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PREFACE 

In June, 1987, a one-week conference on Hamiltonian 
Dynamics was held at the University of Colorado in Boulder, 
Colorado. This conference was one of the series organized under 
the auspices of the AMS-SIAM-IMS Conference Series. The 
organizing committee consisted of Ken Meyer (Co-Chair), Don Saari 
(Co-Chair), Richard Hall, Tudor Ratiu, and Alan Weinstein. The 
articles in this volume are contributions by participants whose 
papers, after a review, were viewed as contributing to this 

research area and representing the general thrust of the 
conference. The papers vary from being essentially expository 
descriptions of recent developments to being fairly technical 
with new results. Collectively, they provide a good survey of 
contemporary work in this area. 

It is highly appropriate that this conference was held 
during the summer of 1987 -- the three hundredth anniversary of 
the publication of I. Newton's Principia Mathematica. (We would 
like to claim that this timing was due to careful planning and 
design; in fact, it was purely by coincidence.) Principia, which 
developed and applied the science of dynamics to the emerging 
problems of orbital mechanics, gave birth to the field of 
celestial mechanics and, subsequently, to Hamiltonian dynamics. 
The area of celestial mechanics was well represented at this 
conference, Many of the talks emphasized either topics directly 
concerned with the Newtonian n-body problem, the three body 
problem, the artificial earth satellite, etc., or those dynamical 
issues, such as integrability, KAM, and extensions of the 

Poincare-Birkhoff results, that emerged from celestial mechanics 
and extend to wider classes of dynamical systems. 

xi 
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Xll PREFACE 

In addition to topics related to celestial mechanics, 
this conference brought together researchers from a wide spectrum 
of areas of contemporary research in Hamiltonian dynamics. Just 
a small sample includes the existence of periodic orbits with 
variation methods, twist and annulus maps, stable manifold 
theory, almost periodic motion, heteroclinic and homoclinic 
orbits, etc. It is our hope that by bringing together papers 
from such a diverse range of topics will serve as a stimulant for 
further development in Hamiltonian dyamics. 

Kenneth R. Meyer 
Cincinnati, Ohio 

Donald G. Saari 
Evanston, Illinois 

March, 1988 
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Some Qualitative Features of the Three-Body Problem 

Richard Moeckel• 

!.Introduction. This paper is a survey of certain features of the three-body problem that 
I find particularly appealing. The emphasis will be on presenting the "big picture" of what 
is going on in the three-body problem. It is shown in figure 1. 

FIGURE 1: The Three-Body Problem 

This picture was first drawn for me by Charles Conley (probably on a napkin at the 
Gourmandai~e restaurant in Madison, Wisconsin) when I was a graduate student and I have 
spent a good deal of time since then trying to figure it out. It turns out that it is somewhat 
oversimplified but it captures the main features ! 

Looking at figure 1, the expert will wonder which three-body problem it depicts. 
We will consider only the planar three-body problem with unrestricted masses. Many 
interesting results about the restricted problem are omitted. One of the main purposes of 
this paper and of the lecture from which it derives is to show how little is really known 
about this problem. Thus as a counterpoint to the theorems we will list many open 
problems (some of which may actually be solvable). 

2.The Equations. The planar three-body problem concerns the motion of three point 
masses in a plane under the influence of their mutual gravitational attraction. We let qjE R2 
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2 RICHARD MOECKEL 

stand for the position of the jth point, Pj e R2 for its momentum and mj e R+ for its mass. 

The system is governed by the Hamiltonian function: 
1 H(q,p) = !plM-lp - U(q) 

where q = (q1;q2,q3) e R6, p = (Pt.P2.P3) e R6, M = diag(mt.mt.m2,m2,m3,m3) and: 

mtm2 mtmJ m2m3 
U(q) = I q} -~I + I q}- qJI + I q2- qJ I 

U(q) is minus the Newtonian gravitational potential energy. Hamilton's differential 
equations are: 

(2.1) q = M-1 p 

p = VU(q) 
These equations define a dynamical system in R12. However, it is possible to reduce the 
problem to a five-dimensional system by making use of the well-known integrals of 
motion. 

The first integral is the total momentum. We assume without loss of generality that: 

PI + P2 + P3 = 0 . 
This assumtion implies that the center of mass will be constant and we can take it to be the 
origin: 

miqi + m2q2 + mJq3 = 0. 
These equations restrict the momentum vector,p, and position vector,q, to four-dimensional 
subspaces of R6 so together they reduce the dimension of the system by 4. 

Next we consider angular momentum. The equations 2.1 are invariant under 
simultaneous rotation of all positions and momenta in R2. As a result, total angular 
momentum is constant: 

PI X qi + P2 X q2 + P3 X qJ = (I) • 

Here we view the cross products as scalars. This reduces the dimension of the system by 1. 
Since the system is symmetric under rotations, we can pass to a quotient space in which all 
vectors (q,p) which differ only by a simultaneous rotation of all qj and Pj are identified. 
This eliminates 1 more dimension. 

Finally, the Hamiltonian itself is the total energy of the system and is conserved: 
1 H(q,p) = zPlM-Ip - U(q) = h . 

This eliminates 1 more dimension. All of these equations together define a five-
dimensional manifold, M(h,oo), the quotiented energy and angular momentum manifold. 
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QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 

The topology of these manifolds depends on the energy, h, the angular momentum, w, and 
the masses, mj [Eas,Sm]. 

To facilitate the geometrical discussion below, it is convenient to introduce a 
coordinate system discovered by McGehee [Mel]. Since the center of mass is at the 
origin, the moment of inertia about the origin plays a central role: 

3 = q'IMq = mtlqtl2 + m2iq2i2 + m3lq3i2 . 

The variable r = {ii will be the radial variable of a kind of polar coordinate system in R6. 
It is a measure of the size of the triangle formed by the three point masses; in particular, r = 
0 represents a triple collision at the origin. The normalized position vector, s =% measures 

the shape and angular position of the triangle. Note that by definition, s satisfies: s 1Ms = 
1. In the quotient manifold we lose information about the angle and we think of s as 
representing only shape. It turns out to be advantageous to normalize momentum 
differently. Define z =...fr p. The variables (r,s,z) are superior to (q,p) because of their 
behavior near the triple collision singularity. The energy and angular momentum equations 
in these coordinates are: 
(2.2) 1 H(s,z) = 2 zTM-lz - U(s) = h r 

Z}XS} + Z2XS2 + ZJXSJ = W..Jf. 
We are able to factor the r dependence out of the Hamiltonian because of the homogeneity 
of the Newtonian potential function. The possibility of writing the energy equation in this 
way motivates the choice of scaling for the momentum. When the differential equations 
are expressed in these coordinates it is found that they contain a singular common factor of 

3 3 
r- !. Multiplying through by a factor of r! changes only the parametrization of solution 
curves; the result is: 

rl = vr 
(2.3) 1 1 s = z-2vs 

1 
Z1 =V'U(s)+!vz 

where v = s· z and 1 denotes differenttiation with respect to the new parameter. Note that 
the last two equations, describing the rate of change of the shape and normalized 
momentum, are independent of r. 

3. Hill's Regions. We have reduced the dimension of the dynamical system describing 
the planar three-body problem from twelve dimensions to five. Unfortunately, five is still 

3 
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4 RICHARD MOECKEL 

too many to sketch. Since the behavior of the size and shape of the triangle formed by the 
three bodies has a more direct intuitive meaning than the behavior of the momenta we will 
focus attention on the configuration space. Define: 

C = { (r,s): r ~ 0, sTMs = 1, mtsl + m2s2 + m3s3 = 0 }/ Sl 

the space of all admissable configurations with the rotation symmetry quotiented out. It is 
not difficult to see that this space is homeomorphic toR+ x S2; the two equations in s 
define a three-dimensional ellipsoid in R6 and the quotient space of this ellipsoid under the 
circle action is homeomorphic to a two-sphere. We can visualize this as in figure 2. 

r = 0 (triple collision) 

FIGURE 2: Configuration Space 

Once again we note that r represents the size of the triangle formed by the three bodies 
while s represents its shape. A ray represents a family of similar triangle of varying size. 
We will draw the shape two-sphere in more detail (figure 3). There are several interesting 
features. First, the collinear "triangles" form a circle (depicted here as the equator) in the 
two-sphere. The isosceles triangles form three circles distinguished by which mass lies on 
the axis of symmetry. These three circles meet at the equilateral triangle configurations 
(shown here as the poles); note that there are two rotationally inequivalent equilateral 
triangles with the masses 1,2,3 appearing in either clockwise or counterclockwise fashion. 
Each circle of isosceles triangles intersects the collinear circle in two points; one represents 
a collinear configuration with one mass at the midpoint of the other two and the other 
represents a double collision configuration. 
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QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 

KEY: 

collinear 

0 isosceles 

double collision 

FIGURE 3 : The Shape Sphere 

It was G.W. Hill who first realized that the energy and angular momentum integrals 
impose constraints on the configuration [H]. Although he worked in the restricted three-
body problem, the idea is fruitful in the planar problem as well. Define the Hill's regions: 

C(h,w) = { (r,s) e C: for some z e &6, (r,s,z) e M(h,w) } . 
Thus C(h,w) is the projection onto the configuration space of the integral manifold M(h,w). 

The Hill's regions, C(h,w), will provide an organizing center for this paper. We will 

study how they vary as the energy and angular momentum are changed. For each choice of 
hand w we will describe some features of the dynamical system on M(h,w) and how they 
look in C(h,w). The shapes of the Hill's regions will suggest several open problems. 

We do not need to survey the entire two-parameter family of Hill's regions. First, 
we can restrict attention to negative energies: h < 0. If h ~ 0 all orbits scatter to infinity in 
both time directions, so no recurrence is possible and the problem holds little interest. 
Second, it is easy to show that the dynamics depends only on the quantity A.=- h w2 (of 

course the dynamics also depends on the choice of masses). Thus to see the whole story it 
suffices to fix some h < 0 and let w vary over [O,oo ). 

Before turning to the case by case description we derive the inequalitites 
characterizing Hill's regions. The energy and angular momentum equations 2.2 are the key 
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6 RICHARD MOECKEL 

to deriving these. The energy equation alone imposes some restrictions on the configuration; 
namely, since the kinetic energy term, izTM-lz, is non-negative we have: 

(3.1) U(s) ~ lhl r 
and so for any fixed shape so, the size is restricted to the range 0 .s. r .s. ~~jo) . Thus all 

configurations arising from a state with energy h lie in the region shown in figure 4. 

FIGURE 4 : Constraints due to energy 

The potential function U(s) on the shape sphere has maximum value- at the double collision 
configurations and attains minima at the equilateral configurations. Thus the energy imposes 
no restriction on the size of a double collision configuration but rules out all sufficiently large 
triangles with any other shape, the greatest restrictions being on the equilateral triangles. 

The inequality 3.1 was derived from the observation that the kinetic energy is non-
negative. One can show without difficulty that when the angular momentum is fixed the 
following sharper estimate holds: 

1 1 ro2 
•z'fM·lz ~--2 2 r 

When this is plugged into the energy equation we find: 
ro2 

(3.2) U(s) ~ lhl r + Tr 

which characterizes C(h,ro ). 
C(h,ro) is a solid region in R+ x S2. Its boundary is given by the equality in 3.2. 

Since this is a quadratic equation for r givens we see that ()C(h,ro) lies in two sheets over 
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QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 

some subset of the shape two-sphere. The projection of aqh,ro) to the two-sphere is the set 

of all s such that 3.2 holds for some r ~ 0. Minimizing the right side of 3.2 gives: 

(3.3) U(s) ~ ...J 2 lhl ro2 = ...Jn 
which defines the projection. Thus the Hill's region lies over a region of the shape two-
sphere bounded by an equipotential curve. Its boundary lies in two sheets over the projection 
and these two sheets come together over the equipotential curve. These observations will 
underlie the pictures which follow. 

4. Large Angular Momentum. We will begin our survey with the case of large ro, or 
equivalently, large A.. Inequality 3.3 forces the shape, s, to lie in one of three disks around 
the double collision configurations (where U(s) = oo ). This means that two of the bodies are 
very close relative to their distance from the third body; we call this a tight binary 
configuration.The Hill's region consists of three lobes over the disks. It is shown in figure 5. 

FIGURE S : Hill's Region for Large Angular Momentum 

The lobes touch triple collision .(r = 0) and infinity over the double collision configurations. 
The behavior of orbits near these two extremes of r is similar for all non-zero angular 
momenta so we will describe this before turning to the features specific to the large angular 
momentum case. 

One of the nicest results in the whole theory is: 
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8 RICHARD MOECKEL 

Theorem: Let the angular momentum be non-zero. Then any orbit passing sufficiently 
close to triple collision is of the following type: the configuration is a tight binary for all time 
and the short side of the triangle remains bounded while the other two sides tend to infinity in 
both.forward and backward time. 

This theorem is due to Sundman [Su] with refinements due to Birkhoff [Bir]. In particular, it 
implies that triple collision is impossible for w -:~: 0. An orbit obeying Sundman's theorem is 

shown in the right lobe of figure 5. Although we will not draw them, such orbits occur in all 
of the pictures referring to non-zero angular momenta. 

At the other end of the lobe we have the two-body problem at infinity. As r~oo, 3.1 

shows that the configuration is forced into tight binary. Although it is conceivable a priori 
that all three sides of the triangle could become infinite, an appeal to the unrescaled energy 
equation shows that the short side remains bounded while the other two become infinite. It 
stands to reason that the influence of the third mass on the binary will become negligible and 
that the binary will behave essentially as a two-body problem. In fact, using rescalings 
similar to those in section 2 it is possible to paste a copy of the two-body problem onto each 
lobe ofM(h,w) at infinity [Mc2,Mc-Eas,Rob]. Actually, there are many two-body problems 

at infinity distinguished by the asymptotic speed of separation of the binary from the third 
mass. Intuitively, there are three cases. Either the third mass has just enough energy to 
escape from the binary and so reaches infinity with zero asymptotic speed (parabolic case) or 
it has plenty of energy and reaches infinity with positive asymptotic speed (hyperbolic case) 
or it does not have enough energy and returns for another approach to the binary (elliptic 
case). Clearly the parabolic case separates the other two. It is shown in the references above 
that the set of orbits tending parabolically to infinity forms a four-dimensional invariant 
manifold in M(h,w) which we call the stable manifold of infinity (even though a whole open 

set of orbits tends to infinity hyperbolically). Similarly there is a four-dimensional unstable 
manifold of parabolic infinity. These can be viewed as the stable and unstable manifolds of 
an invariant three-sphere pasted onto M(h,w), the parabolic two-body problem at infinity. 
These invariant sets are present for all angular momenta, even w = 0. Several open problems 
which can be posed for all w concern these manifolds. Do there exist orbits homoclinic to 

parabollc infinity ? Do there exist orbits which tend parabolically to infinity in one time 
direction but which remain bounded in the other (capture or escape orbits) ? Do there exist 
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QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 

orbits which oscillate to infinity, i.e., orbits with ilm r(t) = oo but limr(t) < oo? Such orbits 

have been found in special cases of the three-body problem [Sit,Mos]. It is shown in 
[Mc-Eas] that if there are favorable homoclinic intersections of the invariant manifolds of 
parabolic infmity in the planar problem then capture/escape orbits and oscillation orbits also 
exist. 

