary
length. As before, (u· v) denotes the exact real value of the product. There
are several ways to implement this evaluation, the simplest apparently being the
provision of an accumulator sufficiently long to hold all digits of the sum of products
in (4.1) [8]. The actual length of this accumulator depends on the number of digits
in the mantissa of the floating-point numbers used, and on the exponent range, but
is not excessively large. For example, about 400 digits suffice for the twelve decimal
digit floating-point numbers and the exponent range of -99 to +99 used in the PC
implementation of Pascal-SC [4].

The scalar product (4.1), introduced to permit maximum quality vector and
matrix floating-point arithmetic, has many other uses. For example, addition of a
sequence of floating-point numbers Vj, V2, ... ,Vn can be done with maximum quality

221

by computing the scalar product of the floating-point vector v with the summands
as components and the vector u = (1,1, ... ,1). Ordinarily, floating-point addition
is notoriously nonassociative, for example, one can rearrange the order of addition
of -1050 ,1,2,3,4,1050 to obtain any integer from 0 to 10. The use of the maximum
scalar product gives the correct answer in this case without having to order the
components of v.

Another use of the maximum quality scalar product is the accurate solution of
linear systems of equations Ax = b by the method of iterative refinement. Supposing
that Xn is an approximate solution of this system and R is an approximation to
A-I (assumed to exist), then the calculation

(4.2)

gives a better approximation if R is sufficiently good. In ordinary floating-point
arithmetic, a difficulty in application of this method is loss of accuracy in the cal­
culation of the residual rn = b - Axn, which does not occur if the maximum quality
scalar product (4.1) is used.

For the purpose of validation (that is to say, obtaining interval inclusions of the
exact results), the maximum quality scalar products with directed rounding,
(4.3)

u V v = \7(u· v) = \7 (t Ui * Vi) ,
.=1

u 8. v = ~(u· v) = ~ (t Ui * Vi) ,
.=1

are powerful tools for linear and nonlinear problems ([17], also [7], pp. 51-120).
The operators (4.3) can be used to construct floating-point interval matrix-vector
arithmetic of maximum quality. As an application, suppose that Xn is an approx­
imation to the solution x of a linear system Ax = b, and r is an interval matrix
which contains A-I. It follows that

(4.4)

As well as validating the accuracy of an approximation Xn to x, interval methods
can be used to verify the existence of A-I computationally, which in turn implies
the existence of a unique solution x of the linear system ([7], pp. 51-120). This
in turn applies to computational problems which can be reduced to the solution of
linear systems, such as the evaluation of polynomials. In most cases, inclusions of
maximum quality can be obtained by use of interval iteration. Utility subroutines
for problems of this kind are included in Pascal-SC software [4], [5].

5. Code list representation of functions. In this section, representation of
functions by code lists [12] will be introduced for computational purposes including
the validation of function evaluation. For example, the function f(x, y) represented
by the formula

(5.1) f = (xy + sinx + 4)(3y2 + 6)

is also represented by the code list

(5.2)

Neither representation is unique.

222

tj = x * y,

t2 = sin(x),

t3 = tj + t2,

t4 = t3 + 4,

t5 = sqr(y),

t6 = 3 * t5 ,

t7 = t6 + 6,

t8 = t4 * t 7.

Code lists can be used to represent functions in a general computer arithmetic A
based on a set of elements E, unary operations U, and binary operations B. Given
a set of inputs 1= {i j ,i2 , ... ,i.} C E, a code list t = (t j ,t2, ... ,in) is a finite
sequence of terms tk, each of which is of the form

(5.3)

JJr

(5.4)

In other words, each argument of the operation which defines tk is required to be
an input or a previous term tI, t 2 , ... , tk-l of the code list.

If all terms of the code list t are defined, then its final term tn is said to be the
value of the function f : I -> E represented by the code list t, that is,

(5.5)

This value will also be called the output of the code list.

The set I of inputs is often taken to consist of variables V = {Xl, X2, . .. , XO!},
constants C = {CJ,C2,'" ,cp}, and parameters P = {Pl,P2, ... ,p.y} with a +
(3 + 'Y = 8. In this context, the dependence of the function f on constants and

parameters is usually suppressed, and one writes tn = f(XI,X2," "xO!)'

For the present purpose, the U of unary operations will consist of unary +, - and
the set (2.1) of standard functions </J, and the binary operations will be the arithmetic
operations +, -, *,;' The code list can be evaluated in any computer arithmetic
A in which these operations are defined. For example, (5.2) could be evaluated in
complex or interval arithmetic just as well as in real arithmetic. The result would
be the value of the complex extension or an interval inclusion of the corresponding
real function, assuming of course that all terms of the code list remain defined.
The same observation applies to the corresponding floating-point arithmetics. The
result of evaluation of a code list thus depends on the type of elements E on which
the arithmetic is based, and the definitions of the operations involved.

223

In real floating-point arithmetic, the quality of the output of a code list is
generally unknown, even if each operation and function is evaluated with maximum
quality. Thus, even maximum quality floating-point arithmetic is inadequate for the
purpose of validation. A simple and direct approach to determination of the quality
of the output is to evaluate the code list in floating-point interval arithmetic, with
the inputs replaced by the corresponding point intervals, for example X = [x, x]
and Y = [V, y] in the case of (5.2). The results of real and interval floating-point
evaluation of (5.2) for x = l.556, Y = 9.87654321098 are given below:

Term Computed Value Interval Inclusion

tl l.53679012363E + 01 [l.53679012362E + 01, l.53679012363E + 01]

t2 9.99890536354E- 01 [9.99890536353E - 01, 9.99890536354E - 01]

t3 l.63677917727 E + 01 [l.63677917725E + 01, l.63677917727 E + 01]

t4 2.03677917727 E + 01 [2.03677917725E + 01, 2.03677917727E + 01]

t5 9.75461057984E + 01 [9.75461057983E + 01, 9.75461057984E + 01]

t6 2.92638317395E + 02 [2.92638317394E + 02, 2.92638317396E + 02]

t7 2.98638317395E + 02 [2.98638317394E + 02, 2.98638317396E + 02]

ts 6.08260306405E + 03 [6.08260306397 E + 03, 6.08260306408E + 03]

This computation, which was done with the PC implementation of Pascal-SC [4]
shows that the approximation 6082.60306405 to f(x,y) is of very high quality, since
there are only 10 floating-point numbers in the interior of the interval inclusion
[6082.0306397,6082.0306408] of the exact value of f(x,y), and at most 7 between
the computed and exact values. While this quality would ordinarily be considered
satisfactory for practical purposes, it is not maximum. Furthermore, straightfor­
ward interval evaluation of code lists in other cases may yield interval inclusions of
the exact values which are too wide to be useful. Thus, a method for the reduction
of width of these interval inclusion to maximum or at least sufficiently high quality
is needed.

6. Validation of code list evaluation. The improvement of the quality of
interval inclusions of functions represented by code lists is based on an idea similar
to the iterative refinement method (4.2) for linear systems. The code list (5.2) can
be rewritten as the nonlinear system of equations

(6.1)

tl - X * Y = 0,

t2 - sin(x) = 0,

t3 - (tl + h) = 0,

t4 - (t3 + 4) = 0,

t5 - sqr(y) = 0,

t6 - 3 * t5 = 0,

t7 - (t6 + 6) = 0,

ts - t4 * t7 = 0,

224

for tl , t2, ... , ts. Similarly, a general code list can be transformed into a nonlinear
system B(t) = 0 for t = (tl, t2, ... , tn). This suggests the use of Newton's method

(6.2)

to obtain improved approximations t(l), t(2), ... to the exact solution t of B(t) = 0,

starting from the floating-point evaluation of the code list as the initial approxima­
tion teO) [12].

Because of the structure of a code list, the application of Newton's method to
this problem is much easier than in the general case. First of all, the Jacobian
matrix B'(t) is of the form B'(t) = 1- L(t), where L(t) is strictly lower-triangular.
Hence if L(t) is defined, then

(6.3) BI(t)-1 = 1+ L(t) + ... + Ln-l(t)

exists, and any solution of B(t) = 0 is unique, as one expects. The matrix L(t)
is also sparse, with no more than two nonzero entries in any row, and can be
computed automatically because the partial derivatives of the standard functions
and arithmetic operations are known [13]. The Jacobian matrix of the system (6.1),
for example, is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

-1 -1 1 0 0 0 0 0

(6.4) B'(t) =
0 0 -1 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 -3 1 0 0
0 0 0 0 0 -1 1 0
0 0 0 -t7 0 0 -t4 1

which is very easy to compute. Furthermore, as in the example above, the computed
value teO) of t is often a good approximation from which to start the iteration.
However, as in the case of iterative refinement for linear systems, the difficulty in
the application of (6.2) lies in the sufficiently accurate computation of the residual,
which in this case is the value of B(t(k»). The accuracy of the approximation t(k+ l)
thus cannot be validated without further information.

The interval evaluation of the code list does produce an initial interval TCO)

which is guaranteed to contain the exact value of t. By the interval mean-value

theorem [14], if t E T, and [E T is an approximation to t, then

(6.5) t - [E BI(f)-1 {-B(f) + (B'(f) - B'(T))(T - f)}.

It follows that if BI(tCk»)-1 E fk, B(tCk ») E 0(tCk»), B'(tCk») E 0 /(tCk»), and B(T(k») ~
0(T(k»), then

225

which provides validation for the accuracy of t(k) as an approximation to t. If the
width of the interval T(k) is small, then the width of the interval on the right of (6.6)
will depend crucially on the width of the interval inclusion 0(t(k)) of the residual
B(t(k)), which should be as small as possible [18]. For this purpose, a new computer
arithmetic called interval residual arithmetic will be introduced.

7. Interval residual arithmetic. A computer arithmetic will now be defined
for the set of elements E which consists of ordered pairs p = (r, R), where r is a
real floating-point number, and R is a real floating-point interval. The arithmetic
operations are defined by

(7.1) poa = (r,R)o(s,S) = (r[QJs,(>(r[QJs -ros)), o E {+,-,*,/},

where r [QJ s is the floating-point and r 0 s the exact result of the indicated operation,
with the outward rounding (> to whatever precision is being used. Similary, for
standard functions <p E <Ii,

(7.2) <p(p) = <p((r, R)) = ((0 <p)(r), (>((0 <p(r) - <p(r))).

Unary +, - (and hence the function abs) are exact for floating-point arguments,
+p = +(r,R) = (r,[O,Oj) and -p = -(r,R) = (-r,[O,Oj). This arithmetic will be
called interval residual arithmetic. Note that the results of operations and functions
in this arithmetic depend only on the first components of the arguments.

It follows from the definition of this arithmetic that the evaluation of a function
defined by a code list results in the ordered pairs (T;,(>(T; - ti)) = (T;,T;) for
i = 1,2, ... ,n, where T; is the computed floating-point value of the exact result t;,
and Ti is thus an interval enclosure of the residual for each term. In the notation
of §6, one has

(7.3)

which provides an interval inclusion of the residual.

For example, evaluation of the code list (5.2) in interval residual arithmetic with
the arguments x = 1.556, Y = 9.87654321098 of §5 gives

Term Computed Value Ti

tl 1.53679012363E + 01
t z 9.99890536354E - 01
t3 1.63677917727 E + 01
t4 2.03677917727 E + 01
ts 9.75461057984E + 01
t6 2.92638317395E + 02
t7 2.98638317395E + 02
ts 6.08260306405E + 03

Interval Residual (>(T; - ti)

1.51200000000E - 11, 1.51200000000E - 11]
2.04084613230E - 13, 2.04084613250E - 13]
4.60000000000E - 11, 4.60000000000E - 11]

O.OOOOOOOOOOOE + 00, O.OOOOOOOOOOOE + 00]
[4.48712074396E - 11, 4.48712074396E - 11]
[-2.00000000000E - 10, -2.00000000000E - 10]
[O.OOOOOOOOOOOE + 00, O.OOOOOOOOOOOE + 00]
[-8.52296116500E - 10, -8.52296116500E - 10]

226

Evaluation of (6.6) using these values and the ones in §5 as initial values gives the
following maximum quality interval inclusions of the exact values of the terms of
the code list:

Term Interval Inclusion

i1 [1.53679012362E + 01, 1.53679012363E + 01]
i2 [9.99890536353E - 01, 9.99890536354E - 01]
i3 [1.63677917726E + 01, 1.63677917727 E + 01]
i4 [2.03677917726E + 01, 2.03677917727E + 01]
i5 [9.75461057983E + 01, 9.75461057984E + 01]
i6 [2.92638317395E + 02, 2.92638317396E + 02]
i7 [2.98638317395E + 02, 2.98638317396E + 02]
i8 [6.08260306403E + 03, 6.08260306404E + 03]

Thus, the maximum quality interval inclusion

(7.4) f(1.556,9.87654321098) E [6082.60306403,6082.60306404]

in twelve-digit decimal floating-point arithmetic was obtained in one step. The
computation was simple in this case, since the interval matrix

(7.5)

has only two nonzero components, M84 = [_10-9 ,10-9] and M87 = [-2 X 10-10 ,0],
and the interval vector Z = M(T(O) - i(O») has only one nonzero component, Z8 =

[-4 X 10-19 ,4 x 10-19]. Again, the PC implementation of Pascal-SC was used.
Of course, if the first application of (6.6) does not yield maximum quality, then
interval iteration can be used to reduce the width of this interval to its minimum
value, which will give an inclusion of maximum or at least best possible quality [10].

The maximum quality scalar product with directed rounding can be used to im­
plement the arithmetic operations of interval residual arithmetic, and the standard
functions sqr,sqrt. For example, for p * a, one has

(7.6) O(r[!]s-ns)<:::; [u\lv,u8v]'

where u = (r [!] s,r) and v = (l,-s). Implementation of the transcendental
standard functions exp,ln,cos,sin,arctan requires higher precision versions of the
corresponding real functions. These are not provided in the PC implementation of
Pascal-SC, so a value of sin(1.556) calculated to 23 significant digits was used in
the above example. The ST implementation of Pascal-SC [5] does provide standard
functions with slightly more precision on demand.

8. Conclusions. From the above, it appears that validation of computations
done with floating-point approximations requires a number of capabilities. First of
all, maximum quality floating-point arithmetic with directed rounding, and hence
maximum quality interval arithmetic is needed, as well as maximum quality scalar

227

products and standard functions with directed rounding. In addition, standard
functions should be available on demand with specified levels of higher precision. For
greatest efficiency, the corresponding computer arithmetics should be implemented
as much as possible in the hardware of the computer.

Programming languages should have function and operator notation which allow
programs to be easily written and understood. For example, it should be possible
to evaluate an expression in different arithmetics by changing the types of the argu­
ments instead of rewriting it as a sequence of subroutine calls. Pascal-SC has this
capability, but Pascal does not [16]. Furthermore, one should be able to introduce
more or less exotic new arithmetics such as interval residual arithmetic or differenti­
ation arithmetics [15] (see also [7], pp. 291-309) by defining the corresponding data
types and overloading the symbols for arithmetic operations and standard function
identifiers. If this is to be done with maximum quality, then the programming lan­
guage has to provide access to the needed features of the computer arithmetic, such
as directed rounding, scalar products, and high-precision standard functions.

Mathematical algorithms should be chosen which are capable of producing guar­
anteed interval inclusions of results, with the possibility of improvement by iteration
or other additional computation. An example is the interval mean-value theorem
(6.6) used above. Another is the method of self-validating numerical integration
which uses interval remainder terms [3]. There are already a number of such al­
gorithms for important numerical problems, such as optimization [ll], but others
need to be developed.

REFERENCES

[1] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Academic Press,
1983.

[2] G. BOHLENDER, C. ULLRICH, J. WOLFF VON GUDENBERG, AND 1. B. RALL, Pascal-SC: A
Computer Language for Scientific Computation, Academic Press, 1987.

[3] GEORGE F. CORLISS AND L. B. RALL, Adaptive, self-validating numerical quadrature, SIAM
J. Scientific and Statistical Computing, 8 (1987), 831-847 O.