We tum now to those features which are specific to large angular momenta. First, 
recall that 3.3 forces the masses into a tight binary configuration from which they cannot 
escape. Thinking of the binary as the earth and moon and of the third body as the sun we see 
that the moon will always be a bounded distance from the earth and much closer to the earth 
than it is to the sun. This is a planar version of Hill's proof of the stability of the earth-moon 
system [H], one of the first applications of qualitative, geometrical reasoning to mechanics ! 

Continuing the earth-moon analogy we could look for "lunar" periodic orbits, that is, 
orbits such that the two bodies in the binary move in nearly circular orbits around their center 
of mass while the binary and the third mass move in nearly circular orbits around their center 
of mass. Such an orbit is called prograde if both circular motions have the same orientation 
and it is called retrograde if the orientations are different. 

Theorem: For all sufficiently large angular momenta there is at least one prograde lunar 
orbit and at least one retrograde lunar orbit in each lobe of M(h,co ). 

This result is due to Hill [H] in the restricted three-body problem and to Moulton [Moul] in 
the planar problem. A nice proof can be found in [Mey]. A prograde and a retrograde lunar 
orbit are depicted in the front lobe of figure 5. The reason for requiring large co is that if the 

configuration is a very tight binary then the third body can be viewed as a perturbation on the 
binary. It is an open question whether these orbits persist to lower angular momenta. In the 
restricted problem Conley [C) used the lunar orbits as the boundaries for an annular cross-
section to the three-dimensional phase space. It is not clear how to generalize his work to the 
five-dimensional planar setting. 

5. The First Critical co. As we lower co, the Hill's regions behave continuously until we 
reach a certain critical value. From the description in section 3 of how the Hill's regions lie 
over their projections to the shape sphere it is clear that bifurcations of the Hill's regions arise 
from bifurcations of the equipotential curves in the shape sphere. Thus critical values of co 
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10 RICHARD MOECKEL 

correspond to critical values of U(s). Critical points of U (s) are called central configurations 
or relative equilibria. We have already pointed out that the equilateral configurations are 
minima of U(s). There are also three collinear configurations which are saddle points of 
U(s). These are distinguished by the order in which the three bodies appear along the line; 
the exact spacing depends in a complicated way on the masses [Mou2]. The five central 
configurations of the three-body problem are shown in figure 6. 

Each central configuration determines a restpoint in M(h,ro) for the corresponding 
critical ro. Actually these represent periodic orbits of the three-body problem for which the 

triangle formed by the three masses rotate rigidly around the center of mass; they appear as 
restpoints in M(h,ro) because we have quotiented out the rotational symmetry. These 

periodic orbits, which were discovered by Lagrange [Lag], are also shown in figure 8. 

o----m®f---ee 

Of---·-----•® 

••~----~o,_--Gm 

Collinear (saddles) Equilateral (minima) 

FIGURE 6 : Central Configurations 

As we reach the first critical value of ro, two of the three disks around the double 
collisions in the shape sphere meet at one of the collinear saddle points,sc. Over this saddle 

point at radius~~~~) , two of the three lobes of the Hill's region meet at the point 

representing the configuration of the Lagrangian periodic orbit As we pass through the 
critical ro a tunnel opens between the two lobes. The critical Hill' region and tunnel are 

shown in figure 7. Other than the Lagrangian periodic orbit and the orbits arising from 
Sundman's theorem, not much is known about the dynamics for the critical angular 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 

momentum. However, an interesting invariant set lives in the tunnel. As we pass through 
the critical ro a hyperbolic invariant three-sphere bifurcates from the restpoint; this invariant 

set has four-dimensional stable and unstable manifolds. The existence of this invariant set 
follows from a linear analysis of the restpoint together with standard perturbation results for 
hyperbolic invariant manifolds. Inside the invariant three-sphere there is at least one periodic 
orbit, the elliptical orbit of Lagrange. This is the continuation to lower angular momenta of 
the circular orbit described above. The configuration remains similar to the central 
configuration but instead of rigidly rotating, the size expands and contracts as the three 
bodies orbit on similar ellipses around the center of mass obeying Kepler's laws for the two-
body problem (figure 8). Since the shape remains constant, such an orbit appears in the 
Hill's region as a radial line segment over the central configuration; this segment runs 
completely across the tunnel. The elliptical Lagrange orbit appears in figure 7 along with a 
crazy orbit from the invariant three-sphere. 

ro just below 
critical 

Lagrange Orbit 

FIGURE 7 : First Critical Hill's Region and the Tunnel 

II 
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12 RICHARD MOECKEL 

FIGURE 8 : Circular and Elliptical Lagrange Orbits 

The shape of the Hill's region for ro below the critical level suggests a problem: do 
there exist binary exchange orbits, that is, orbits heteroclinic between the two lobes ? Such 
an orbit would exhibit different tight binary configurations in forward and backward time. 
More specifically, one could ask for heteroclinic orbits connecting the two parabolic 
infinities. Perhaps the invariant three-sphere in the tunnel is involved in such a network of 
homoclinic and heteroclinic orbits. An orbit connecting a three-sphere at infmity to the three-
sphere in the tunnel would be an interesting type of capture orbit. A final open problem 
concerns the persistance of the invariant three-sphere or at least of some large invariant set as 
the angular momentum is lowered. 

6. Below the Third Critical ro. The other two collinear central configurations are 

associated with bifurcations similar to the one described in section 5. At the critical levels, 
circular periodic orbits appear and develop into hyperbolic invariant three-spheres as the 
angular momentum is lowered further. New tunnels develop connecting the third lobe to the 
two which were already joined. After the third collinear orbit has developed the projection of 
the Hill's region is an equitorial band on the shape sphere and we have a Hill's region as in 
figure 9. 
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FIGURE 9 : Hill's Region Below the Third Critical co 

Very little is known about the dynamics for these intermediate values of angular 
momentum. About all that can be said is that there are three collinear, elliptical Lagrangian 
periodic orbits; these are the radial line segments crossing the tunnels in the figure. For 
parameters near the critical values there will also be invariant three-spheres but as mentioned 
in section 5, their persistance is in doubt. If there are interesting invariant sets in the three 
tunnels which behave in some sense (Conley index?) like hyperbolic invariant three- spheres, 
then there would be the possibility of heteroclinic connections. A less daunting open 
problem is suggested by the topology of the Hill's region. Do there exist periodic orbits 
which are homotopically nontrivial in the sense that they run around the Hill's region passing 
through all three tunnels to form a noncontractible closed curve ? 

7. Below the Last Critical co. As we lower co still further the equitorial band on the 
shape sphere becomes wider until at the last critical value of co it.finally covers the north and 

south poles (the equilateral central configurations). At the critical level two restpoints 
develop in M(h,co) corresponding to the two circular, equilateral Lagrangian periodic orbits. 
As we lower co further these become elliptical just as in the collinear case. A detail of the 

bifurcation of the Hill's region over one of the equilateral points is shown in figure 10. After 
the bifurcation, the elliptical Lagrange orbits appear as radial line segments connecting the 
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14 RICHARD MOECKEL 

two sheets. Globally, the boundary of the Hill's region splits into two two-spheres 
(figurell). This topology persists all the way down to ro = 0. As ro~O. the inner surface 

converges to the triple collision sphere r = 0 and the Hill's region tends to the region of 
figure 4. 

FIGURE 10 : Bifurcation over the Poles 

FIGURE 11 : Hill's Region after the Last Bifurcation 
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For all nonzero w below the last bifurcation, there will be five elliptical Lagrangian 
orbits, one for each central configuration. For w just below the critical level there may also 

be complicated invariant sets near the equilateral orbits. This depends on the choice of the 
masses; for some masses (the minority) KAM theory applies near the equilateral restpoints 
and there will be invariant tori, long-period orbits, etc. For most choices of the masses, 
however, the equilateral periodic orbits are born hyperbolic with three-dimensional stable and 
unstable manifolds in M(h,w). In this case they are isolated invariant sets. 

Since the dimension ofM(h,w) is so large, the KAM theory does not imply stability 

and this would be the place to look for Arnold diffusion in the three-body problem. If the 
equilateral orbits are hyperbolic it is natural to look for transverse homoclinic and heteroclinic 
points connecting them. We will see in section 8 that such orbits do exist for small non-zero 
w, but for the nearly circular case the problem is open. 

8. Low Angular Momentum. In this section we will consider the case w = 0 and the 
case of small non-zero w. The interesting dynamics involves orbits which pass near the triple 

collision singularity. Thanks to the coordinate system of McGehee, which blows up the 
singularity into the invariant set {r = 0 } of 2.3, one can effectively study orbits passing near 
the singularity. As a result, more can be said about this case than about all the others 
combined. The study of triple collision began with Sundman[Su] and was carried on by 
Siegel [S-M]. McGehee's study of the collinear three-body [Mc3] problem led to much 
further work. The isosceles three-body problem, a subsystem present when two of the three 
masses are equal, has been studied by a number of authors [Devl,Dev2,Si,L-L,Ml,M2]. 
Finally [M3,M4] treat the planar case. 

We will begin with the case w = 0. The Hill's region is. reproduced in figure 12. 

Sundman's theorem about orbits near r = 0 no longer applies and triple collisions are 
possible. Quite a lot can be said about orbits which begin or end in triple collision. First of 
all, such orbits exist In fact the elliptical orbits of Lagrange become more and more eccentric 
as ro~O and in the ellipses degenerate into line segments (figure 8). The limiting orbits are 

homothetic expansions and contractions; the shape is always the central configuration while 
the size increases from zero to some maximum and back to zero again. Thus these orbits are 
homoclinic to triple collision. In figure 12 they appear as the five line segments from the 
sphere r = 0 to the outer surface. It turns out that every triple collision orbit must approach 
one of the five central configurations. Some other triple collision orbits are shown in the 
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16 RICHARD MOECKEL 

figure. The orbits which tend to a given central configuration form a smooth submanifold of 
M(h,O) of dimension 2 in the collinear case and 3 in the equilateral case. The manifold of 
collinear collision orbits consists entirely of orbits whose configuration is collinear for all 
time. Such orbits would lie in the equitorial plane in figure 12. However, there are orbits 
ending at the equilateral collision which look nearly collinear until the last moment when the 
middle mass slips out from between the other two to form the required equilateral triangle. 
Such an orbit is shown in the figure. 

FIGURE 12 : Some Zero Angular Momentum Orbits 

Among the orbits tending to triple collision in one time direction there are orbits 
which tend parabolically to each of the three infinities in the other time direction. By making 
use of these connections from infinity to triple collision one can show that there are binary 
exchange orbits; the exchange is carried out during a close approach to triple collision. 

We already mentioned that the limiting Lagrange orbits can be viewed as orbits 
homoclinic to triple collision. There are infinitely many other orbits homoclinic to the two 
equilateral triple collisions and heteroclinic between them (for technical reasons this is only a 
theorem for masses in a certain open set in mass space but it probably holds for all choices of 
masses). Some of these pass very near to the collinear Lagrange orbits switching to the 
equilateral configurations only very near triple collision. 

Finally we mention another kind of oscillation orbit which is known to exist in the 
isosceles subsystem. There are orbits which approach arbitrarily close to triple collision 
without actually colliding; in fact they converge to one of the collinear Lagrangian orbits. 
They feature infinitely many increasingly close approaches to collision between which they 
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expand nearly homothetically like the Lagrange orbit. Such an orbit satisfies Jim r(t) = 0 but 

IiiD r(t) > 0. Such an orbit is shown in figure 13 along with some of the orbits homoclinic to 
triple collision. 

FIGURE 13 :Orbits Homoclinic to Triple Collision 

The case of small non-zero angular momentum combines close approaches to triple 
collision with the recurrence of the highly elliptical Lagrange orbits to produce chaotic 
results. We will concentrate on the equilateral Lagrange orbits. When w is sufficiently 

small, these orbits are hyperbolic with three-dimensional stable and unstable manifolds. 
These two orbits are connected by heteroclinic orbits to one another and to the three infinities 
(at least for masses chosen in a suitable open set as mentioned above). These are shown in 
figure 14. 

First there are orbits running from the equilateral Lagrange orbits to parabolic infinity. 
Depending on the direction in which they run they are either capture orbits or escape orbits. 
The capture orbits, for example, evolve as follows: the particles are in a tight binary 
configuration, but the third mass approaches the binary, interacts closely with it and begins a 
very regular bounded motion which approaches an equilateral elliptical Lagrangian periodic 
orbit as t~oo. 

17 
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18 RICHARD MOECKEL 

FIGURE 14 : Some Low Angular Momentum Orbits 

There are transverse homoclinic and heteroclinic orbits connecting the two 
equilateral Lagrangian orbits. In fact, there are infinitely many distinct connecting orbits, 
some of which pass very near to the collinear Lagrangian orbits. The presence of homoclinic 
orbits produces all of the usual chaos. There are wild orbits which change shape abruptly 
after each close encounter with triple collision. In fact, if the masses are nearly equal, one 
can arrange orbits which imitate all five of the Lagrangian behaviors in turn (see figure 15); 
one can even arrange for such orbits to be periodic. 

Roughly speaking, the reason for the existence of all of these orbits in the low 
angular momentum case is that the combination of the recurrence of the equilateral Lagrange 
orbits with the stretching and spiralling which orbits experience while passing close to triple 

collision produces a large invariant set describable by the methods of symbolic dynamics. 
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FIGURE 15 : A Low Angular Momentum Orbit 

There are a number of open questions. It would be nice to incorporate the infinities 
into the symbolic dynamics; currently, one can get out from near triple collision to parabolic 
infinity but then one cannot necessarily get back for another close approach. This would 
enlarge the invariant set to include oscillation orbits as described in section 4. Another 
question concerns the collinear Lagrange orbits. These are not necessarily hyperbolic for 
small ro. What is going on in the neighborhood of these orbits as ro~O ? Finally, a question 
which could be posed for any ro is: what is happening to the angle that was quotiented out ? 
Do the orbits described above rotate systematically as they perform their wild changes of 
shape or do they emerge from the close approaches at random angles ? 
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20 RICHARD MOECKEL 

9. Conclusion. We will close this tour of the three-body problem with another look at 
figure 1, the "big picture". There are really very few landmarks in the phase space of the 
three-body problem. The most important are triple collision, infinity and the periodic orbits 
of Lagrange. These are the elements of figure 1. A program for understanding the three-
body problem is first to conduct local studies of these features and then to find out how they 
are connected to one another. As we have seen, a little progress has been made in the three 
centuries since Newton formulated the problem but a genuine understanding of what is 
possible remains a distant goal. 
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SYMMETRY IN n-PARTICLE SYSTEMS 

Donald G. Saari 1 

ABSTRACT. According to Noether's theorem, symmetry in 
Hamiltonian systems translates into integrals of motion. Some 
of the methods used to extract information about the dynamics 
from the integrals are outlined in Section 2. In this paper a 
conceptually simple approach is introduced to subsume and 
extend many of these efforts. The basic ideas are introduced 
with the integrals of angular momentum for n-particle systems, 
and the utility of this approach is indicated with some new 
results. This approach extends to all symmetry integrals for 
systems of the general form r" = V U(r). 