[4] U. KULISCH (ED.), Pascal-SC for the IBM PC, B. G. Teubner, 1987.
[5] U. KULISCH (ED.), Pascal-SC for the Atari ST, B. G. Teubner, 1987.
[6] U. W. KULISCH AND W. 1. MIRANKER, Computer Arithmetic in Theory and Practice, Aca­

demic Press, 1981.
[7] U. W. KULISCH AND W. L. MIRANKER (EDS.), A New Approach to Scientific Computation,

Academic Press, 1983.
[8] U. W. KULISCH AND W. L. MIRANKER, The arithmetic of the digital computer: A new

approach, SIAM Review, 28, (1986), 1-40.
[9] R. E. MOORE, Interval Analysis, Prentice-Hall, 1966.

[10] R. E. MOORE, Methods and Applications of Interval Analysis, Society for Industrial and
Applied Mathematics, 1979.

[11] R. E. MOORE (ED.), Reliability in Computing, Academic Press, 1988.
[12] L. B. RALL, Computational Solution of Nonlinear Operator Equations, Wiley, 1969.
[13] L. B. RALL, Automatic Differentiation: Techniques and Applications, Lecture Notes in

Computer Science No. 120, Springer, 1981.
[14] L. B. RALL, Mean value and Taylor forms in interval analysis, SIAM J. Math. Anal., 14

(1983) 223-238.
[15] L. B. RALL, The arithmetic of differentiation, Math. Mag., 59, (1986), 275-282.
[16] L. B. RALL, Pascal and Pascal-SC, in Encyclopedia of Physical Science and Technology, Vol.

10, pp. 183-209, Academic Press, 1987.

228

[17] S. M. RUMP, Solution of linear and nonlinear algebraic problems with sharp, guaranteed
bounds, Computing, Suppl. 5 (1984), 147-168.

[18] B. J. STETTER, Intervals revisited, Berrn Professor Dr. Karl Nickel zum 60. Geburtstag
gewidmet, Vol. 2, pp. 519-538, University of Freiburg i. Br., 1984.

SHADOWING TRAJECTORIES OF DYNAMICAL SYSTEMS

TIM SAUER* AND JAMES A. YORKEt

Abstract. Computer simulation of the trajectories of deterministic systems involve truncation
and rounding errors. A theorem is presented which describes a computer-assisted method for
checking whether there is a true trajectory near the computer-generated one.

1. Introduction. One of the characteristic properties of a chaotic dynamical
system is the existence of trajectories which are sensitive to initial conditions. This
means that nearby initial conditions generate trajectories that exponentially diverge
from each other. There is a resulting serious effect on the computer simulation of the
dynamical system. If a small error is made in the initial condition of the trajectory
to be computed, or at any step during the computation, the error will tend to be
magnified by future evolution of the system.

This leads to a significant problem of information loss in computer simulations.
If a finite-precision computer produces a trajectory from a deterministic model,
making small rounding and truncation errors at each step, is there any assurance
that the computed trajectory will have any relation to a true trajectory of the
model?

It turns out that the question can be answered affirmatively in many cases of
interest. We state a theorem which says that if certain quantities evaluated at points
of the computer-generated trajectory, called a pseudo-trajectory or pseudo-orbit, are
not too large, then there exists a true trajectory near the computer-generated one.
Rigorous upper bounds for these quantities can be generated by the computer as
it produces the pseudo-trajectory. If these quantities satisfy the hypotheses of the
theorem, which again can be rigorously checked by the computer, the result is a
computer-assisted proof of the existence of a true trajectory near the computer­
generated pseudo-trajectory.

A true orbit that stays near the pseudo-orbit is said to shadow the pseudo­
orbit. Bowen [lJ proved a shadowing result for hyperbolic maps on a differential
manifold. That result says that given any prescribed shadowing distance c: (between
the pseudo-orbit and true orbit) there exists a 5 > 0 so that any 5-pseudo-orbit can
be c:-shadowed by a true orbit.

There are two factors that make Bowen's proof impractical for use in computer
experiments. First, the 5 that is produced can be orders of magnitude smaller
than the machine epsilon of existing digital computers. Second, many interesting
dynamical systems currently being studied are not hyperbolic.

In ([2], [3]) a method is developed which uses a type of interval arithmetic to
create computer-assisted proofs of the existence of finite-length shadowing orbits

*Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030.
tlnstitute for Physical Sciences and Technology, University of Maryland, College Park, MD

20742.

230

on a case-by-case basis. They apply the method to one-dimensional maps and
the two-dimensional Henon and Ikeda maps, none of which are hyperbolic. A key
technique of that paper is a method for refining pseudo-orbits.

We use that technique in the present approach, but instead of using it explicitly
on the computer-generated pseudo-orbit, we use it in the proof of the main shad­
owing theorem. The hypotheses of the theorem guarantee that iterative refinement
of the pseudo-orbits would converge to a true orbit nearby. Bowen's shadowing
theorem for hyperbolic maps follows as a corollary.

It is not necessary to actually carry out any refinements on the computer, al­
though this may be done if desired, to the extent that higher precision is available on
the computer. It was the lack of such extra precision that motivated the sublimation
of the explicit refinement process into the proof of the theorem.

2. Shadowing theorem. The theorem can be used to shadow orbits of dif­
feomorphisms or trajectories of differential equations. In the latter case, the flow
of the differential equation maps a point in phase space at time t to a point at
time t + h. This map, called the time-h map of the flow, can be approximated by
a one-step ODE solver in a computer program, resulting in a pseudo-orbit of the
map. Thus the flow case reduces to the diffeomorphism case.

In the case of an autonomous differential equation, the induced time-h map
will be the same for all t. On the other hand, if the differential equation is non­
autonomous, the time-h map will depend on t. The following definition of an
orbit of a dynamical system is made to encompass both the autonomous and non­
autonomous cases.

DEFINITION 2.1. For each Os n < N, let In : Rm --+ Rm be a C 2-diffeomorphism.
The finite sequence {Yn}, n = 0, ... ,N of points in Rm is called an orbit of the dy­

namical system {In}, n = 0, ... ,N - 1 if In(Yn) = Yn+l for n = 0, ... ,N - 1. The
finite sequence {xn} is called a 5-pseudo-orbit of {In} if IIn(xn) - xn+ll < 5 for
n = 0, ... ,N - 1. The 5-pseudo-orbit {xn} is c;-shadowed by the orbit {Yn} of the
dynamical system {In} if IXn - Ynl < c; for n = 0, ... ,N.

Here, as below, we use the [2 norm:

for a vector v = (VI, ... ,vm), and

IAI = max IAvl
vERm,lvl=l

for an m x m matrix A ..

THEOREM 2.2. Let In: Rm --+ Rm be a C2 -diffeomorphism for n = 0, ... ,N-
1. Let {xn},n = 0, ... ,N be a 5-pseudo-orbit for the dynamical system {In}. For
a fixed integer k, for n ~ 0, ... ,N, let Sn and Un be subspaces of Rm of dimensions

231

k and m - k, respectively, such that Sn +Un = Rm. Let Sn and Un be the (unique)
projections from Rm onto Sn and Un, respectively, which satisfy Sn + Un = I.

Assume that B, p, ro, ... ,r N and to, ... ,t N are constants satisfying

(Pf (x) 82f-1(x)
(1) I 8Xi8xj I ~ B,I 8x:8xj I ~ B, for all i,j,n, and for x on a compact set

containing an open 401/2-neighborhood of each x n.

(2) 0-2p ~ 2(B + 1)(m + 4)m3f2

(3) rn ~ maxvEsn,lvl=l IDfn(xn)(v)1

(4) tn ~ maxvEun+"lvl=lIDf;;-l(xn+d(v)1

Define Co = 0; Cn = ISnl + (rn-1 + 0 + 01/2-P ISn I)Cn_ 1 for n > O.

Define DN = 0; Dn = IUnl + (tn + 0 + 01/2-P IUnI)D n+1 for n < N.

H Cn ~ Op-I/2 and Dn ~ Op-I/2 for n = 0, ... ,N, then there exists an orbit of

the dynamical system {In} which shadows {xn} within 401/2.

The proof is given in [4]. The key technique is the refinement process of [3].
Define the maps F.,Fu : (Rffi)N -t (Rm)N by

Fs(X1' ... ,X N) = (J(xo) - Xl,· .. ,f(x N-l) - X N)

Fu(xo, ... ,XN-l)=(J(XO)-X1, ... ,f(XN-J)-XN).