1. ANGULAR MOMENTUM. For a n-particle system in a d-dimensional 
physical space, r 1 e Rd, i = 1, 2, .• , n, is the position vector 
of the ith particle. Usually, d = 2, 3. (Treat d = 2 as the x-y 
plane in R3 . ) The equations of motion are 
(1.1) m1 r 1 " = v 1 U(r1 , .. ,rn) i = 1, .. ,n 
where m1 ~ 0, U is defined on a domain Din (Rd)n, and v 1 is the 
gradient with respect to r 1 • For instance, if m1 > 0 and U = 

~i<J m1 mJ/Ir1 -rJ I, then Eq. 1.1 is the Newtonian n-body problem 
where the domain requirements are that r 1 ~ rJ for i ~ j. 

Equations (1.1) admit the energy integral 
(1.2) T = (1/2) ~ 1 m1 v 1 2 = U + h 
where v 1 = r' 1 is the velocity of the ith particle. If U, the 
self-potential, depends on the distances between particles, then 
the invariance of U with respect to translations admit the 2d 
integrals that fix the "center of mass" of the system, 
(1.3) ~i m1 r 1 =At+ B, ~i m1 v1 =A, 
where, if m1 >0, the usual choice is A= B = 0. The integrals 
restrict the orbits to a linear subspace of (Rd )nx(Rd)n that 
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24 DONALD G. SAARI 

we denote by Rd<n-llxRd<n-11. Also, U is invariant with 

respect to rotations, so we find the d(d-1)/2 integrals 
(angular momentum) 
(1.4) c = 
Without loss of generality, assume that the constant of 
integration is c = ce3 • 

The integrals reduce the system to degree 2dn-
(d+1)(d+2)/2 where Eqs. 1.2, 1.4 restrict the orbits to the level 
sets of 
( 1. 5) F: Rd < n- 1 l xRd < n- 1 l -- > Rl • < d < d- 1 l 1 2 l ; 

F = (T-U, ~ 1 m 1 r 1 xv 1 ). 

How can we exploit these integrals? The obvious approach 
is to use Eqs. 1.2, 1.4 to solve for some of the velocity terms, 
but the mixed, quadratic form of Eq. 1.4 complicates this 
analysis when n>2 and d = 3. Nevertheless, this "implicit 
function" approach has served us well for d = 2. 

1. Topological classification. An insight into the 
orbit structure follows from the topology of the level sets of F; 
i.e., Mh,c = F- 1 ((h,c)). In particular, we want to characterize 
the bifurcations where the topology changes. For the coplanar 
(d=2) n-body problem, S. Smale [13] and R. Easton [2] made 
important contributions, and partial statements for d = 3 are 
given by H. Cabral [1]. These results are somewhat specific to 
the functional form of U. I'll indicate how to obtain "best 
possible" results for all d for a wide class of potentials. 

2. Restrictions on configurations. The configurations 
formed by the particles are identified with the system position 
vector r = (r1 , .. ,rn) e Rd<n-1). Do the integrals restrict which 
configurations the dynamics admits? To find such restrictions on 
r one might project Mh,c to configuration space. Using a 
different approach, this program was carried out for the coplanar 
Newtonian n-body problem by C. Marchal and D. G. Saari [4]. We 
used the Sundman inequality, 
( 1. 6) c2 ~ 4 IT= 4I(U +h), 
where 2I = ~ 1 m 1 r 1 2 is the polar momentum of inertia. 
measures the "radius" of the universe.) 
( 1. 7) c2/4I1/2 - hi1/ 2 ~ C(r) 

Consequently, 
= I112U. 

( I1/2 

The last term in this inequality, the configurational measure, is 
invariant with respect to scalar change (i.e., C(r) is 
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SYMMETRY INn-PARTICLE SYSTEMS 25 

homogeneous of degree zero) and rigid body rotations. Thus, C(r) 
is invariant with respect to elements in an Eulerian similarity 
class. In this mannar Eq. 1.7 proves that the configurations, as 
measured by C(r), are restricted by Il/ 2 and constants of the 
system. For the important case h<O, the left hand side of Eq. 
1.7 is bounded below. Thus, a configuration r is admitted iff 
(1.8) c lhil/2 :S C(r). 

These restrictions on admissible configurations are "best 
possible" for coplanar problems. As true for the topological 
classification, they are not best possible if d = 3 because 
Sundman's inequality is not sharp for d ~ 3. I'll indicate how 
to obtain "best possible" results and why the above approach is 
equivalent to projecting Mh,c to configuration space. 

3. Analytic results. Analytic techniques have long been 
used to analyze orbits. As just some examples, recall that by a 
clever use of canonical changes of variables for the Newtonian 
three body problem, c. L. Siegal [12] showed that if the system 
suffers a total collapse at 0, then V i, r 1 /I 1 /2 approaches a 
definite limit: the three particles can't collide with an 
"infinite spin." N. Hulkower [3] used similar techniques to 
discuss a related problem for the expanding three - body systems. 
Using different techniques, Sundman proved that if the Newtonian 
n-body problem has a complete collapse, then c = 0. (This result 
may have been known by Weierstrass. (See [7,p66],) Weierstrass 
showed for the Newtonian three body problem that if c = O, then 
the motion is restricted to a fixed plane in R3 for all time. 
Laplace and others determined restrictions on motion where the 
configuration doesn't change. I'll extend these results. 

4. Plane of motion. Three particles define a plane 
passing through 0. A practical problem of astronomy is to 
understand how this "plane of motion" changes with the dynamics. 
The approach used here completely determines this motion in terms 
of the configurations formed by the particles and constants of 
the system. 

2. DECOMPOSITION OF THE VELOCITY. To introduce the basic idea, 
consider n-particle systems given by Eq. 1.1 where U admits the 
integrals Eqs. 1.2, 1.3, 1.4. The approach is to use the 
integrals to determine an orthogonal decomposition of the system 
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26 DONALD G. SAARI 

velocity vector v = (v1 , •• ,vn), This decomposition is defined by 
the system inner product <,>:(Rd)nx(Rd)n--> R, where for a= 
( a 1 , • • , an ) , b = ( b1 , •• , bn ) and the inner product (-,-) on Rd , 
(2.:1,) <a, b> = E1 m1 (a1 ,b1 ), 

The system inner product is positive definite iff m1 > 0, 
If the m1 's differ in sign, <-,-> is a signed inner product with 
degenerate vectors. To simplify the exposition, I'll assume that 
m1 > 0, but occasionally I'll mention what differences arise when 
the m1 's differ in sign. The gradient defined by the system 
inner product admits the equations of motion 
( 2. 2) r" = v U(r), 

where "v" = ((1/m1 )v1 , ,,,, (1/m,.)Vn), Also, 
( 2. 3) 2T = <v, v>, 2I = <r, r>. 

For a, be (Rd)n, let ax b = (a1 xb1 , .. ,anxbn)' Let E1 = 
(e1 , •• ,e1 ) e (Rd)n where e 1 is the unit vector in Rd with unity 
in the ith component. With this notation, the integrals in 
Equation 1.3 become 
(2.4) <E1 , r> = 0, <E1 , v> = 0. 
The angular momentum integral, Eq. 1.4, is 
(2.5) <E1 x r, v> = (c, e 1 ), 

where i = 3 ford = 2, and i = 1,2,3, ford= 3. To see this, 
note that <E1 x r, v> = E m1 (e1 xr1 ,v1 ) = (e1 ,Em1 r 1 xv1 ) = (e1 ,c), 

An immediate consequence of Eq. 2.5 is that if m1 >0 Vi, 
then Sundman's inequality, Eq. 1.6, follows from Cauchy's 
inequality as 
( 2. 6) c2 = (e3 ,c)2 = <E3 xr,v>2 S <E3 xr,E3 xr><v,v> S 

<r,r><v,v>. 
Thus Sundman's inequality never is sharp for motion out of the 
x-y plane because the last inequality never achieves equality. 
This explains the difficulty in extending coplanar conclusions 
derived from Sundman's result. 

According to Eq. 2.5, the component of v along the line 
E1 xr is a constant. This suggests the strategy of orthogonally 
decomposing the system velocity vector, v, into two parts. The 
first part, W1 1 iS the projection Of V tO the SUbspace Spanned by 
{E1 xr}, while the second part, w2 , is what remains. To interpret 
the projection W1 , start with r and let Hr = {!l(r) = 
(!l(r1 ), .. ,!l(rn)): !l e SO(d)}. Hr, the orbit of a group action, 
is a smooth manifold of dimension d(d-1)/2 except if r is 
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collinear and d = 3. For this singular situation, dim(Mr) = 2. 
The tangent space 
( 2. 7) 
Thus, W1 is the component of the system velocity corresponding to 
a rigid body rotation. Furthermore, W1 is uniquely determined by 
the basis and Eq. 2.5, so W1 = ~S 1 E 1 xr where S = (81 ,S2 ,S3 ) is 
the instantaneous axis of rotation. This proves the first part 
of Theorem 1. 

Theorem 1. The rotational velocity component, W1 is uniquely 
determined by r and c; conversely, ~ and r uniquely determine c. 

Proof of the second part. v = W1 + w2 where w2 is orthogonal to 
TrHr. The conclusion now follows from Eq. 2.5. 

Thus, the component W1 (r,c) is equivalent to the angular 
momentum integral. The remaining component of v, w2 , is in Nr, 
the normal bundle (in Rd(n-1>) to TrMr' Indeed, using Theorem 1, 
it follows for any V in Nr that (r, W1 (r,c)+V) is on the integral 
surfaces defined by Eqs. 1.3 and 1.4. It now is easy to 
geometrically or topologically characterize these surfaces for 
all choices of d, and the characterization does not involve U(r). 

More is possible; the orthogonal decomposition separates 
the kinetic energy, so Eq. 2.3 becomes 
(2.8) 2T = <v,v> = <W1 ,W1 > + <w2 ,w2 > = 2(U(r) +h). 
Let f(r,c,h) = 2(U(r) +h) - <W1 (c_,r),W1 (c,r)>. Equation 2.8 

shows that the combination of the integrals forces 
( 2. 9) <w2 , w2 > = f ( r, c, h) , 
which means that integrals determine <w2 ,w2 >. Conversely, it 
follows from the decomposition of v that for any V e Nr 
satisfying Eq. 2.9, (r,W1 +V) is in F-l(h,c), Thus we can 
characterize ~.c for any value of d. For instance, this 
characterization requires w2 to be on the sphere in Nr with 
center 0 and radius fl/2, Iff= 0, then w2 = 0. Since<,> is 
positive definite, no motion occurs where f<O. So, Mh,c is a 
pinched sphere bundle over the space of all possible, admissible 
configurations ACh,c = {r:f(r,c,h)~O}, where "pinched" refers to 
the degenerate sphere, point 0, that occurs whenever f=O. (If 
the m1 's differ in sign, <,> is a signed inner product, so the 
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28 DONALD G. SAARI 

spheres in the fibers are replaced by hyperbolids. Here there 
are no restrictions on the base space -- on the admissible 
configurations -- because <,> and f admit all signs. However, 
the form of the hyperbolid changes with sign(f), and this forces 
certain velocity components to dominate others.) Thus the 
decomposition of v leads to a simple method to recapture and 
extend the first two approaches described in Section 1. 

To further develop these ideas for d = 2, let U be a 
positive, homogeneous function of degree a; i.e., U(•r) = ••U(r). 
An advantage of this restriction is that c.(r) = r-•12U is a 
positive, homogeneous function of degree zero that is independent 
of rotations. Thus, this configurational measure determines 
which Eulerian (similarity) configurations are admissible. 

Theorem 2. Let d = 2 and let c and h be given. The set of 
admissible configurations is given by ACh,c = {r/ f(r,c,h)~ 0). 
If a<-2 or a>O, then any Eulerian configuration is admitted for 
some value of I. If -2<a<O, then an Eulerian configuration is 
admitted for certain values of I iff h < 0 and 
(2.10) c. ( r) ~ D (a) c- • I h 11 + < • I 2 l • 

D(a) = 2•1al•/2f(2+a)•/2{1-(a/(2+a))}. 
If a = 0, then c,.~ -h; if a = -2, then c,. ~ cZ/4. If -2<a<O, the 
topology of ACh,c changes for those values of c and hand at r* 
where Eq. 2.10 is an equality and 
(2.11) Q c.(r*) = o. 

Definition. A configuration r* is a central configuration iff Q 

Ca ( r*) = 0. 

By using Euler's theorem for homogeneous functions, it 
follows that r* is a central configuration iff •r* = Q U(r*) 
where • = aU(r*)/2!. Namely, the force vector lines up with the 
position vector. As we see from Eq. 2.11, one reeason central 
configurations are important is that they characterize the 
topological bifurcations. For the Newtonian 3-body problem, the 
central configurations are three collinear configurations and the 
equilateral triangle. 

Proof. Because d = 2, it follows from a simple 
computation that <W1 ,W1 > = cZ/2!. Because<-,-> is positive 
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definite, Eq. 2.8 can be expressed as 
(2.12) Ta(I) = c2/4I<2+al/2 hi-a/2 :S Ca(r). 2 

This means that the configurational measure is bounded below by 
Ta(I). If a<-2 or a>O, then Range(Ta) includes (O,m), so there 
are no constraints on the configurations,3 The same situation 
occurs for -2<a<O if h~O. On the other hand, if -2<a<O and h<O, 
then Ta(I)~ D(a)c-alhll+(a/2) with equality when I= (2+a)c2/4ah. 

The boundary of ACh,c corresponds to a level set of 
Ca(r), so the topology of the region changes at critical points 
of ca. These critical points are the central configurations. 

As an example, consider the Newtonian three body problem. 