Let Gs (respectively Gu) be the Newton's method map for Fs (respectively Fu). If

the pseudo-orbit distance is small, the iteration of G., using the pseudo-orbit as the

starting point, would converge to the root (f(xo),P(xo), ... ,fN- 1(xo)). On the
other hand, iteration of Gu would converge to (J-N(XN), ... ,f-1(XN)). Neither

of these is desired. Although these are true orbits, in general neither of them is

near the original pseudo-orbit. Instead, our refinement process uses Gs and G" in
a slightly different way.

To refine the orbit, we move the point x~ := Xn in the pseudo-orbit to a new

location x;. The point x; is defined by adding two contributions to x~, one in the Sn
direction and one in the Un direction. The stable contribution is the projection onto

Sn of component i of (Gs - I)(XO), and the unstable contribution is the projection

onto Un of component n of (G" - I)(xO). The new pseudo-orbit {x;} is a refined

pseudo-orbit. It is proved in [4) that under the hypotheses of the Theorem 2.2,

iteration of this refinement process results in a true orbit {x~} near the original

pseudo-orbit {x~}.

Theorem 2.2 gives an alternative approach to Bowen's shadowing lemma [1).
Let f : Rm -t Rffi be a C2-diffeomorphism. A compact invariant set A is called

hyperbolic if there is a continuous splitting of the tangent space TxRm = E; 87 E;

for x E A, and positive constants A < 1, C such that

(1) Df(x)(E;) = Ej(x)

(2) Df(x)(E;) = E'}(x)

(3) IDr(x)(v)1 ~ c).-nlvl for vEE;

(4) IDf-n(x)(v)1 ~ CA-nlvl for vEE;

for all x E A and for all n ~ 0 ..

232

THEOREM 2.3. (Bowen) Suppose A is a hyperbolic set for J. For each c: > °
there is a 8 > ° so that every 8-pseudo-orbit in A can be c:-shadowed.

Proof. We remark, as Bowen did, that it suffices to prove the conclusion for Jk ,

where k is a positive integer. In fact, assume we have done so and let c be such that
IJi(x) - t(y)1 ::; clx - yl for 0::; i < k on A. Given c: > 0, choose 8 small enough so
that given a 8-pseudo-orbit of J, there exists a true orbit Jik(yo) of Jk shadowing
the pseudo-orbit Xik of Jk within c:/2c. This is possible because a 8-pseudo-orbit
for J is a 8kc-pseudo-orbit for Jk • Further choose 8 < c:/2kc. If f{ is an integer
multiple of k and ° ::; i < k, then

i-I

+ L W-j-1(J(XI<+j)) - /-j-l(XI<+j+l)1
j=O

< c~ + kc8 - 2c
c: c:

<"2+"2=C:

It remains to prove the conclusion of the theorem for g = Jk , where k is large

enough so that IDJk(x)(v)1 ::; alvl, and IDJ-k(x)(v)1 ::; alvl, for a < 1, for all x E
A. For an arbitrary orbit length N, let Sn = E;nk and Un = E;nk for n = 0, ... ,N
as in Theorem 2.2. Since the splitting is continuous on the closed set A, there is an
upper bound A on 15nl + 1 and IUnl + 1. Choose B to satisfy (1) of Theorem 2.2
and set p = 1/4. Choose 8 > ° small enough so that (2) of Theorem 2.2 is satisfied,
O1/2-p ::; (1 - a)/2A, and 8 < c:2/16.

Then

Cn < A + (a + A81/2-P)Cn_l
I-a

::; A+ (a + -2-)Cn- 1

a+l
::; A+ -2-Cn-1

It follows easily from this recurrence that

for all n ::; N. The same argument holds for Dn. The hypotheses of Theorem 2.2
are satisfied, thus there is a true orbit within 401/2 < c: of any 8-pseudo-orbit.

There now exist shadowing orbits {fi(YN)}, i = -N, ... ,N of arbitrary length.
Letting y be an accumulation point of {y N }, we get I Ji (y) - x;l ::; c: for -00 < i < 00

as claimed.

3. Computer-assisted shadowing. In this section we describe a computer
algorithm which uses the above Theorem 2.2 to verify the existence of true orbits of

233

a dynamical system near the pseudo-orbit determined by a numerical computation.
Along with the pseudo-orbit being computed, there are some auxiliary calculations

to be made to check that the hypotheses of the Theorem are satisfied. We next
describe these auxiliary calculations, which if successful provide a computer-assisted
proof of the existence of a true orbit.

The most useful choice of the subspaces Sn and Un is to choose them to ap­
proximate the stable and unstable directions, respectively, for the dynamical system
{In} at the particular map fn. One way to accomplish this is as follows. Begin with

an orthonormal set {UOl,'" ,UOl} of vectors in Rm chosen arbitrarily. Inductively

define the orthonormal set {U n +l,l, ... ,un+l,d to be the computed results of apply­
ing the technique of Gram-Schmidt orthogonalization, followed by normalization,
to the set {Dfn(xn)unl, ... ,Dfn(xn)und. Because of computer round-off, these
computations will be only approximate, which is not important. The subspace Un

is defined to be the span of the computer memory values of {U nl' ... ,Unl}.

The subspace Sn is defined analogously. Begin with an arbitrary orthonor­

mal set {s Nb ... ,S N d from Rm. Inductively, given {Snl,'" ,snd, apply Gram­
Schmidt to the set {Df;;-21 (x n)Snl,'" ,Df;;-21(x n)snd. The definition of the set
{Sn-l,I, .. . ,sn-l,d, is the set of stored values of the resulting finite-precision com­
putation, and Sn is defined to be the span of these k vectors.

The projection matrices Sn and Un are then found as follows. Let An be the

m X m matrix whose columns are {Snb'" ,Snk,Unl,'" ,und, and let En = A;;-I.
Let E~ be the m x m matrix whose top k rows are the same as those of En and
whose bottom I rows are filled with zeros. Let E~ be the m x m matrix whose top
k rows are the filled with zeros and whose bottom I rows are the same as those of

En. Note that Bn = B~ + B~.
Now define Sn = AnB~ and Un = AnB~. It IS clear that Sn and Un are

projections onto Sn and Un, respectively, and that

Further, Sn and Un are the unique m x m matrices with these properties.

We turn now to computer verification of the hypotheses of Theorem 2.2. The
number 8 is the truncation error of the process being approximated. Also necessary
is an a priori upper bound B on the second partial derivatives. Given B, a constant

p is chosen just large enough to satisfy the second hypothesis. Finally, we describe

a method for finding values of the r nand tn which satisfy hypotheses (3) and (4)
of the Theorem. We will need the following definition and lemma.

DEFINITION 3.1. If A is a real symmetric matrix, define <T(A) to be the largest
eigenvalue of A.

LEMMA 3.2. Let A be an m X m matrix and W a subspace of R m with basis
{WI, ... ,wd. Let W be the m x k matrix with columns {Wl, ... ,wd, and B =

AW. Then

(<T(BT B)) 1/2
max IAvl <

vEw,lvl=1 . - 1 - IWTW - II

234

The lemma is applied for each n with W = Sn, Wi = Sni, i = 1, ... , k, and
A = Dfn(xn). Since {Sn1,." ,snd is near to being an orthonormal set, an upper
bound for IWTW - II can be computed that is much smaller than 1. An upper
bound for (T(BT B) can also be computed. (In both instances, it is necessary, and
straightforward, to allow for numerical roundoff in assigning the upper bound.)
Then the Lemma gives an upper bound Tn for the right-hand-side of assumption
(3) of the Theorem. The Lemma is also applied with W = Un and A = Df;;l(xn)

in an analogous way to find suitable tn for assumption (4) of the Theorem.

4. Examples.

As a first example, consider the Henon map

f(x,y) = (A - x 2 - By,x)

of the plane. For parameter values A = 1.4, B = 0.3, this map has an apparently
chaotic orbit. Using the method described above, a computer-generated ,,-pseudo­
orbit with initial condition (0,0) and" = 10-14 was found to have a true orbit
within € = 4 X 10-7 for over one million iterates. Similar statements apply for other
initial conditions.