29 

The center of mass is fixed at 0, so 2MI = ~J<kmJ~(rJ-rk )2 where 
M = ~mi. If we view mJ mk as "weights" and rj k = I rJ -rk I as 
variables, then I 1 /2 and u-1 are, respectively, scalar multiples 
of the weighted geometric and harmonic means of the variables. 
According to a classical theorem, C(r) = Il/2U has a global 
minimum C(re) iff all of the variables are equal; the particles 
form an equilateral triangle, re. (This assertion holds for any 
U that is a weighted mean. For other choices of U, the central 
configurations can differ.) The three remaining central 
configurations are collinear, and they are distinguished by which 
mass is in the middle. Label these configurations as rJ, j = 2, 
3, 4, where C(re) < C(r2) S C(r3) :S C(r4 ). ·consequently, if 
clhll/2 < C(re), all configurations can occur. If clhll/2 = 
C(re), then a restriction occurs at equilateral configurations. 
Continuing, if clhll/2 is between C(re) and C(r2 ), then the 
configurations never resemble an equilateral triangle. Finally, 
restrictions are imposed on which collinear configurations can 
occur. These conclusions are depicted in Figure 1 where the lines 
indicate different boundary restrictions on configurations. 

52. Equation 2.12 generalizes Eq. 1.7, so the approach in Sec. 1 
of using Sundman's inequality is equivalent to the projection of 
Mb,c to configurations space. These results are for Ca > 0, 
there are related results for Ca < 0, Here, Eq. 2.2 imposes an 
upper bound on admissible configurations. 

3. On the other hand, it follows immediately from Eq. 2.12 that 
if c ~ 0, there always are values of I that create constraints. 
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We can characterize 

Mh,c because the remaining 
component of v, w2 , is on a 
sphere of radius fl/2 in the 
fiber Nr. For instance, in 
Figure 1, if r is not on the 
boundary of the admissible 
configurations, then the 
distance of r from the boundary 
determines the value of f > 0. In 

Ml 

Figure 1 
"'z 

turn, this determines radius of the sphere of values for w2 • Let 
Sk 8 be the k dimensional sphere in Rk+l with center at the origin 
and with radius a. 

Theorea 3, Mh,c = ACh,c x szn-4 8 where az = f(r,c,h). 

Differences arise when this approach is used to determine 
Mh,c ford= 3. First, dim(Nr) = 3n-7 if r is not a collinear 
configuration and 3n-6 if r is a collinear configuration. Thus, 
the sphere containing w2 changes dimension should r pass through 
a collinear configuration. This is caused by the change in 
dim(TrHr) created by the singularity of the group action: 
rotating a collinear configuration about its axis doesn't change 
anything. To explain this, if r(t) defines a configuration that 
spans at least a d-1 dimensional space in Rd , then r can be used 
to describe the motion of a frame, In particular, the axis of 
rotation, S, is uniquely determined by r and c. On the other 
hand, if r is collinear for d=3, then only two components of S 
are determined. The third component is the added dimension in 
Nr, and it corresponds to a limiting change in the frame as the 
particles pass through a collinear configuration. A second 
difference is that <W1 ,W1 > does not have the simple form cZ/21 
for d~3, but a representation for W1 follows from linear algebra. 
The third difference is in the description of Abc' When d=2, as 
shown in Section 2, this set is characterized by I and the 
configurational measure Cm(r). For d=3, other variables, such as 
the orientation of the configuration relative to the invariable 
plane (i.e., the plane orthogonal to c), play a role. We 
correctly might expect further constraints to be imposed on the 
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admissible configurations. Finally, because other variables are 
involved, we should expect that the bifurcation points for the 
configurations need not be the critical points of C4 ; 

configurations other than central configurations are involved. 
All of this happens. (A description of ACh,c for the Newtonian 
three body problem is in [9].) 

3. NOETHER'S THEOREM. All of the results in Sections 2 and 4 
are based on the orthogonal decomposition of v obtained by 
representing the angular momentum integral as <E1 x r, v> = (c, 
e 1 ), i = 1,2,3 (Eq. 2.5). The details differ, but whenever U 
admits integrals of the form 
(3.1) <H(r),v>, 
the same kind of program applies. Namely, let {HJ(r)} be the 
vectors defining the integrals given by Eq. 3.1. These vectors 
span an integral subspace of TrRd<n-1). Orthogonally decompose 
the system velocity vector where one component is in the integral 
subspace. For the same reasons as given in Section 2, the 
component of v in the integral subspace is equivalent to the 
integrals, so this component is uniquely determined by r and the 
constants of integration. Because the decomposition is 
orthogonal, use the energy integral to determne the magnitude of 
the remaining component of v in terms of r and constants of the 
sytem. Thus, if the system inner product is positive (or 
negative) definite, this last component is on a sphere in the 
fiber where the radius is determined by r and constants of the 
system. (With a signed inner product, the component is on a 
hyperbolid.) So, to carry out this program, we need to know 
which integrals admit the form Eq. 3.1. 

Theorem 4. Let r" = '\! U(r) be given where r E R" and the 
gradient is defined by an inner product <-,->. Let G be a smooth 
mapping G:R"x(-<,<)-->R" satisfying: 

a. G(r,O) = r for all r. 
b. U(G(r,s)) = U(r) for s e (-1:,1:). 

c. If DG is the Frechet derivative with respect to the 
first variable, then <v,v> = <DG(r,s)(v), DG(r,s)(v)> for 
s E ( -1: 1 1:) . 

The system has the integral <(d/ds)G(r,s), v>l 9 • 0 =b. 
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In other words, Theorem 4 asserts that all of the Noether 
symmetry integrals can be expressed as Eq. 3.1, so an orthogonal 
decomposition can be used to re-express these integrals as 
components of v. (The manifold Mr is replaced with the orbit of 
G.) As an example, if U depends on the distances between 
particles, then G(r,s) = r + sEi satisfies the three conditions. 
This means that <(d/ds)G(r,s), v>ls=O = <Ei ,v> is constant on 
orbits; this is Eq. 2.4. A second choice is G(r,s) = Q(s)(r) = 
(Q(s)r1 , •• ,O(s)rn) where 

( 3. 2) Q(s) = r cos (ss) 
-sin ( ) 

L 0 
sin (s) 
cos ( s) 

0 ~ J 
By matrix calculus, it follows that <(d/ds)G(r,s), v>ls=O = 
<E3 xr,v> = c; this is Eq. 2.5. Many earth satellite models are 
of the form U = U(x2+y2 ,z). Since U is invariant with respect to 
Q(s), the integral is (e3 xr,v) =c. As another example 
suggesting the dynamics of the orientation of a satellite, 
consider U(x,y,z,u,v,w) = U((x2+y2+z2 ), (u2+v2+w2 )), U is 
invariant with respect to rotations of the x,y,z variables as 
well as of the u,v,w variables, and all six integrals have an 
expression ready for an orthogonal decomposition of the system 
velocity (x' ,y' ,z' ,u' ,v' ,w'). 

Proof of Theorem 4. To show that 
(d/dt)<(d/ds)G(r,s),v>l 8 =0 = 0, note that (d/dt)<(d/ds)G(r,s), v> 
= <(dZjdtds)G(r,s),v> + <(d/ds)G(r,s),r">. The last term at s=O 
is <(d/ds)G(r,s),'\7U>I 9 =0 = (d/ds)U(G(r,s))I 9 =0' According to 
(b), this equals (d/ds)U(r) = 0. Thus, it remains to show that 
<(d2/dtds)G(r,s),v>l 9 =0 = 0. Using the smoothness of G, 
interchange the order of differentiation to obtain 
<(d/ds)DG(r,s)(v),v>l 9 =0 • By differentiating the isometry 
condition (c), 0 = (d/ds)<v,v> = (d/ds)<DG(r,s)(v), DG(r,s)(v)> 
= 2<(d/ds)DG(r,s)(v),DG(r,s)(v)>. But by (a), DG(-,0) is the 
identity mapping. Thus 0 = <(d/ds)DG(r,s)(v),DG(r,s)(v)>l 9 =o = 
<(d/ds)DG(r,s)(v),v>l 9 =0 . This completes the proof. 

4. SOME ANALYTIC CONSEQUENCES AND THE PLANE OF MOTION. In this 
section, I'll continue to exploit the decomposition of v based on 
the angular momentum by improving upon the analytic results 
described in Section 1. The assumptions are that d = 3, that U 
admits the angular momentum integrals, and that U is homogeneous. 
Because U is homogeneous, radial changes play a distinguished 
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role, SO decompose w2 : W2 + W3 where W2 is the projection of w2 
in the radial direction r/r, and W3 is what remains. It is easy 
to see that W3 is the velocity component corresponding to 
configurational changes while W2 = r'r/r = I'r/2I changes the 
scale within a Eulerian similarity class. Again, by 
orthogonality we have 
(4.1) <W1 ,W1 > + (I')2/2I + <W3 ,W3 > = 2(U +h). 

If<-,-> is positive definite, then <W1 ,W1 > is bounded 
below by c2/2I. Thus, a weaker version of Eq. 4.1 is 
( 4. 2) c2 + (I')2 ~4IT=4I(U+h). 

Thus Sundman's inequality holds for all n-particle systems where 
the mi 's are positive, and it is sharp only if d S 2. Moreover, 
it follows that Sundman's inequality should be viewed as an 
approximation of the orthogonal decomposition of the system 
velocity vector. 

Inequality 4.2 can be used to improve upon the 
conclusions in Section 2. To do so, we need the next technical 
lemma. 

Lemma. Suppose that U is homogeneous of degree a. Then, 
( 4. 3) I" = (2 + a)U + 2h = (2 + a) T - a h. 
Let S4 (r) = (c2 + (I')2)/4I(2+nl/2 hi-n/2, 
(4.4) S4 ' = (2+a)I'[4IT- {c2 + (I')2}]/8I(4+n)/2, If 
mi >0 't/ i, then 
( 4. 5) T., (I(t)) ~ s., (t) = S4 (r(t)) ~ c., (r(t)). 

Proof. By definition, 2I = <r,r>, so I" = <v,v> + <r,r"> = 
<v,v> + aU. The last equality follows after replacing r" with v 
U and using Euler's theorem for homogeneous functions. Eq. 4.3 
follows from the energy integral and Eq. 2.3. Equation 4.5 is a 
direct consequence of Eq. 4.2 and the definition of C.,(r). 
Equation 4.4 follows by differentiation and Eq. 4.3. 

We now show how the dynamics imposes new restrictions on 
the admissible configurations and on how the system can expand. 
Because mi > 0, the expression in the square brackets of Eq. 4.4 
is Sundman's inequality, so it is bounded below by W3 2. Indeed, 
as we've 
the x-y 
for the 

shown, this 
plane and w3 
Si!SrtS of s .. • 

inequality is zero iff all particles are in 
= ~. Thus, if a>-2, the usual situation is 
and of I' to agree; if a<-2, they disagree. 
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This means that the growth properties of S4 and I are related and 
that (from Eq. 4.5) the aggregate growth behavior of the system 
imposes added restrictions on which configurations can occur. 
For, instance, if a>-2 and if t 0 is a local minimum point for I, 
then until I reaches its next local maximum, the constraints on 
configurations are T4 (r(t)) < S(r(t0 )) S S4 (t) S C4 (r(t)); these 
are more severe than those imposed by T4 in Eq, 2.10. 

To illustrate the consequences of this result, recall 
from Section 2 that there are values of h and c where the 
Newtonian three body problem admits an equilateral triangle 
configuration, r 8 • Suppose a local minimum value for I, I., 
satisfies T_ 1 (I.) > c_ 1 (r8 ). The results of Section 2 do not 
disqualify a scenario where, as the system grows, the particles 
eventually form an equilateral configuration. We now know from 
the lemma that such a scenario cannot occur; as the system 
expands to the next local maximum of I, the configurations must 
satisfy C_ 1 (r8 )<T_ 1 (I.)SC_ 1 (r(t). Thus, if this system ever does 
form an equilateral configuration, it occurs after the next local 
maximum value for I. 

Somewhat surprisingly, these inequalities from the lemma 
not only relate growth behavior to configurations, but also they 
bound possible growth behavior of the system. This is clear if 
U>O, so that C4 >0. 

Theorem 5. Let U >0 be homogeneous of degree a > -2 and c • 0. 
If I'(t 0 )< 0, then S 4 (t 0 ) and c determine a positive lower bound 
for the next local minimum value of I. If -2<a<O and I'(t0 )>0, 
then the next local maximum value of I is bounded below by a 
value determined by Sa(t 0 ). All local maxima for I are bounded 
below by (2+a)c2/41ahl. If h ~ 0 or if a>O, then I'(t0 )>0 
implies that I --> ~. 

To include aS -2, replace c • 0 with h<O, and I'(t 0 )~ 0; 
the conclusion is that the first local maximum of I is bounded 
above. 

Proof. Because I'(t)<O for t>t0 , we have that S'S0 1 so 
S(t) ~ S(t0 ). But T4 ~ S4 where equality occurs only at critical 
points of I. Therefore, at least until the first local minimum 
of I, 
( 4. 6) 
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From the representation of the graph of T4 (r) in Figure 2 (for 
h<O), it is obvious that 
S4 (r(t0 )) determines a lower 
bound for the next minimum of 
r(t). Conversely, if I'>O, 
then the inequality S 4 (t)~ 

Sa(t0 ) holds at least until 
after the next local maximum 
point t 1 where I'(t1 )=0. At 
this maximum value, S4 (t1 ) = 

Figure 2 

T4 (t1 )~S 4 (t 0 ), Thus, I(t1 ) ~ x where xis the larger of the two 
solutions to Ta(x) = S4 (t0 ), This value of xis bounded below by 
the minimum point for T4 , which is (2+a)c2 /41ahl. The equation 
T4 (x) = S4 (t0 ) has only one solution if h ~ 0 or if a>O, so here 
I' ~ 0. Indeed, choose any point where S4 (r)>T4 (I); the 
difference between these values determines a positive lower bound 
for I'/I<2+a)/4 for all subsequent t. Because I is increasing, 
this imposes a positive lower bound on I', so I--> m, 

Corollary 5.1. Let U be a positive, homogeneous function of 
degree a > -2. Let t 0 be a local minimum point for I. Until the 
next local maximum point for I, the configurations satisfy the 
constraint T4 (I(t 0 )) S C4 (r(t)), 

The next corollary extends the important Weierstrass-
Sundman theorem about complete collapse to other n-particle 
systems. An interesting feature is the simplicity of this new 
proof. 

Corollary 5.2. If U > 0 is homogeneous of degree a>-2, and if 
~0, then I-/-> 0. 

This corollary does not hold for a S -2. For instance, 
if a = -2, then, according to Eq. 4.3, I" = 2h. Thus if h < 0, 
the orbit must satisfy I= ht2 + I'(O)t + l(O); i.e., if the 
solution lasts long enough, I --> 0. 
Proof. Let E = (2+a)c2 /41ahl for h ~ 0 and 1 if h = 0. If 
I--> 0, then V t after some t 01 I(t) <E. Because I--> 0, there 
is t 1 > t 0 where I'(t 1 ) < 0. According to Theorem 5, Sa(t1 ) 

determine a positive lower bound for I that serves at least until 
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after I has its next local maximum value. According to Theorem 
5, the next local maximum value for I is greater than E. This 
contradicts the requirement that I(t)<E, and the proof is 
completed. 

It turns out that if c - 0 and if something resembling a 
complete collapse occurs, then h<O and the motion involves wild 
oscillations where lim sup I= m while lim inf I= 0 as t -->t0 • 

(This can't happen for the Newtonian n-body problem; if c - 0, 
then once r becomes sufficiently small, the subsequent motion 
requires r --> m. See [4].) This assertion is immediate from 
the following stronger statement that an upper bound for I 
defines a positive lower bound for I. Namely, if the radius of 
the universe, r, is bounded above, then r must be bounded away 
from zero. 

Corollary 5.3. Assume U > 0 is homogeneous of degree a, c - 0, 
and the motion exists for all time. If a>O or if -2<a<O and h~O, 

then I(t) has a unique, positive minimum and I -->mas ltl -->m. 
If h<O and -2<a<O, then all local maxima values for I are bounded 
below by (2+a)c2/4ah. If I < D < m for all t, then I has a 
posit.i\'e lower bound determined by D and c. If a 5 -2, h<O, and 
lim inf I > 0 as t --> m, then lim sup I < m. 

Proof. We only need to show that D determines a lower bound for 
I. At a local maximum, I'= 0, so S0 = T0 • Of the two values 
satisfying Ta(x) =Sa, the smaller one serves as a lower bound 
for the next local minimum of I(t). It follows from the graph of 
Ta that this lower bound for I(t) is bounded below by the smaller 
of the two values Ta(x) = Ta(D). 

I've required U to be positive, but related statements 
hold for negative U, such as a "near-neighbor" interaction where 

U = -!:k (rk - rk•l-rk-l ) 2 , or for n-body systems where "large" 
charges are added to the masses. Here Ca(r) < 0, so Eq. 4.5 
assumes the form Sa(t) + ICa(r(t))l ~ 0. The difference in the 
analysis is that Sa(t) < 0, (and h ~ 0), so rather than the 
configurational measure being above the curve Sa(t), it is caught 
between the curves y = S(t) and y = 0. The next theorem suggests 
the kind of possible results. 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



SYMMETRY INn-PARTICLE SYSTEMS 

Theorem 6. Let U < 0 be homogeneous of degree a > -2 and c ~ 0. 
Then h > 0 and I~ x where T4 (x) = 0. If I'(t0 ) > 0, then the 
configurations formed at timet satisfy the inequality IS 4 (t 0 )1~ 

IC4 (r(t))l. If I'(t 0 ) < 0, then the next minimum value of I is 
bounded below by the smallest zero of g(x) = T4 (x)- S4 (t 0 ). 

Complete collapse can occur if c = 0, but what is the 
motion? For instance, Painleve' [5] wondered whether the 
collapsing particle for the Newtonian three body problem could 
have an infinite spin. The answer involves two velocity 
components. The first and original question is whether W1 admits 
an a situation where the particles approach a fixed configuration 
that is spinning infinitely fast. By using a clever, complicated 
series of canonical transformations, this issue was resolved for 
the Newtonian three body problem by C. L. Siegal [12]. With 
different techniques, it was solved for collapsing n-body systems 
by Saari and Hulkower [10], and for all collisions by Saari [11]. 
The second kind of "infinite spin" is where the particles of the 
collapsing system do not approach any fixed configuration, so it 
involves properties of W3 • (See [10,11] for details concerning 
the Newtonian n-body problem; here, the solution of the second 
kind of spin involves the properties of a certain central 
manifold.) In keeping with my emphasis on symmetry, I'll only 
consider the first kind of "infinite spin". 

Theorem 7. Let U>O be homogeneous of degree a > -2. Suppose 
that I--> 0 as t --> t 0 • If r(t)/I1 1Z(t) approaches a fixed 
Eulerian similarity class as t-->t0 , then r/Il/2 approaches a 
definite limit as t--> t 0 • 

Proof. For complete collapse, c = 0, so W1 = 0. Thus, the 
system has no rotational velocity terms. This completes the 
proof. 

We now turn to the fourth topic in the introductory 
section. A flat solution is a where at each instant of time, 
all n particles are on a plane in R3 passing through 0. (All 
solutions for n=3 are flat solutions.) Call this the "plane of 
motion." How does the plane of motion moves? To obtain 
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intuition, note that a change of the orientation of the plane 
just rotates the configuration. Thus we should expect changes in 
the plane of motion to be governed by the rotational velocity W1 

= w.l ( r, c) 0 Consequently I the dynamics of the plane should be 
completely determined by r and constants of the system. 

To make this precise, let n(t) be the unit vector on the 
intersection (the "line of nodes") of the plane of motion and the 
invariable plane where e 3 x n is a vector below the plane of 
motion. Let 8 be the unit vector in the plane of motion that 
projects onto e 3 x n. (8 is well defined unless the plane of 
motion coincides with the invariable plane or the plane of motion 
passes through e 3 .) Express each r 1 = ai(t)n + b 1 (t)8. By 
differentiation, we have 

vi = v1 + {(q(t)e3 + p(t)n)xri} + s(t)( (nx8)xr1 ) where q(t) is 
given by n' = q(t)e3 xn, i(t) is the inclination of the plane of 
motion (the angle between the planes), p(t) = i', s(t) is such 
that I:m1 x {a1 'n + bi '8} - s(t)(nx8)xr1 } = 0, and v1 = ai 'n + 
bi '6 - s(t)(nx8)xr1 , In other words, the vectors vi are in the 
plane of motion and consist of the components of W2 and W3 while 
v - ( v1 1 ,. 1 vn) is determined by W1 , Here, q( t) measures the rate 
of change of the line of nodes, p(t) measures the change in the 
inclination of the plane of motion, and s(t) measures the rate of 
rigid body rotation within the plane of motion. Because W1 = 
W1 (r,c) 1 we should expect q, p, and s to be determined by rand 
c. Let A= (a11 .. 1an), B = (b1 , .. ,bn), <A,B> = I:m1 a 1 b1 , and A2 = 
<A, A>. 

Theorea 8.[8] Suppose c- 0 for a flat solution of Eq. 2.2. 
Then, if E = A2B2 - <A,B>2, 
(4.7) q(t) = cBZ/E, p(t) = c sin(i)<A,B>/E, and 

s(t) = -c cos(i){(B2)2 + <A,B>2}/{A2 + B2}E 

It is often stated that without a flat solution there 
isn't a natural frame to define the rotation of the n-particle 
system. This isn't so; at t = 0, let (k1 ,kz ,k3 ) be an 
orthonormal basis. A natural rotating coordinate system is 
( 4 0 8) 
where S is the axis of rotation. Recall, if r is not collinear, 
then S is uniquely determined; if r is collinear, then the one 
missing component is determined by continuity. Equation 4.8 is a 
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SYMMETRY INn-PARTICLE SYSTEMS 39 

natural extension of the rotation of the plane of motion. In 
this manner, the same kind of variables can be defined for a non-
flat solution with a similar relationship for the movement of the 
key variables. (See [8] for the equations.) 

Some interesting conclusions follow from Theorem 8. For 
instance, the only way the plane of motion for a flat solution 
can attain a local maximum or minimum inclination is if the 
particles form a certain kind of configuration with respect to 
the line of nodes. 

Corollary 8.1. For a flat solution, assume that c ~ 0. 
a. A critical point for the inclination, p(t) = i'=O, occurs 

iff either i = 0, or <A,B> = 0. The inclination is increasing 
iff <A,B> > 0. 

b. The system has no rotation in the plane of motion (s = 0) 
iff i = 'lr/2. 

c. If the initial configuration is not in the invariable 
plane, then i>O for all time the solution exists. 

Details of the proof are in [8];, however, the 
conclusions follow fairly directly from Theorem 8. A slight 
complication comes from the "Cauchy inequality" term, E = 
A2B2 - <A,B>2, in the denominators. This term is zero iff A is a 
scalar multiple of B iff the configuration·is collinear. 
However, for c ~ 0 and a collinear configuration, the line is in 
the invariable plane; i.e., the x-y plane. (If r is collinear, 
then for some d, each rj = ~jd. Thus c = ~~jd x vj and (d,c) = 
0.) Collinear configurations arise naturally for flat solutions. 

Theorem 9. If c ~ 0, and if at t = t 0 the particles form a 
collinear configuration, then the particles are in the invariable 
plane. Let U be a smooth function of the distances between 
particles. Consider flat solutions that are not in the 
invariable plane for all time. Whenever all n particles pass 
through the invariable plane at the same time, they form a 
collinear configuration. 

It is easy to show that Theorem 9 need not be true for 
n ~ 4 unless the solution is flat. Theo~em 9 sheds light on the 
topological characterization when physical space is R3, Recall 
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that if r defines a collinear configuration, then Mr is two 
dimensional. We see from Theorem 9 that such a configuration 
occurs only in the invariable plane when all n particles pass 
through this plane. So, the missing variable caused by the 
singularity of the rotation group action corresponds to a 
limiting value of the missing component for S when the 
configuration becomes collinear. 
Proof. Because U is a function of the mutual distances, r" = V U 
is well defined in the x-y plane. Suppose a flat solution is not 
always in the x-y plane, but at t 0 all n particles are all in the 
x-y plane and the configuration is not collinear. This forces 
the plane of motion to coincide with the x-y plane, The solution 
is flat, so all components of W3 are in this plane. As W2 = 
r'r/r, these velocity components also are in the x-y plane. The 
remaining component is W1 • Clearly, for this configuration and 
c, there is a choice of W1 with all of its components in the x-y 
plane; just let W1 be the appropriate multiple of E3 xr. For this 
choice, all of the velocity and position vectors are in the x-y 
plane, so the orbit must be in the x-y plane for all time. But, 
W1 and S are uniquely determined by r and c if r is not 
collinear. Thus, this choice of W1 is unique, According to 
uniqueness of solutions, this contradicts the assumption that the 
solution is not restricted to the x-y plane. (It is the choice of 
the missing component of S that determines whether the motion for 
the starting collinear configuration is in the invariable plane.) 

Another singularity situation for the characterization of 
Mh,c is if c = 0. This motivates the next theorem which 
generalizes a classical result for the three body problem. 

Theorem 10. Let U be a function of the mutual distances between 
particles. If a flat solution of the n-body problem has c = 0, 
then the plane of motion is fixed for all time. 

This means that the surface Mh,c is given by the product 
of this surface for a coplanar problem and the various, possible 
orientations' of this plane. For N>3 and non flat solutions, a 
similar statement holds. This is because of Eq. 4.8. If c = 0, 
then S = 0, so the frame remains fixed, 
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SYMMETRY IN n-PARTICLE SYSTEMS 

I'll conclude by introducing a result to suggests what 

happens in those singular situations where Wi = 0; i.e., where 
there is no rotation, or I is a constant, or the configuration 

doesn't change similarity classes. I'll consider W3 = 0; the 

homographic solution can rotate and change size, but not shape. 

Theorem 11. Let U be homogeneous of degree a and invariant with 
respect to rigid body rotations of the configuration. If d = 2 
and W3 = 0, then the homographic solution is a central 
configuration. 

Without added restrictions on U, Theorem 11 is false for 

d = 3. (See [14,pp. 292-295].) 

Proof. In the natural fashion determined by the 

definitions of Wj, decompose velocity space into the component 

subspaces Vj 1 j=1,2,3. According to the assumption, v = Sxr + 
w2 I so v' = [S'xr + (2r'/r)Sxr] + r"(r/r) + Sx(Sxr). Because 
d = 2, the last term is -ISI 2 r, so the last two terms are in V2 • 

The bracketed term is in V1 , so it follows that r" = v' has no 

components in V3 • The rotation invariance assumption on U forces 

QU to have no components in vl I so QU = ar + T, where T E v3. 

But, v' = QU, so T = 0 and QU - ar r is a central 

configuration. Incidentally, the bracketed term also must be 

zero, so the homographic motion is determined from the solution 
{Sxr2r} = d. 
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0. Introduction 

The goal of this paper is to study the behavior near collisions of the following physical 
system. Within the setting of the isosceles 3-body problem (3 point masses in the plane move 
subject to gravitational attraction. One of them, with mass m is given an initial velocity 
along a vertical axis. The other two, with same mass .M, are given initial positions and 
velocities symmetric with respect to the vertical axis. Due to these initial conditions, the 
configuration of the three particles is at all times an isosceles triangle) consider the effect of 
adding charges to the bodies, same charge e to the symmetric ones, producing a repulsion 
force between them, and a charge f of opposite sign to the third one. 

Rescaling time we group parameters into Q = 4 (~M~;!) and we have a two parameter 
family ( Q and m) of Hamiltonian equations describing the movement. Q essentially measures 
the difference between electrical and gravitational forces acting on the symmetric bodies and 
m is the mass of the third particle. 

For Q = -1, the system is the classic isosceles 3-body problem with possible double and 
triple collisions. For Q = 0, when there is no interaction. between the symmetric bodies, 
the equations of the system are exactly those of the anisotropic Kepler problem studied by 
Gutzwiller and Devaney, this giving a different physical interpretation to it. The system 
has now only one singularity, corresponding to triple collision. Double collisions need not be 
regularized, the two symmetric bodies pass through each other naturally. 

For Q > 0 these two symmetric particles repel each other. The set of singularities 
corresponding to double collisions is unaccessible for finite energies. Only triple collisions 
can occur. We focus on this case and we use geometric techniques to gain a picture of 
the local behavior of solutions near collisions where a remarkable bifurcation occurs within 
a family of periodic orbits. By the McGehee transformation, we blow up the singularity 
replacing it with an invariant boundary. This is the collision manifold to which we can 
m1.turally extend the flow. Study of this flow gives us information about what happens near 
collision. For Q = 0 (A.K.P.) the collision manifold is a 2-torus, for Q > 0 it pinches into 
2-spheres (symmetric bodies can no longer pass through each other), this being in a sense 
the simplest collision manifold. We search for symmetric periodic orbits near collision. As 
the mass m of the third particle crosses a certain value mo, an oo-furcation occurs. For 
m > mo there are only a finite number of such periodic orbits. Decreasing m perhaps new 
ones are born one by one spitted out from the collision-ejection orbit. For m = m0 we reach 
a lhreshhold still having only a finite number of them. For m < m 0 we suddenly hn.ve a.n 
infinite number of them coming off the collision-ejecti01~ orbit. 
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Consider the following physical setting. We have three point masses in the plane with 
positions q; E R 2 i = 1, 2, 3 and masses m for q3 and M for q1 and q2. Their movement is 
subject to gravitational interaction and we will suppose that they are given charges as well. 
Let e be the charge of q1 and q2 and f the charge of q3. We have then, additional forces to 
consider and we will restrict our study to isosceles configurations. That is, the third particle 
is given an initial velocity with a vertical direction and the two other symmetric particles 
are given initial positions and velocities symmetric with respect to this axis (Fig. 1). 