This map was originally shadowed in [2], and similar results were reported. In
that paper, a different approach was taken, which uses higher precision arithmetic
(machine-epsilon = 10-28) to verify shadowing of a "-pseudo-orbit with" = 10-14 •

The method of the present paper does not require such higher precision.

This point becomes especially relevant when systems are studied that are in­
herently more difficult to shadow. Consider the forced damped pendulum, which
satisfies the differential equation

y" + Ay' + sin y = B cos t.

To achieve good shadowing results for this differential equation we needed to gen­
erate a ,,-pseudo-trajectory with" = 10-18 . We accomplish this by using a seventh
order ODE-solver method with an explicit truncation error formula, and using a
step size of h = 71'/1000.

For the forced damped pendulum with parameters A = 0.2 and B = 2.4, there
is an apparently chaotic trajectory beginning at (0,0) at time t = O. Using the
techniques described above, we were able to prove the existence of a true trajectory
within 4 x 10-9 for the computer-generated trajectory for time t ranging from 0 to
104 71'. Again, there are similar results for other initial conditions, and other values
of A and B.

REFERENCES

[1] R. BOWEN, w-limit sets for Axiom A diffeomorphisms, J. of Differential Equations, 18 (1975),
pp. 333-339.

[2] C. GREBOGI, S. HAMMEL, AND J. YORKE, Do numerical orbits of chaotic dynamical pro­
cesses represent true orbits?, J. Complexity, 3 (1987), pp. 136-145.

[3] , Numerical orbits of chaotic processes represent true orbits, Bulletin
A.M.S., 19 (1988), pp. 465-470.

[4] T. SAUER AND J. YORKE, A shadowing theorem for differential equations.

TRANSFORMATION TO VERSAL NORMAL FORM

DIETER S. SCHMIDT*

1. Introduction. Often the first step in analyzing a given problem requires
the transformation of the linearized system into its Jordan canonical form. If the
given system depends on parameters, say c this reduction to Jordan canonical form
can be an unstable operation, since the normal form and the transformation itself
can depend in a discontinuous way on these parameters. The difficulty to which
we elude occurs when several eigenvalues of the linearized system coincide, say for
c = O. In the generic case the matrix will be non-semi-simple, i.e. not diagonalizable
for c = o.

In order to overcome this difficulty Arnol'd [1] introduced a new normal form
for matrices which depend on parameters. It differs from the usual Jordan form by
having some elements functions of c. These functions vanish for c = 0, where the
matrix takes on the standard Jordan canonical form. Arnol'd has called this the
versal normal form of a matrix. It distinguishes itself from other normal forms as
the smallest number of entries in the matrix are nonzero and at the same time the
transformation matrix remains continuous.

Despite the advantages of versal normal forms they have not yet been used
extensively in applications, as they have a reputation of being difficult to work
with. This reputation may have originated from the fact that versal normal forms
may not be unique1 or from the fact that Arnol'd did not write down an explicit
algorithm on how to construct the transformation. Finally the reputation may also
have arisen, because versal normal are typically more applicable for problems in
higher dimensions where calculations by hand are more tedious anyway.

A computer algebra system like Macsyma can handle such cases easily. Based on
our lirnited experience we found that the calculations for the versal normal form are
not significantly more time consuming than those for the Jordan canonical form.
Furthermore, it turned out that our approach did fit well into the framework of
Hamiltonian matrices where a straight forward method allows us to insure that the
transformation is symplectic.

Although the work which IS described here is applicable to a wider class of
problems it was motivated and carried out in order to prove theorems about the
motion near the Lagrangian point £4 in the restricted problem of three bodies. The

*Department of Computer Science, Universit.y of Cincinnati, Cincinnati, Ohio 45221-0008. Sup­
ported by a grant from ACMP of DARPA administ.ered by NIST

1 Arnol'd derived the term versal from t.he word universal by dropping its prefix which indicates
uniqueness

236

problem has been studied by Meyer and Schmidt [4], Schmidt [5], van der Meer [6]
and many others, but it is often done with adhoc methods.

It is hoped that the vel'sal normal form allows a uniform treatment of this and
similar problems. The price to be paid for is the more complicated linear transfor­
mation, but with the help of computer algebra this work is managable.

The versal normal form for the problem at £4 has already been determined by
Cushman et al.[2]. Unfortunately they start with a system that is nearly in normal
form. It means that the elements in their transformation matrix have removable
singularites at € = O. It appears that the authors took advantage of this fact when
they constructed their transformation but it makes it very difficult to compare their
work with ours except via series expansion.

2. Definition of Versal Normal Form. Arnol'd gives a geometric definition
for the versal normal form for matrices but it can also be understood in the context
of normal forms of systems of differential equations.

Definition 1 : The BYBtem of differential equationB y l = Cx + f(x) iB in normal

form if f(eCTtx) := eCTtf(x), that iB, f(x) evaluated at the Bolution of the adjoint

linear BYBtem iB the Bame aB following the Bolutions of the adjoint BYBtem Btarting

at f{x}.

Typically C is already in Jordan canonical form and f(x) represents nonlinear terms.
In our case we take C to be AD the Jordan canonical form of our system for € = 0
and we set f(x) = Bx. We then try to determine those terms in B which may exist
for € of- O. From the definition it follows that BeArtx = eArtBx has to hold for all t
and x. Therefore Air and B have to commute.

When AD is given in Jordan canonical form the solution to the equation Air B =
BAir can be found in [3, p.234] and also in the paper of Arnol'd [1]. It shows which
terms in B can be nonzero for € of- O. The values of these terms can be found by
comparing the characteristic polynomial for A(€) with the one for AD + B.

The following example illustrates this approach. Assume that A(€) has two pairs
of purely imaginary eigenvalues for c: = 0, and that the Jordan canonical form for
AD is

AD = (i~i~ ~ ~l
o 0 -iw 1 .

o 0 0 -IW

The form for B is then

B= (~:~l ~ ~l
o 0 V3 0 .

o 0 V4 V3

237

If A(c:) is real the following reality conditions hold VI = -V3, V2 = V4 = V2, so that
we can write for the versal normal form for A(e;)

where the new quantities VI and V2 are now purely real. Their values can be deter­
mined by comparing the characteristic polynomials for A(c:) and the one for A.

The eigenvalues for A are ±i(w + VI) ±..jii2. From this it is clear that the versal
normal form captures the generic behavior of A(e;) as c: passes through O. For V2 :::; 0
the eigenvalues are purely imaginary whereas for e; > 0 they lie in the complex plane.

The problem to be discussed here is how to calculate the transformation matrix
T such that T-I AT = A. It follows from the work of Arnol'd that T is continuous
in e;.

3. Finding the Transformation Matrix. The transformation matrix T
in the example of the previous section can be calculated easily with the following
method.

Set T (aba2,a3,a4) where aj,j = 1, ... ,4 are complex valued column
vectors with a3 = aI, a4 = a2. The condition AT = TA for this example gives

(1)

and
(2)

Since V2 can be zero we eliminate a2 and obtain

(3)

The rank of this coefficient matrix has been reduced by 2 so that the general solution
is al = rlf31 + r2f32 with 131 and 132 two linearly independent solutions of (3) and rl,

r2 arbitrary scalar factors. The value of a2 can then be found with the help of (1)
using only matrix multiplications.

The above method is similar to the one which can be used to find generalized
eigenvectors of a matrix. In numerical computations this approach is not used be­
cause it is numerical unstable. Therefore the standard method is to find the eigen­
vectors first and only then the generalized eigenvectors. Since all our calculations
are carried out exactly numerical instabilty is of no concern to us. Futhermore, the
method has the advantage that it will give at once the most general transformation
matrix T. This is helpful when T has to be restricted further. Such a case will be
discussed in the next section, where we deal with a Hamiltonian matrix A(e;) and

238

the matrix T has to be symplectic, that is, it has to satisfy TT JT = J, where J is
the usual matrix of Hamiltonian mechanics.

4. The Lagrangian Point £4' The method of the previous section will be
applied to the linearized system near the Lagrangian point £4 in the restricted
problem of three bodies. The parameter J.L represents the mass ratio of the two
primaries. The matrix of the linearized system is

(a
1 1

J (4) A(J.L) =
-1 0 0

¥(1~~ 2J.L)
¥(1- 2J.L) 0

2 -1
4

It's characteristic equation is

(5)

The eigenvalues lie on the imaginary axis for 0 < J.L :::; J.LI and they move into the
complex plane for J.L > J.LI' The repeated eigenvalues are ±i~ and they occur for
the value of the mass ratio J.LI = !(1 - ~J69), which is known as Routh's critical
mass ratio.