Fig. 1. 

With any of these initial conditions, by symmetry, the configuration will remain au 
isosceles triangle for all time with the third particle moving along the vertical axis. We are 
interested in what happens near collisions. 

From Newton's law we have that· the equations of motion on the plane are given by 

As the configuration is always au isosceles triangle, we can choose more suitable coordi-
nates ( :r:t, :r:2) to describe relative positions. Let :r:t be half the oriented distance between q1 
and q2 and :r:2 be the oriented distance between q3 and the middle point of the segment q1q2 
(Jacobi coordinates) (Fig. 2). 
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·----~-~ Q ;t, 
~1 ~~ 

Fig. 2. Jacobi Coordinates 

q2- ql 
Xl = --2-

ql- q2 
:1:2 = q3 - --2-

45 

We can think of each of these coordinates as independent, so our configuration space now is 
( x1, x2) E R 2. In these new coordinates and after rescaling time (set new time z = ( Gm-jft) 
the equations of motion are much simpler 

(1.1) 

where the parameter Q = -t(~M;."'!.;I) is measuring the difference between gravitational and 
"electrical" forces. Remember that e and f have opposite signs, so this denominator is always 
positive. Q < 0 would mean that we have stronger gravitational forces and so particles q1 
and q2 attract each other and we can have double collisions. Notice that if Q = -1 we have 
the eqs. of the isosceles 3-body problem [D]. If Q = 0, gravitational and electrical forces 
cancel each other and there is no interaction between these two particles although the third 
one attracts both. We do not have double collisions between q1 and q2 in the proper sense. 
They pass through each other naturally and there is no need of regularization. The equations 
are exactly the same as those for the anisotropic Kepler problem studied by Gutzwiller and 
Devaney. In this paper we will be interested in the case Q > 0 where there is repulsion 
between the symmetric bodies. In this case it is possible for triple collisions to occur, but 
not double collisions. This can be clearly seen from the shape of the Hill's regions that we 
will discuss in a moment. 

-1 Q (1 Defining the potential V(x) = (xi+ xn112 + fx'J , M = 0 
0 ) 

as mass matrix and y = ./1{ :i:, where x = ( x1, x2) E R 2, we can write the equations of motion 
ns JIIx = -VV(x) and in Hamiltonian form: 
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with Hamiltonian H(z,y) = htM-1y + V(z). 
H is also called the energy integral and, as is well known, it is constant along any orbit. 
Consider an orbit with H = h. As the first term of H is always positive, along the orbit the 
inequality V(z) :5 h holds. That is, the orbit is confined to the region in the z = (zt, z2) 
plane where l'( z) :5 h, the so-called Hill region. 

In Fig. 3 we sketch for different values of Q and h the form of the corresponding Hill 
region. 

The shaded regions are the corresponding Hill's regions V(z) :5 h where the movement 
is confined. 

1/J means that there is no possible movement with such values of h. 

§2. The Collision Manifold 

We now study the behavior of this system near triple collision. We blow up the singularity 
at the origin replacing it by a 2-manifold (collision m.anifold) which is invariant under the 
natural extension of the original flow. This is done by a. change of coordinates due to 
McGehee [M]. 

h<.O 

I=Q 

1 <a. 

Fig. 3a. 
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Q~o 

Q~O l: ·,. 
~-\ 

O<Q<[ ~ 
~x, 

Fig. 3b. 

In the case 0 < Q < 1 that we will consider here, a simple two sphere arises as triple-
collision manifold. 

McGehee's coordinates are given by 

r = (:z:r M:z:)l/2 
s = r-1:z: 
v = rl/2 sty 

u = r 112(M- 1y- ys) 

It is easily seen that s1 M s = 1, which defines an ellipse. Taking au angular coordinate 
(} on this ellipse, a new variable u such that u2 = u1 M u and rescaling time by a factor r 312, 
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the equations of motion ( 1.1) become then (see [D j for details) 

{ 

r = rv 
~ = u2 + !v2 + V( 8) 
8=u 
u = -!uv- V'(8) 

(2.1) 

with the energy relation (integral) 

(2.2) 

where 
V(8) = - 1 + _g_ 

Jl+~sin 2 8 lcos8l 

and V'(8) denotes derivative respect to 8. 
The geometric meaning of these variables is essentially the following: In the (z1, :1:2)-plane 

r measures the distance to the origin, 
8 is the angle of the position vector (z1, :1:2), 
u is the angular velocity, and 
v is the radial component of the velocity. 

"' ' ' .• \ 

(""ll \ .,"' 
\ ; ,'r\v 

Fig. 4. McGehee coordinates 

In this form, the equations no longer have singularities and the flow extends to r = 0 
where we have the collision manifold. This is the common intersection of all the energy 
manifolds (2.2) with r = 0. We call this manifold A. 

As we have the energy integral (2.2), we can reduce one dimension by looking only at 
the eqs. for the (u,8,v) E R 3 variables. We will try to visualize the flow in this space. 

So A is given by 

(2.3) 

In ( u, 8, v) coordinates, A is a surface of revolution around the 8-axis. 
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In Fig. 5 we sketch the graph of V(O) for the three cases Q < 0, Q = 0 and Q > 0. 
From (2.3) we see that we have collision manifold for those values of 0 where V(O) ::s; 0. 

To visualize A in ( u, 0, v) coordinates, we rotate the portion of the graph of V( 0) that lies 
below the 0-ax.is and rotate it around this axis creating a surface of revolution. See Fig. 6. 

Notice here what we could already see sketching the Hill's region. For Q = 1, A is a 
single point and for Q > 1 A is empty (no collisions). 

Fixing h < 0, the energy manifold (2.2) in the (O,u,v) space is the interior of the 
collision manifold and it is here where the flow takes place. The planes 0 = -1r /2 and 
0 = 1r /2 correspond to double collisions (bodies q1 and q2 are colliding). For Q = -1 we 
see in the figure the collision manifold of the isosceles 3-body problem without regularizing 
double collisions. The bodies collide with infinite speed. If we increase Q, i.e. increasing 

1[[e) Y(e) 

Q>o 
Q<.o 

Figs. 5,6. The potential function V( 0) and the collision manifold A. 

"electrical" charges, A remains with same shape until we reach Q = 0 where there's no 
interaction between bodies q1 and q2. They can interchange positions by passing through 
each other. In (u, 0, v) coordinates, orbits can cross these "collision planes" naturally. Notice 
that for Q = 0, equations (1.1) are exactly those of the so-called Anisotropic Kepler problem 
[D]. Now, if Q > 0, the two bodies ( q1 and q2) repel each other. Movement is confined to 
the interior of one of the two spheres. This corresponds to having q1 to the left and q2 to 
the right or vice versa. 

For the remainder of this paper we will focus on the case 0 < Q < 1 where A~ 5 2 . We 
study the flow on A and later we see the influence it has over near collision periodic orbits. 
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Flow of A. 
The natural extension of the flow to the collision manifold A is given by 

{ 
v = !u2 

B=u 
u = -!uv- V'(B) 

There are only two fixed points on tlus "sphere," the North and South poles 
u = 8 = 0 vo = ±J-2(Q- 1). As iJ = u and v = !u2 ~ 0, the flow is spiralling 
counterclockwise from the South to the North poles around the v axis (Fig. 7). 

Fig. 7 

Let's see what happens at the poles. The linearized flow at the fixed poles has matrix 

(~ 0 0 ) 0 1 
" -V (0) -vo/2 

with eigenvalues~ = -!!QlJA in the (u,B) plane where/),. = 18(m 9~ 6 - Q). Bifurcation 
occurs at tl. = 0. The graph of tl. as a function of m is (recall that Q depends on m also): 
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Let mo be the value of m for which t:. = 0. 
For these eigenvalues we know that qualitatively we have 3 different local behaviors of 

the linearized system at the poles (Fig. 8): 

e 

Fig. 8. Local flow at the poles 

Similarly for the South pole, reverse arrows and change orientation. We note that for 
m = mo, Al = Az but the linear part is not diagonalizable. 

We know that the nonlinear flow will have the same qualitative behavior around the 
origin. We will be interested if there is or there isn't infinite spiralling around the origin. 

We summarize this in: 
Proposition 1 

1. The collision manifold A has only two fixed points, the South and North poles. 
2. The flow spirals around A from South to North. 
3. For m ~ m 0 the flow spirals finitely many times on its way from South to North. 
4. Form < mo the flow spirals infinitely many times .on its way from South to North. 

Flow in the energy manifold. 

For a fixed energy value H = h < 0, we look now at the flow away from the collision 
manifold A. We can visualize the energy manifold rh = t(u2 + v2 ) + V(8), which contains 
the flow for H = h, as the interior of the "sphere" A in the (u,8,v) coordinates. 

The equations of motion are given by the last three in (2.1). (The coordinate r can 
always be read from the energy relation). Note that we have two important symmetries: if 
(7·, u, 8, v) is a solution, then 

(a) (1·( -t), -u( -t), 8( -t), -v( -t)) 
(b) (r(t), -u(t), -8(t),v(t)) are also solutions. 

(b) tells us that the flow is symmetric with respect to the v-axis and (a) says that the system 
is reversible, i.e., symmetric respect to the 8-axis changing time orientation. 
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Definition 
We will call the 8-axis ( u = v = 0) the zero velocity line. (Recall that u and v are 

components of the velocity vector y.) 
An immediate consequence of the symmetry (b)(reversibility), is that an orbit crossing 

twice the zero velocity line is necessarily periodic. In original coordinates ( config. space) 
the zero velocity line is the border of the Hill's region. An orbit touching it must necessary 
trace back on itself (see [D]) (Fig. 9). 

Fig. 9. 

So we find symmetric periodic orbits by following the zero velocity line under the flow 
looking for second crossings. 

It is easily seen from the equations (2.1) that there are no fixed points for the flow away 
from the collision manifold A, i.e. in the sphere's interior. 

As V'(O) = 0, the v-axis (8 = u = 0) is invariant under the flow, being itself an orbit 
where v = !v2 + Q -1. It is a heteroclinic orbit going from the North pole (ejection) into the 
South pole (collision). Actually, it is the only collision orbit for a fixed value of the energy 
H. We will refer to it as the collision-ejection orbit which in configuration space runs over 
the :c1-axis (see Fig. 10). 

1/ 

N.f. collision· ~ec1lo11 
or hi ( v -a.Jis} 

-a.v.[. 

Eil 

I! ~.v.L (e·cx•'ll) 

s.P. 

Phase space Config. Space 
Fig. 10 

Every other orbit crosses the semi-disc u = 0, 8 > 0 (and does so infinitely many times), 
i.e., we have: 
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Proposition 2 
The 2-dimensional "semi-disc" u = 0, 8 > 0 is a Poincare Section of the flow. 

Proof. 
Intersections are transversal because u = -V'(8) < 0 on it. An orbit crosses and 

continually returns this section because iJ = u all over, i.e. the flow is always going in turns 
around the V-axis. 

Remark Any semi-disc that is the intersection with a vertical plane containing v-axis is also 
a Poincare-Section. 

So the flow near the v-axis (collision-ejection orbit) goes down towards the South pole 
and then goes spiralling up near the surface (collision manifold A) towards the North pole 
to go down again. A typical orbit near the collision ejection orbit in configuration space: 

) x, 

§3 Au "oo-furcatiou" of periodic orbits 

In this section we show the existence of a beautiful "oo-furcatiou" of periodic orbi.ts 
coming off the collision-ejection orbit as the parameter m passes the value mo. 

In ( u, 8, v )-space, let D be a small disc neighborhood disc of the origin contained in the 
horizontal plane v = 0. D = {(u,8,v)!u2 +82 <52 v = 0}. (Fig. 11.) 

S.t>. 

Fig. 11. 

D has a segment of the zero-velocity line ( 8-axis) as diameter and the collision-ejection 
orbit crosses it orthogonally at the origin which is the center of D. 
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Remark 
The whole disc v = 0 is not a section of the flow. Some orbits touch it tangentially aud 

some may never cross it. 
If D is small, it is crossed transversally by a tubular neighborhood of the collision-

ejection orbit. We define the Poincare map F (first retum map) from D (or a smaller 
subdisc if uecessa.ry) to D (see fig. 12). That is, take z E D and follow its orbit. This orbit 
goes first 

tJ.f. 

Fig. 12. 

near the collision orbit towards the South pole getting close to the collision manifold A. It 
then spirals up towards the North pole to get close again to the collisiou-ejection orbit and 
it will cross D on its way down. Tltis new point of intersection is F( z). By continuity we 
define F(O) = 0. 

In tltis way periodic points of F correspond to periodic orbits of the flow. 
The map F: D-+ D inherits symmetries from the flow. It is symmetric with respect to 

the origin (central symmetry) and has reversible symmetry with respect to the 0-axis; that 
is, if R denotes reflexion with respect to the 0-axis, then F-1 = RF R i.e. we have 

Proposition 3 The map F has the following properties {see Fig. 13}: 
(i) F = -F( -0, -u) 
{ii} F-1 = RF R 

as a consequence, F is also reversible w.r.t. the u-axis 
(iii} F-1 = SF S where S is the u-axis reflection. 
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...,_f 
' I I • . 

reversibility (ii) reversibility (iii) 
Fig. 13. 

Let e and U denote the segments of the 8-axis and the u-axis contained in D. 

Corollary 
The sets F(e) n e and F(U) n U are invariant consisting of periodic points. Moreover, 

F2 = I d on these sets. 
So, as for any reversible map, to find periodic orbits one can search for intersections of 

iterates of the symmetry axis with itself. 
We will search for this kind of periodic orbits in our system. In configuration space, 

typical periodic orbits of tlus kind are shown in figure 14: 

xe r(v/ A CJ 

Fig. 14. 

We take the segment e and we follow it along the flow until it crosses D again to see 
how F(9) looks like (Fig. 15). 

N.tl. 

S.P. 

Fig. 15. 
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As D is small, e will remain close to the collision ejection orbit towards the South pole. 
Then it will spiral around the collision manifold A reaching near the North pole to slide 
down again nearby the collision-ejection orbit reaching D _ See that e flows inside a tubular 
neighborhood of both the collision-ejection orbit and the collision manifold A. This tubular 
neighborhood is a solid torus with a sphere (A) in its interior. SeeFig. 16. 

We add another copy of the collision-ejection orbit (See Fig. 17). 

~.P. IJ.P. K.~ 

~ e 
0 

~ 
Bene! tile :s ph~re 

--4 
!oond iT -0~ ,.,, 

S.f. ::.1 do..,nw41.r4s A 

ll.?. #J.P. AI.P. 

9 

~iT 

e~n ,..ore 

IS N.P. 

Fig. 16 

t/.P. 

Fig. 17 

Now it is easy to see what the image F(0) C D looks like. F(0) will have finite or 
infinite turns around the origin depending on the flow on the collision manifold A. More 
precisely, this depends on the flow around the poles. From Proposition 1, for m > mo and 
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m = mo the flow on .A does a finite number of turns. Therefore, F( E>) crosses E> at most at 
finitely many points. The local picture is depicted in Fig. 18. 

That is, F( E>) n E> is a finite set of (periodic) points. But when m < mo we have on .A 
infinite spiraling at both poles. In consequence, F(E>) will be an infinite spiral around the 
origin, having oo-many intersections with E> accumulating to the origin (See Fig. 19): 

Fig. 18 

Fig. 19 

The points of E> n F(E>) correspond to periodic orbits of the flow. In fact, we have 

Proposition 
E> n F(E>) are fixed points ofF 

Proof 
Orient both E> and F(E>) saying that the origin 0 is a left extreme. 
Take X E en F(E>). F(x) also lies on this set (Corollary of Proposition 3). As F 

preserves the given orientation and F(F(x)) = x (same Corollary), F(x) cannot be to the 
left of x nor to the right. Therefore F( x) = x. 

So, form> mo there is a finite number (at most) of fixed points of F. As m decreases 
perhaps the origin spits new ones but one by one as shown in Fig. 20. 
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F(9) 

e • 

Fig. 20 

For m = m0 we still have finitely many of these fixed points. If m crosses the value mo 
to become m < mo we have a sudden "explosion" ( oo-bifurcation) of fixed points of F. 

The local bifurcation diagram is in Fig. 21: 

0 

Fig. 21. Bifurcation diagram 

Thus, we have proved 

Theorem In the Hamiltonian system (1.1}, if Q > 0, as m decreases and crosses the value 
mo, there is a simultaneous appearance of oo-many periodic orbits (oo-furcation} of low 
period coming off the collision-ejection orbit. Form ~ mo there are only finitely many of 
them. Form < mo there are oo-many. 

Acknowledgment. The author would like to thank R. Devaney for introducing him to the 
problem and giving continuous encouragement during tltis work. 
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CENTRAL CONFIGURATIONS IN R 2 AND R 3 

Dieter S. Schmidt1 

ABSTRACT. Relative equilibria and central configurations are 
specialized solutions of the general N-body problem. The mutual 
distances between the N bodies can be used as coordinates. It will 
simplify the discussion of known results about planar relative 
equilibrium solutions of the 4 body problem. The same method can be 
used to derive new results for non planar central configurations of 
the 5 body problem. 

1. INTRODUCTION. Relative equilibria are stationary solutions of the 

N-body problem in a rotating plane. Dziobek (1900) used the mutual distances 

between the bodies as coordinates. He derived a necessary and sufficient 
condition under which a configuration of four bodies can be a relative 

equilibrium solution. 
MacMillan and Bartky (1932) published an extensive treatment on permanent 

configurations in the problem of four bodies. It appears that they were not 
aware of the work of Dziobek as they used their own set of coordinates which 

makes their paper more difficult than necessary. We will show that, with the 
help of the 6 mutual distances between the four bodies, their results can be 
derived more easily. 

Another contribution to the problem of relative equilibria for four 

bodies was made by Palmore (1973). He saw that some relative equilibria are 
degenerate in a certain sense and that this allows for the bifurcation of new 

families of relative equilibria. Whereas Palmore used Morse theory and 

obtained qualitative results, Meyer and Schmidt (1987a) have shown that, here 
too, the coordinates used by Dziobek will simplify the problem to the point 
where approximations to the solution can be calculated and the implicit 
function theorem can be used to guarantee uniqueness. We will outline these 
results because our method can be extended to deal with the corresponding 

1980 Mathematics Subject Classification (1985 Revision). 70Fl0 
1 This research was supported by a grant from the Applied and Computational 
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60 DIETER S. SCHMIDT 

problem in R3 . 

It is impossible to have relative equilibria solutions unless all bodies 

lie in a plane. Nevertheless the N bodies can maintain a similar 

configuration in R3 provided that the size of the configuration increases (or 
decreases) proportionally to t 213 where t is time. Such a solution to the 
N-body problem is called a central configuration and necessarily starts (or 
ends) with a total collapse of the system. Although these solutions are very 
special they are of interest. It can be shown that whenever several bodies 
collide they will assume a central configuration in the limit. 

It turns out that the determining equations for relative equilibria and 
central configurations have the same form. Therefore, planar solutions to 
these equations can be interpreted as relative equilibria or central 
configurations whereas non planar solutions can only be viewed as central 
configurations. For simplicity we will refer to planar solutions always as 
relative equilibria and we will use the term central configurations only in 
the three dimensional case. At times when the discussion applies to both 

cases or when it is clear from the context we may simply use the word 
configuration to refer to either case. 

For three bodies all relative equilibria are given by the collinear 

solutions of Euler and the equilateral triangular solutions of Lagrange. The 
common theme for this presentation is the use of mutual distances between the 
bodies as coordinates but they are singular in the collinear case. Therefore, 

we have to exclude the collinear case from our discussion. 

For four bodies it is already impossible to enumerate all relative 
equilibria solutions. In addition to the papers mentioned above see also Simo 

(1978) for a detailed numerical study of the problem. Pedersen (1944) studied 
the problem when one of the bodies is infinitesimally small. The same problem 

is also the starting point of a work by Arenstorf (1982) where he asks which 
solutions can be continued to the full four body problem. 

Central configurations in R3 of 4 bodies are mentioned in Brumberg (1958) 
but the major portion of this paper is on the stability of relative equilibria 

in the planar problem. References to relative equilibria in the five body 
problem are Williams (1938), Palmore (1976) and Meyer and Schmidt (1987b). 

For more than 5 bodies mutual distances are not so useful as coordinates 
because the number of geometric constraints increases quadratically. 
Specialized relative equilibria solutions for any number of bodies can be 
found in Longley (1907), Lindow (1926), Klemperer (1962) and others. The use 
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CENTRAL CONFIGURATIONS IN R2 AND R3 61 

of bifurcation methods was pioneered by Palmore (1976) and the corresponding 

calculations were carried out in Meyer and Schmidt (1987b). 

2. EQUATIONS OF MOTION: The Hamiltonian function 

N 2 
H- \ IPj I - U(q) 

L 2m j=l 

describes the N-body problem. 
located at the positions q, E R2 

J 

p . 
J 

The vector q has dimension 

The N particles with mass m. j-1, ... ,N are 
J 

(or qj E R3). The corresponding momenta are 
2N (or 3N) and is made up of the individual 

position coordinates. U is the negative of the potential function i.e. 

m m 
i j 

The differential equations of motion in Newtonian form are 

(1) au 
mj qj = aqj 

For the study of the motion in the plane it is convenient to think of q, as 
J 

complex valued coordinates. If the motion is to be studied in a uniformly 
rotating coordinate system the transformation to the new complex coordinates 

z is then given by 
j 

z 
j 

where v is the angular velocity of the rotating coordinate frame. Relative 
equilibria are stationary solutions of the N-body problem in this rotating 

coordinate system. In this case the variables z. are independent of time and 
J 

the differential equation (1) reduces to the algebraic system 

(2) au -az + ). m z = 0 
j j 

where we have set ). - v 2 • 

Central configurations are solutions of (1) of the form 

q, - t2t3z. 
J J 

where the coordinates z in R2 (or in R3 ) are again independent of time. It 
leads to an equation which is identical to (2) with).- 2/9. 
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The form of (2) suggests that A can be interpreted as a Lagrange 
multiplier. In this way the solution of (2) are seen to be the extrema of U 
under the restriction that the moment of inertia 

1 L 2 I -- m jz I 2 j j 

remains at a fixed value I 0 • Thus relative equilibria and central 
configurations are extrema of the function 
(3) U + A ( I - I 0 ) 

In the search for these extrema there exists an additional condition which 
says that A is positive or even more stringently that it has to take on a 
predetermined value. It turns out that this poses no constraint. Since U is 
homogeneous of degree -1 it follows 
functions and from the form of (2) that 

from Euler's theorem on homogeneous 
u A - ~ . This shows that A > 0 at 

the extrema of (3). By scaling the position vectors q uniformly one achieves 
j 

also that A is equal to 2/9. 
By summing (2) over all bodies it follows from the form of the potential 

function that L m z - 0. This implies that the center of mass has to be at 
j j 

the origin. It also follows from (2) that other configurations can be 
obtained from any given configuration by rotating it by a finite angle around 
the origin. This fact causes difficulties. When we discuss bifurcations we 
will look for degenerate configurations. In this context a configuration is 
called degenerate if it is not isolated but, in fact, no configuration is 
isolated because near each configuration there is another one which is 
obtained from the first by a simple rotation. 

For this reason one has to introduce equivalence classes of con-
figurations. Two configurations are called equivalent if they can be 
transformed into each other by a rotation around the center of mass. 
Degeneracy means then degeneracy among equivalence classes, i.e. 
(or mod S0(3) ). 

mod S0(2) 

In many cases difficulties of this nature can be avoided by choosing the 
prop'er coordinate system. For the N-body problem the mutual distances between 
the bodies appear to be the appropriate choice. 
already used by Dziobek (1900). 

These coordinates were 

Let r denote the distance between the i thand the j th body. Then the 
ij 

(negative) potential function is 

u- I m m 
i j 

r 
ij 
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CENTRAL CONFIGURATIONS IN R2 AND R3 63 

and the moment of inertia transforms to I-!\ mm r 2 
2 L 1 J iJ 

To be correct I should be divided by the total mass M - ~m 1 but we absorb 
this factor into the Lagrange multiplier by setting 6 - >.jM. The problem 
consists then in studying the extrema of U + 6 ( I - I 0 ) 

3. RELATIVE EQUILIBRIA FOR THE FOUR BODY PROBLEM: For three bodies the 

three distances 
reflection. This 

r 12 , r 23and r 13 determine the configuration 
agrees with the fact that there are two 

up 
non 

equivalence classes of relative equilibria for the three body problem. 

to a 

linear 

Between four bodies there are six mutual distances. In general six 
distances define a tetrahedron provided that some obvious geometric 
inequalities are met. If the configuration is to lie in a plane the volume of 
this tetrahedron has to be zero. 

The following determinant is proportional to the square of this volume, 
i.e. 288 V2 - F with 

0 1 1 1 1 

1 0 2 2 2 r r r 
12 13 14 

F- 1 2 0 2 2 r r r 
12 23 24 

1 2 2 0 2 r r r 
13 23 34 

1 2 2 2 0 r r r 
14 24 34 

The derivatives of this determinant with respect to its entries have the 
following remarkable property 

- 32 l:J. l:J. 
i j 

where l:J. and l:J. are the areas of the triangles opposite to the points P and P 
i j i j 

respectively. These areas have to be taken with the appropriate orientation, 
that is relative to an outward normal of the tetrahedron. For Fig. 1 the 
individual triangles are 

t:. t:. p p p > 0 
1 2 3 4 

t:. - t:. p p p < 0 
2 1 4 3 

t:. t:. p p p > 0 
p3 3 1 2 4 

l:J. t:. p p p < 0 P., 4 1 3 4 

Figure 1: Convex configuration 
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In order for the configuration to lie in a plane t../t..2 +t..3 +t..4 =0 has to 

hold always. 
Let a be the Lagrange multiplier which insures that the volume of the 

tetrahedron remains zero. Then the relative equilibria of the four body 

problem are the extrema of 

U + 6 ( I - I 0 ) + a F/32 
After differentiating with respect to r 1j, 6 and a these extrema are found 
from the following set of eight algebraic equations 

(4a) 

(4b) 

(4c) 

m m ( r -3 - 6 ) t. t. 
i j ij - a i 

I - I = 0 
0 

F 0 

l:Si<j:S4 

We would like to remark briefly that for the three body problem no 
geometric constraint of the form (4c) exists. The right hand sides of the 
equations in (4a) are therefore 0 and j goes only up to 3. The solution to 
this set of equations is then r - r = r - 6-113 • Thus, Lagrange's 

12 23 13 

equilateral triangular solution is obtained without any effort. On the other 
hand the existence of the collinear solutions is not even indicated by these 
equations due to the fact that these coordinates are singular there. 

Returning to the four body problem the six equations of (4a) are 

( 
-3 

6 ) t. t. ( 
-3 

6 ) t. t. m m r - - a m m r - = a 
1 2 12 1 2 3 4 34 3 4 

-3 
6 ) t. t. -3 

6 ) t. t. m m r - - a m m r - = a 
1 3 13 1 3 2 4 24 2 4 

-3 
6 ) t. t. -3 

6 ) a t. m m r - - a m m r - t. 
1 4 14 1 4 2 3 23 2 3 

The equations have been grouped so that when they are multiplied together pair 

wise, their right hand sides are identical. This leads to the well known 

condition 

(5) -3 -3 -3 -3 -3 -3 (r12 - 6) (r34 - 6) = (r13 - 6) (r24 - 6) = (r14 - 6) (r23 - 6) 

Besides the geometric constraint this is a necessary and sufficient condition 
for solving equations (4) for some m1 when the distances are given. It is 

sufficient because it guarantees that one can solve for 6 and with it the 
ratios for the masses can be found. 

If the condition (5) is satisfied than 6 can be found from 3 expressions 

which have to give the same answer, that is 
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s s - s s s s - s s s s - s s 
0 12 3 4 13 24 1 3 24 14 23 14 23 12 3 4 

s + s - s - s s + s - s - s s + s - s - s 
12 3 4 13 24 13 24 14 23 14 23 12 3 4 

We have introduced the notation -3 and will continue to it s r we use 
ij ij 

from now on. 
From the different expressions that are possible for s - 0 and by 

ij 

finding all possible expressions for the ratios of two masses from (4a) one 

obtains the following list 

m 1:1 s - 5 s - 5 s - s 
(6a) 1 2 23 24 23 24 

m 1:1 s - 5 s - 0 s - s 
2 1 13 14 13 14 

m 1:1 s - 5 s - 0 s - s 
(6b) 1 3 23 34 23 34 

m 1:1 s - 5 s - 0 s - s 
3 1 12 14 12 14 

m 1:1 s - 0 s - 5 s - s 
(6c) 1 4 24 3 4 24 3 4 

m 1:1 s - 5 s - 5 s - s 
4 1 12 13 12 13 

m 1:1 s - 5 s - 0 s - s 
(6d) 2 3 13 34 13 34 

m 1:1 s - 0 s - 5 s - s 
3 2 12 24 12 24 

m 1:1 s - 5 s - 0 s - s 
(6e) 2 4 14 34 14 34 

m 1:1 s - 0 s - 5 s - s 
4 2 12 23 12 23 

m 1:1 s - 5 s - 0 s 
14 

- s 
(6f) 3 4 14 24 24 

m 1:1 s - 0 s - 0 s - s 
4 3 13 23 13 23 

Condition (5) only guarantees that the ratios of masses can be computed. 