The situation near J.LI is therefore similar to the case described in the previous
section with the exception that (4) comes from a Hamiltonian sytem and its normal
form has to be adjusted so that it remains a Hamiltonian matrix. Furthermore, the
transformation matrix has to be symplectic and although we write the normal form
in complex coordinates, we have to make sure that the implied transformation to
the real normal form can be carried out in real coordinates. For this reason the

versal normal form for (4) near J.LI is

By comparing the characteristic equation of A with (5) we find

VI = - ~ + ~J1 + J27J.L(1- J.L)

V2 = ~(1- J27J.L(1- J.L))

The choice of the parameter has a significant effect on the amount of calculations
which has to be done by Macsyma. We found that by setting (T = J27J.L(1 - J.L)
the computations could be kept at a minimum. Routh's critical mass ratio J.LI

239

corresponds to 17 = 1. The versal normal form of (4) is therefore

A(e) = (T ~ ,: :)
-1 0 0 -lW

with W = h/1 + 17 and v = ~(1 - (7).

It would have been natural to set v = e in which case we would have W =)1 - e
but this choice resulted in increased computing time. On the other hand the final
result can easily be expressed in e since 17 = 1 - 4e.

The transformation matrix T = (0<1,0<2,0<3,0<4) has to satisfy now the reality
conditions 0<2 = al and 0<3 = a4. From T A = AT we obtain

(A - iwI)O<l = 0<4
(A - iwI)0<4 = WI

and solve first for 0<1 to get

1 0

o 1

2~-i(3-2q)0F 6-iV(Hq)(27-4q2)
12-4q 12-4q

6-h!(1+q)(27-4q2) -2~-i(9-2q)0F
12-4q 12 4q

and then from the first equation

-2~-3i0F -18+4q+iy!(Hq)(27-4q2)
12 4q 12 4q

6-4q+iy!(1+q)(27-4q 2) 2~+3i0F
12-4q 12-4q

_~ -~+4iJili
8 8

1'2E4?±4iJili _It±k
8 8

Since 1'1 and 1'2 are arbitrary we can construct from these vectors the most general
transformation matrix T which puts (4) into its versal normal form. We want T to
be symplectic, that is, it has to satisfy TTJT = J. At Routh's critical mass ratio
/-lI, i.e. at 17 = 1 it is seen that 1'1 and 1'2 have to be real. The condition for T to be
symplectic gives then rise to the following two equations

(6)

240

The second equation can be simplified with the help of the first one to read

Therefore we have to find the intersection of a pair of lines through the origin with
a circle. A solution is

1 J(9 + 2a)(3 - a) + J2a(3 - a)(27 - 4a2)

'1 = -"2 Ja(l + a)(3 + a)

Va(27 - 4a2) - 2aV2(3 - a) /
'2 = J X V(9 + 2a)(3 - a) + V2a(3 - a)(27 - 4a2).

2a(9 - 2a) (1 + a)(3 + a)

In closing we would like to remark that if the transformation is done in real coor­
dinates, then

T = (Real, -Ima1, Rea4, -Im(4)

and the real normal versal form for (4) is

-w
o
o
-1

REFERENCES

[1] V. ARNOLD, On matrices depending on parameters, Russian Math. Surveys, 26:29-43, 1971.

[2] R. CUSHMAN, A. KELLEY, AND H. KOCAK, Versal normal form at the Lagrangian equilibrium

£4, J. Differential Equations, 64:340-374,1986.

[3] F. R. GANTMACHER, Matrizentheorie, Springer, 1986.

[4] K. R. MEYER AND D. S. SCHMIDT, Periodic orbits near £. for mass ratio's near the critical
mass ratio of Routh, Celestial Mech., 4:99-109, 1971.

[5] D. S. SCHMIDT, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celes­
tial Mech., 9:81-103, 1974.

[6] J. C. VAN DER MEER, The Hamiltonian Hopf Bifurcation, Springer, 1986.

COMPUTER ASSISTED LOWER BOUNDS
FOR ATOMIC ENERGIES

LUIS A. SECO*

Abstract. For an atom of nuclear charge Z, the ground state energy is defined to be the
lowest possible value of the energy Hamiltonian. We describe an algorithm to produce rigorous
lower bounds for the ground state energy of atoms as well as its implementation.

O. Introduction. The Hamiltonian for an atom of charge Z is

acting on

z
(0.1) :J{ = /\ (L2 (R3) @ C 2)

i=l

The antisymmetric tensor product "1\" has to do with Pauli's exclusion principle,
and L2 (R3) @ C 2 is the set of states of one electron with two spins. We will refer
to :J{ as the space of antisymmetric wave functions. It is an important problem in
Quantum Mechanics to compute good bounds for the ground state energy of the
atom,

E= inf A= inf (H1jJ,1jJ)
>'ESpec(H) >l>E:K

0>1>0,=1

Upper bounds to E can be obtained by restricting the infimum in the definition
to a smaller class of functions. In Hartree-Fock method, for example, the infimum is
taken over functions that can be written as antisymmetric products of one-electron
functions. See [FF] for more information on upper bounds.

The problem of obtaining lower bounds is considerably more complicated, and
was treated numerically before by Hertel, Lieb and Thirring in [HLT]. In this paper
we will present very general ideas to improve the lower bounds they obtained that
will moreover produce rigorous results. For complete information and refinements
of this method, see [Se].

The basic idea of the method is to construct a radial function V(lxl) and a
constant C such that

(0.2)

*Department of Mathematics, Princeton University. Supported by a Sloan Foundation Disser­
tation Fellowship

242

which provides the operator inequality

This implies that, if Al < ... < An < ... < 0 are the negative eigenvalues of

_~~ _ ~ + V(lxi) ~f HI electron
2 Ixl

then

{
2 ",Z/2 Ao - C Z even

L.J1=l ~

E?
2 2:;!~1)/2 Ai + A(Z+1)/2 - C Z odd

The factor 2 appears because, by (0.1), eigenvalues come with multiplicity 2:
one for each spin.

Separation of variables tells us then that the negative eigenvalues of HI electron

are the same as the negative eigenvalues of the ODE operator

(0.3) -~ul/ _ (~_ l(l + 1) _ VCr)) u
2 r 2r2

acting on
9{ODE = {J: r- l . fer) E L2[0,00)}

for / = 0,1,2, ... ; every eigenvalue has multiplicity 2/+1. For our eigenvalue problem,
this space is equivalent to L2(0, 00) with Dirichlet boundary conditions at 0 and 00.

This ODE in general cannot be solved explicitly, but we will still be able to
estimate its eigenvalues. For this, we will use computer assisted techniques, as will
be explained in section 3.

1. The Potential. In order to obtain V and C III (0.2), we use an idea
introduced in [FLlJ; they wrote

1 11 J dzdR -I --I = - XB(z,R)(X)' XB(z,R)(Y) -R5
x - Y 7r R>O zER3

where XB(z,R) is the characteristic function of the ball B(z, R). This implies that

~ L 1 = ~ r 1 N(N _1)dzdR
2 0-J. ° IXi - xjl 27r JR>O zER3 R5 ',..J

where
Z

N = N(Xl"" ,xz;z,R) = LXB(z,R)(Xi)
i=l

243

is the number of Xi that belong to B(z, R).

Observe that given any function N = N(z,R) defined in the space of all balls
in R3 that takes values k + % with k a nonnegative integer, we have

N(N -1) = (N - N? + (2N - l)N - N 2 2: ~ + (2N -1)N - N 2

therefore,

1 '" 1 1 ~ if - dz dR 1 if (-2 I) dz dR 2 ~ IXi - xjl 2: 211" ~ (2N -l)XB(z,R)(xi) Ji5 - 211" N - Y4 Ji5

Z

= LV(lxi!) - C.
i=l

with
1 i~ - dzdR VOx!) = -2 2(N(z,R) -1) -R5
1f Iz-~I<R

R>O

C = 2~ 11 (N2(z,R) _ %) d~R.

Note that whatever our choice of N(z, R) we obtain a lower bound; however,
different choices of N will give different results, and it is important to make a good
choice for N. The way N is chosen is by selecting a charge density p(x) 2: 0, with
IR 3 p(x)dx = Z that we believe (but need not prove) is close to the real one, and
then choose N according to the following rule:

Define functions Ri(z), 1 ::; i ::; Z - 1, in such a way that

f p(x)dx=i.
J B(z,R.(z»

Then, set

{
lh if R < RI(z)

N(z,R) = i + % if Ri(Z) < R < Ri+I(Z)

Z-% ifR>Rz_I(Z)

The freedom in choosing N then translates in the freedom to choose the Ri. This has
as a consequence that we can make our potential V have the following properties:

1. If we take the Ri to be piecewise-linear functions in Izl, we can write the
integrals over R+ in elementary terms that involve only sums of rational
expressions of degree at most 5.

Since we can approximate any such Ri by piecewise linear functions, this
is not a severe restriction.

2. The potential is piecewise analytic, i. e., there exist finitely many points

00 > Xo > Xl > ... > Xn > °

244

such that V has a power series expansion around each Xi convergent in a
disk that contains both Xi-l and Xi+l> and V agrees with this power series
to the left of Xi. Globally, V has in general only 1 continuous derivative,
(except at Xo and Xn where it is merely continuous) and all discontinuities
happen at the Xi. Moreover, the partition {Xi} can be refined as needed.
This will be useful, for example, to obtain small steps for the ODE solver.

3. V is constant around 0, i. e.

(Ll) VeX) = constant 0:::; X:::; Xn

4. Around 00, V can be taken to have the special form

(1.2) VeX) = 2)"k _ 1(1 + 1)
X x2

X ::::: Xo

where).. is any positive number and k is a positive integer that depends
on)...

2. The Functional Analysis. The underlying Banach space in this theory
is the space of piecewise analytic functions, with a lower bound on the size of the
domains of analyticity. The purpose of this section is to formalize definitions and
set up the framework for computer assisted analysis in function space. For siInilar
and more detailed analysis, see [Ra], [EKW], [EW] , [Mo] and [KMJ, for example.

Consider the Banach space

00

f(z) = 2::>nzn,
n=O

with norm
00

Ilfll = L Ian I
n=O

This is a subspace of the set of analytic functions in the unit disk, that becomes a
Banach Algebra with II ~.

We consider a neighborhood basis consisting of sets of the form

(2.1)

'U(h, ... ,IN; C) = {fez) = ~ an znlan E In, O:::;n:::;N, f lanl:::;C}
n=N+l

where C is a positive real number and In are intervals in the real line. For the
computer implementation, C will run over :.1(, the set of computer-representable
numbers, and the intervals will be those with representable endpoints; we call denote
as .'J the set of this intervals.

245

The reason why this is a convenient space to work in is because elementary
operations, such as addition, product, integration, differentiation (composed with a
slightly contracting dilation), evaluation at points in the domain of analyticity and
integration of initial value problems in ordinary differential equations are expressible
by elementary formulas in terms of this set of neighborhoods. The question is now
how to perform these elementary computations in an exact way using a computer.
For this we use interval arithmetic. Although this point is something that several
articles in these Proceedings are going to discuss, here is a very brief account of the
technique:

Let 9t be the set of computer representable numbers. Given any real number r,
the idea is to work with an interval in which r is contained, [rl, r2] with rl, r2 E 9t,
and translate in terms of these intervals whatever manipulation we intend to do with
real numbers. In this way, matters are reduced to obtaining upper and lower bounds
for manipulations of representable numbers in terms of representable numbers. This
is possible using the capabilities of a computer. Standard references for these ideas
are [KM] and [Mo] .

Observe that if we have a function f(z) which is analytic in some disk, Iz - zo I <
r, then, for any i' < r, if we define Jcz) = f(zi-ZQ), then! E HI. This allows to
translate analytic functions into functions in HI of the unit disk.

In the real analytic case, HI [a, b] will denote HI of the disc with center a and
radius Ib - al.

In the previous section, we saw that we will have to deal with functions with
are sums of rational expressions. It is immediate to produce neighborhoods of type
(2.1) that contain these functions locally.

3. The ODE. In this section we will discuss how our ODE problem (0.3) can
be dealt with using the functional analysis introduced in the previous section. This
presentation is taylored to deal with our special problem, but it can be modified
trivially, at the expanse of complication, to deal with more general problems.

We consider first the solution of initial value problems. Lemma 3.1 below takes
care of the solutions of an IVP with analytic coefficients. Lemmas 3.2 and 3.3 take
care of the expansion of the solutions at the singularities of the ODE, around 0 and
00. All three lemmas can be proved by matching coefficients.

LEMMA 3.1: Consider the ODE:

U" +qu = 0 }
u(O) = Uo

u'(O) = UI

where q(x) E ll(qo,··· , qN; 8). Then, u E ll(uo," . ,UN+2; C) where

1 n

un+2 = (n + 2)(n + 1) t; uiqn-i

246

and

N+2 N Iqkl 0

I:{ I: .(k+i+2)(k+i+1) + (N+3+i)(N+2+i)}luil
.=0 k=N+I-,

C~---
1 (~Iqkl 0) - t:o (k + N + 5)(k + N + 4) + (2N + 6)(2N + 5)

And this scales trivially to deal with q E HI [a, bJ for any a and b.

LEMMA 3.2: Consider the ODE

for k a positive integer. Then, the only solution of the ODE that vanishes at 00 is

k

U = e-AT L anrn
n=O

where ak is an arbitrary constant, and

n(n + 1)
an = an+1 2A(n _ k)

LEMMA 3.3: Consider the ODE

/I (b n(n + 1)) 0
U + a+-- U=

r r2

for n a positive integer. Then, the only solution of tile ODE that vanishes at 0 is

where Un+l is an arbitrary constant, and

(n + 2)(n + 1) - n(n + 1)
b . Uk+1 - a . Uk

(k+2)(k+1)-n(n+1)

lb· UN+21 + la· UN+II la. UN+21

" (N+3)(N+2)-n(n+1) + (N+4)(N+3)-n(n+1)

k>"7:+2 Iukl ~ 1 _ Ibl lal
(N+4)(N+3)-n(n+1) (N+5)(N+4)-n(n+l)

247

We now pass to discuss how to use these lemmas to the problem of the local­
ization of eigenvalues.

A crucial device in the study of eigenvalue problems is the "match" function,
M(>.) associated with the ODE operator -u" - q' u acting on :KoDE' It is defined
as follows:

given>. > 0, _>.2 is a negative eigenvalue iff

has a solution in :KoDE. Take any point y, and consider uo, a solution of the ODE
which vanishes at 0, and uoo , a solution that vanishes at 00. Then, define

Then, _>.2 is an eigenvalue iff M(>.) = O. The eigenvalues of the ODE thus corre­
spond to the zeroes of M.

For our analysis we will use a computer bound for M, M : ~ -+ .9, that will
satisfy the property that for any representable r,

(3.1) M(r) E M(r).

One possible way of implementing M is as follows: First, define the "phase" of a
function u to be the point in the unit circle given by

<I>u(X) = (u'(x),u(x)) . vu(x)2 + u l (x)2

Note that the phase is invariant under multiplication of u by a nonzero constant, and
it is only defined for functions that do not vanish to order two: since the functions
we will be working with will be nonzero solutions of an ODE problem, their phase
is defined. Note also that

For positive>. E ~ the eigenvalue problem we need to solve is

where

(3.2)

tUIl+P(X)u=O}

u(O)=u(oo)=O

p(x)=~_I(l+l) -V(x)_>.2
'x 2x2

248

From section 1, we have a finite set of real numbers, Xo > Xl > ... > Xn > 0 such
that the coefficients of the ODE are in Hl[x;,x;+l] for 0 ::::; i ::::; n - 1, and (1.1)
and (1.2) say that the ODE takes the special form dealt with in lemmas 3.2 and 3.3
around 0 and 00. Elsewhere, it takes the form dealt with in Lemma 3.1.

With the aid of Lemma 3.2, we can determine a neighborhood of type (2.1) of
Hl [xo, 00] that contains UO:)' This allows us to obtain intervals that contain uoo(xo)
and u:x,(xo) and we can therefore give bounds for <Pu=(xo).

With the aid of Lemma 3.1, we can solve the initial value problem at Xo, thus
obtaining another neighborhood of type (2.1) of Hl [xo, Xl] that contains U(XJ, and
again obtain intervals that contain <P u= (xt).

Repeating this argument, we can obtain bounds for <Pu=(xn).

With the aid of Lemma 3.3, we can determine bounds for <puo(xn).

Then, we define

where the determinant is taken in the interval arithmetic sense. It is just clear that
M(>.) E M(>.) for y = X n .

The idea now is to create heuristic (e.g. using numerical analysis) representable
numbers

>.? > >.1n > >.~p > >.~n > ... >.~p > >.in > 0

and then compute M(>'?' dn).
If we can prove that

(3.3)
M(>'?»O M(>.1n)<o i=1,3,oo.

M(>'?) < 0 M(>.1n) > 0 i = 2,4, ...

using (3.1) and the fact that M is continuous we would have proved that each
interval >'i = (>.1n, >.1n) contains at least one eigenvalue.

This previous procedure does not work if we substitute the phase by simply

the vector (u(x), ul (x)); the reason is that interval arithmetic estimates are far to
conservative and the bounds we obtain are very bad after a few steps. The reason
why the previous algorithm proves good bounds for the eigenvalues has to do with
the fact that the solution of this particular ODE is of the form e-'\x with a factor
with only polynOlnial growth. As a consequence, the normalizing factor in the phase
has a contractive effect that makes the bounds more stable. In other words, if you
look at the time flow

for the particular ODE we are working with, the phase of the eigenfunctions are
almost always in the u~stable manifold, and expansion of the phase backward in

249

time gives good answers. If the phase were in the stable manifold, then this pro­
cedure would be stable expanding forward in time. In general, however, one sided
shooting is not enough, and you need to consider the projection into the stable and
unstable manifolds separately. For this important generalization see [LR].

The fact that (3.3) holds thus tells us that there are negative eigenvalues _>.2,
with >'i E >'i, i = 1,' .. ,k, with eigenfunctions Uk, but we still have to show that
we didn't miss any eigenvalue, that is, that if _>.2 is a negative eigenvalue and
_>.2 S ->.~ then>. = >'i for some i; in other words, >'k really is the k'th eigenvalue.
In order to do this, we use the fact that ours is a Sturm-Liouville problem. Therefore
if a certain eigenfunction Uk has k - 1 zeroes, then its eigenvalue is the k'th one.
Hence, there are no other eigenvalues between ->.i and ->.~.

In order to check that Uk has k -1 zeroes, note first of all the following corollary
to comparison theorems for Sturm-Liouville problems:

Lemma 3.4: Let U be any solution of

1U" - (V(X) + 1(1 + 1) _ ~ + >.2) U = 0
2x2 X

on [a, b], with 0 < a < b < 00, with V decreasing. Then, if

(
2Z 1(1+1) 2)_1/2

b - as 7r b - 2V(a) - -a-2- - 2>' +

then U cannot have two zeros in [a, b].

Since our potential (3.2) is bounded above, we can arrange from the start that
our partition Xo,'" ,Xn is fine enough so every interval (Xi,Xi-l) satisfies the hy­
pothesis of this lemma. Also, for 1 =J. 0, since p is negative around 0 and 00, we can
take Xo sufficiently big and Xn sufficiently close to 0 so p(xo) and p(xn) are both
negative, and therefore Uk has no zeros in (0, xn) and (xo, 00); the special case 1 = 0
can be dealt with a trivial refinement of Lemma 3.4.

So, everything is reduced to counting the zeros of Uk in (xn' xo). For this,
consider u~ and u~, the solutions of the ODE with parameters >.? and >.~n re­
spectively which are 0 at 00. Again, comparison theorems tell us that the number
of zeros of Uco in (xn' xo) is bounded between the number of zeros in (xn' xo) of u~
and u~, and thus, it suffices to check that they both have k - 1 zeros. In order to
check this, note that Lemma 3.4 guarantees that the number of zeros of u~ and u~
in (xn, xo) are (essentially) the same as the number of sign changes in the sequences
{u~(xi)}i=o and {U~(Xi)}r=o respectively. From the ODE solver, we have good
bounds for these sequences, hence the number of sign changes can be just counted,
and if in both cases it is k - 1, there are no more eigenvalues.

It is clear that with the control we have over the solutions of ODE's it is possible
to bound the number of zeros without using Sturm-Liouville theory, but comparison
theorems simplify the algorithm enormously.

250

4. The Results. The previous algorithm was carried out using as charge
density guess an approximation to Thomas-Fermi density introduced in [TiJ. Once
we solve the ODE's, the solutions give us another charge density in a trivial way,
and this provides an iterative procedure that produces lower bounds for the ground
state energy of atoms.

The following is a sample of results that can be obtained with this method for
some values of the atomic charge Z: Elb stands for the lower bounds obtained by the
previous method; Eub stands for known numerical -non rigorous- upper bounds
to the energy obtained using Hartree-Fock's method (see [FF]).

Z Elb Eub error (%)
10 -138.90 -128.54 7.74
20 -707.75 -676.75 4.47
30 -1,853.60 -1,777.84 4.17
40 -3,661.60 -3,538.99 3.40
50 -6,217.81 -6,022.93 3.18
60 -9,560.54 -9,283.88 2.98
70 -13,719.54 -13,391.45 2.45
80 -18,812.97 -18,408.99 2.20

The computer programs were written in C, and run on a SUN 3/60 workstation.
The interval arithmetic package was supplied to me by D. Rana, and is the one he
used in [Raj. The program was divided into parts with a more general scope in mind
than this particular problem, and most of them apply to more general situations.
Execution time for the heuristics is of about two days for the largest atom, and
the rigorous part takes about a month. A feature of the program is that most of
the memory allocation is done during execution, and disposed of when no longer
needed. This is done for two reasons: one, is to allow the degree of the Taylor
expansions to be chosen adaptatively, and second, because it requires too much
memory otherwise. Freeing memory, the program uses about 3Mb of memory, and
without freeing memory it cannot run after a few hours.

I wish to express my gratitude to Charles Fefferman and Rafael de la Llave for
introducing me to these problems and for expert advise. I am grateful to D. Rana
for providing me with his interval arithmetic package. I thank also P. Solovej and
T. Spencer for useful conversations.

REFERENCES

[EKW] ECKMANN, J. P., KOCH, H. AND WITTWER, P., A computer Assisted Proof of Universality
in Area Preserving Maps, Memoirs, A.M.S., Vol 289 (1984).

[EW] ECKMANN, J. P. AND WITTWER, P., Computer Methods and Borel Summability Applied to
Feigenbaum's equation, Lecture Notes in Mathematics, Springer Verlag (1985).

[FL1] FEFFERMAN, C. AND LLAVE, R., Relativistic Stability of Matter, I, Revista Matematica
Iberoamericana, Vol 2 no.1&2, pp. 119-213 (1986).

[FF]
[HLT]

[KM]

[LR]

[Mo]

[Ra]

[Se]

[Ti]

251

FROESE-FISHER, C., The Hartree-Fock Method for Atoms, Wiley, New York (1977).
HERTEL, P., LIEB, E. AND THmRING, W., Lower Bound to the Energy of Complex Atoms,
Journal of Chemical Physics, Vol. 62 no.8, p. 3355 (1975).
KAUCHER, E. W. AND MmANKER, W. L., Self-validating Numerics for Function Space Prob­
lems, Academic Press, New York (1984).
LLAVE, R. AND RANA, D., Algorithms for the Rigorous Proof of Existence of Special Orbits,
(to appear).
MOORE, R. E., Methods and Applications of Interval Analysis, S.LA.M., Philadelphia
(1979).
RANA , D., Proof of Accurate Upper and Lower Bounds for Stability Domains in Denomi­
nator Problems, Thesis, Princeton University (1987).
SECO, L., Lower Bounds for the Ground State Energy of Atoms, Thesis, Princeton University
(1989).
TIETZ, T., Atomic Energy Levels for the Thomas-Fermi Potential, J. of Chern. Phys., Vol
25, p. 787 (1956).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