It does not say that the masses will be positive. In order to find out under 
which conditions the masses will be positive requires an analysis of the above 
equations. This kind of analysis is the contribution of the paper by 
MacMillan and Bartky. 
(6a-f) are used. 

We claim that their results follow more easily when 

We will treat symmetric relative equilibria before we go on to the 
general case. We assume that the masses m1 and m2 are equal and the masses m3 

and m4 are equidistant from the first two. Referring to Fig. 2 we set a the 
oriented distance of m4 from the line joining m1 and m2 With 2P the distance 
between the later two masses we have 
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r 12 
r 13 

r 14 
r 34 
/:,. 1 
/:,. 3 
/:,. 

4 

- 2 /3 

- r -l<a+l/+ /32 
23 

- r - / a2 + /32 , 
24 

- 1 

- /:,. - /3/2 2 
-a /3 

1 + a ) /3 

DIETER S. SCHMIDT 

Figure 2) Concave symmetric configuration 
a > 0 

Actually,we should work with ratios of distances but for simplicity we 
have chosen to fix the value of r 34 to be 1. Note that with this assumption 
the configuration will be concave for a > 0 and also for a < -1. In the first 
case m4 is the interior point in the second case it is m3. For -1 < a < 0 
the configuration will be convex. 

With the above values for the distances and areas one finds from (6b,c) 

m 
3 

m 
1 

m 
4 

m 
1 

2 a 
( 2/3)-3 _ (az+/32)·3/2 
((a+l)z+/32)·3/2 _ 1 

By drawing the curves where the masses are 0 and co it is easy to determine 
where both masses are positive. This is indicated by the shaded region in 
Fig. 3. 

Some features of Fig. 3) deserve to be mentioned. For a - - 1/2 the 
configuration has an additional symmetry with respect to the line joining m1 

and m2. At a) and also at b) the configuration is made up of two equilateral 
triangles butted against each other (Fig. 4). From these two extremes it 
follows that for a convex symmetric configuration /3/3 < 2/3 </3 or in terms of 
the ratios of diagonals 

r 
/3/3 < ~ < 13 r 34 

which is a theorem of Longley (1907). 
The other vertices of the shaded regions also correspond to 

configurations where 3 bodies assume a Lagrangian configuration but the 
remaining mass has then to be zero or infinite. Only at c) in Fig. 3) can the 
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-1 

m:O 4 

B 

m=O 
3 

67 

Fig. 3) Regions (shaded) with positive masses for symmetric configurations. 

a) a--1/2, p-/3j2 b) a--1/2, p-/3/6 c) a-1/2, p-/3/2 
ml-m2, m3-m4-a) m1-m2 , m3-m 4-0 m1-m 2-m 3 , m4-arbitrary 

Fig 4) Three degenerate relative equilibria of Fig 3). 

mass m4 be arbitrary. It is the situation which Palmore has exploited to look 

for the bifurcation of new families of relative equilibria. 
For the discussion of the general convex case we assume that the labeling 

of the vertices is as in Fig 1). The signs of the area of the triangles are 

then t:.?O, t:.2<0, t:.?O and t:J.4<0. We continue to use the notation s -r-3 and 
ij ij 

we also set 6-p -3 • If one starts with s - 6 > 0 
12 

and asks for positive 
masses,equation (6) leads to the following inequalities 

( 7 ) r 12' r 23' r 34 'r 14 :S P :S r 13' r 24 

i.e. all exterior sides are smaller than the diagonals. The last expression 
for the mass ratios in (6b,e) gives even more detailed information. If r is 

12 
the smallest side than r < r < r and r < r < r 

12 14 34 12 23 34 
which means that 

the shortest and longest side have to face each other. This result can be 
found already in Dziobek (1900). 
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If we had assumed initially that s 12 - 6 < 0 then all inequalities would 

reverse but this can not be realized geometrically. 
MacMillan and Bartky also introduced the variable p but in a more 

complicated way. Once they have accomplished this the rest of their paper 

consists in exploiting equations (5) and (7). 

theorems can be found in their paper. 

The proof to the following 

THEOREM: For any convex relative equilibrium the condition that the masses are 
positive imposes the following restriction on the ratios of the diagonals 

r 
/3;3 < 12 < 13 

r 34 

THEOREM: For any given ratio of (positive) masses 
least one convex relative equilibrium solution. 

m :m :m :m there exists at 
1 2 3 4 

If m 
4 

For concave configurations fewer results are known. is the 
interior mass (Fig. 5) then (6a-f) provides the following inequalities 

(B) r12'r23'r13 > P > r14'r24'r34 
i.e. all exterior sides are longer than the interior ones. Furthermore, if 
one assumes an ordering of the exterior sides, for example 

r > r > r then it follows that r > r > r 12 23 13 34 14 24 
It means that the longest exterior side lies opposite the longest interior 

side. 
By considering each exterior edge one at a time, the interior body can 

then only lie in a half plane which is defined by its perpendicular bisector 
and which does not contain the remaining vertex. Thus the interior body has 
to lie in the intersection of three half planes. Since the three perpendicular 

bisectors intersect in one point this region will not be empty but it may lie 
outside of the given triangle, unless the center of its circumscribing circle 

Fig 5) Concave configuration 
with region in which P can lie 
when exterior triangle 4is fixed. 

y 

~------~--------~x 

Fig 6) Restriction on the shape of 
exterior triangle in Fig 5) 
x-r 1/r 12' y-r 2/r 12 
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lies inside of it. This restriction can be expressed algebraically by the 

following inequalities a2< b2 +c2 where a, b and c are any permutations of 

the three distances r 12 , r 23 
restriction is given in Fig. 6. 

and r . 13 A graphic representation of this 

A very special configuration is the one with three equal masses at the 

vertices of an equilateral triangle and a fourth body of arbitrary mass at the 
center. Palmore (1973) has shown that from this family of relative equilibria 

other families bifurcate at a particular value of the fourth mass. 

Meyer and Schmidt (1987a) have shown that by using mutual distances the 
implicit function theorem provides a way for computing these families. This 

demonstrates that these families are unique and have to be symmetric. We 

outline this approach here. 
critical value of the fourth 

Fixed are the three masses m -m -m -1. The 
1 2 3 

mass is denoted by me and has yet to be 
determined. With f as the perturbation parameter we set 

m - m + f 4 c 

r 13 + f a + ... r 1 + f a + ... 12 12 14 14 
r 13 + f a + .•. r 1 + f a + ... 23 23 24 24 

r 13 + f a + ... r 1 + f a + ... 13 13 34 34 
As before we have to find the extrema of the function 

V - U + 6 ( I - I 0 ) + u F . 
V depends on eight variables which we combine into the vector 

z - ( 6 ' u ' r 12 ' r 23 ' r 1 3 ' r 1 4 ' r 2 4 ' r 3 4 ) · 

For €=0 V has an extremum if 

The Hessian with respect to z is 

3m+ 13 c 

3m + 9 c 

and 

(532/3- 720) 2 (249 64"'3 81)2 6889 me me - 1 ~ -

u -
(/3- 9)m c 

27m + 81 c 

For m=m the Hessian has a 6x6 nonzero subdeterminant which can be obtained 
4 c 

by deleting the last two rows and columns. Thus by the implicit function 
theorem one can solve 8Vj8z=O for 6,u,r12 ,r23 ,r13 ,r14 in terms of a24 and a34 
when f is near zero. In terms of the Liapunov Schmidt reduction process this 
means that at first order in f all variables can be expressed in terms of the 
two parameters a24 and a34 , that is 
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r - 13 + £ a a + r - 1 - £ (a + a34) + ... 12 34 14 24 

r -13 + £ a a + r 1 + £ a + 23 24 24 24 

r 13- £ a (a + a34) + ... r 1 + £ a + 13 24 34 34 
where a-(64/3+81)/83. 

Continuing with the Liapunov-Schmidt reduction process we find from the 
second order terms the following bifurcation equations 

(a34- /3)( 2 a24+ a34)- 0 

(a24- {J)(a24+ 2 a34)- 0 
where {J-(3089347/3 - 4531167)/18889832. This pair of equations has three 
nontrivial solutions 

a - {J, a fJ 24 34 
a - {J, a - -2{3 

24 34 
a - -2{3, a - fJ 24 34 

Each solution preserves one of the symmetries of the original equilateral 
triangle. For example from the second solution we obtain 

r 12 - 13 - 2 £ a{J + ... 

r 13 r 23 - 13 + £ a{J + 
r 14 r 2 4 1 + £ fJ + 
r 34 1 - 2 e {J + ... 

Because we used the implicit function theorem to find these solutions, they 
are unique in the sense that no other solution can bifurcate from the family 
of equilateral configurations. 
nearby. 

In particular no scalene solution can exist 

4. CENTRAL CONFIGURATIONS IN a3 : The use of mutual distances as 
coordinates allows us to present new results for central configurations in the 
three dimensional space. Our methods are similar to those presented in the 
previous section and, therefore, the results will exhibit some similarity. 
Again we would like to point out that the coordinates defined by the mutual 
distances of the bodies in R3 have a singularity when 4 bodies lie in a plane. 
Therefore, the results for planar configurations can not be obtained from what 

follows. 
Six distances define a tetrahedron in R3 provided that the obvious 

geometric inequalities are met. The tetrahedron is defined up to a 
reflection. For the four body problem central configurations are then the 
extrema of 
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U+S(I-\) 

From the partial derivatives one obtains six equations of the form 
( - 3 r) - 0 1 · · 4 m1 mj r 1j - o :S1<J:S 

Their solution is -1/3 It means that the only central configuration r - s . ij 
for the four body problem are those that form a regular tetrahedron. 

If the 10 mutual distances between 5 bodies allow for a geometric 

realization in R3 then the following determinant has to be zero 

0 1 1 1 1 1 

1 0 2 2 2 2 r r r r 
12 13 14 15 

1 2 0 2 2 2 r r r r 
F- 12 23 24 25 

1 2 2 0 2 2 r r r r 
13 23 34 35 

1 2 2 2 0 2 r r r r 
14 24 34 45 

1 2 2 2 2 0 r r r r 
15 25 35 45 

Again we have a relationship of the form 576 D. D. 
i j 

where D. is the 
i 

oriented tetrahedron opposite the point P1 . 

We will give first our results of the bifurcation analysis. Place 4 

bodies of mass 1 at the vertices of a regular tetrahedron and a body of 
arbitrary mass m5 at its center. This is a central configuration for the five 

body problem and therefore an extremum of the function 

V - U + 6 (I - I 0 ) + u F. 
The function V depends on 12 variables 6, u, r l:Si<j:S5. The Hessian of V ij 
with respect to these variables is nonsingular for positive m5 except for 

m - m 5 c 
10368 + 1701/6 

54952 

At this value the corresponding Jacobian reduces its rank by 3. If we set 

m - m + f 
5 c 

and use a first order bifurcation analysis we find that the mutual distances 
depend on three parameters, i.e. 

r - ?.(6 + f -y (a + a ) + ... 
12 3 35 45 

r - ?.(6 + f -y (a + a ) + ... 
13 3 25 45 

2 r - 3-/6 + f -y (a + a ) + ... 
14 25 35 
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r - ~16 - f .., (a25+ a35) + ... 23 3 

r - ~16 - f '"f (a25+ a45) + ... 24 3 
2 r - 316 - f .., (a3 5 + a45) + ... 34 

r - 1 - f (a + a + a45) + ... 15 25 35 

r - 1 + f a + 25 25 

r-l+£a + 35 3 5 

r-l+£a + 45 4 5 

where -y is a constant with the value -y- (6912 + 1134 /6)/20607. 
At second order we find three quadratic bifurcation equations in a 25. 

a35 , and a45 . The quadratic equations factor easily into linear terms which 
deliver exactly four nontrivial solutions. They correspond to the four axis 

of symmetry of the regular tetrahedron. The solutions are 

a- a- a-a 25 35 45 a - -a - a - a 25 35 45 

-a = a - a - a a - a - -a = a 25 35 45 25 35 45 

with a - (151593992204 16 - 217016509824) / 1339339327695. For example, the 
first solution gives the following new central configuration to first order 

r-r-r-l+£a+ ... 25 35 4 5 

r-l-3£a+ ... 15 

The preservation of the symmetry is apparent and the shape of the central 
configuration which bifurcates from the regular tetrahedron is easily 
visualized. 

Results about admissible central configurations for the five body 
problem, that is, those with positive masses can be found by adopting the 
methods which were described for the planar four body problem. The algebraic 
equations which have to be solved are in appearance identical to those in (4), 
except that we have to use the new definitions of ~i and F. The equations are 
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(9a) -3 6 ) fj, fj, 1 i < j 5 m m r - - a :s :s 
i j ij i j 

(9b) I - I - 0 
0 

(9c) F- 0 

Instead of the single condition (5) there are now five distinct conditions of 

the same form 

(10) ( -3 6) ( -3 6) - (r-3 - 6) (r-3 - li) - (r-3 - 6) (r-3 - 6) rij - rkl - ik jl il jk 

where the indices (i,j,k,l) are chosen from the set (1,2,3,4,5). 
The conditions (10) are necessary and sufficient to solve (9a) for 6. 

There are 15 different ways of expressing li, i.e. 

From this 

(11) 

s 
6 i j - s + ij 

and (9a) 

m !:J. 
_i __ j 

m !:J. 
i j 

s - s s kl ik j 1 
s - s - s k1 ik j 1 

ten ratios for the different masses 

s - 6 s - s jk jk jl 

s - 6 s - s ik ik i1 

can be found. 

The analysis of (11) is now the same as for the four body problem. 
The convex case is characterized by the following geometric fact. The 

signs of two oriented tetrahedra are different from those of the other three. 
In order to be specific let us say that 

and 
Furthermore, there exists exactly one interior diagonal and in our case it 

is r 45 (see Fig 7). This diagonal intersects the interior of a triangle 
which here is composed of r 12 , r 23 , and r 13 • 

3 

2 

Fig. 7) Convex case in R3 Fig. 8) Concave case in 
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THEOREM: r45' r12' r23' r13 > P > r14' r24' r34' r15' r25' r35 · 
In addition assume an ordering of the sides of the triangle surrounding the 
interior diagonal, say r > r > r 13. then 12 23 

r > r > r and r > r > r 34 1.4 24 35 15 25 
The distances are pair wise always longer or always smaller, that is, 

r > r for j - 1, 2, 3 or r < r for j - 1 , 2 , 3. 
j4 j5 j4 j5 

The theorem gives an ordering of the edges which is reminiscent to that 

of the concave case in the four body problem. The longest edge emanating from 

P4 (and from P5) has to be opposite the longest side of the triangle which is 

cut by the interior diagonal. Although the theorem does not give a more 

restrictive condition on the length of the interior diagonal besides r 45>p the 

last part of the theorem gives it implicitly. If one of the points P4 or P5 
is given it specifies a region in which the other point can lie. 

The concave case is characterized by the fact that one mass lies inside 

the tetrahedron which is formed by the other four masses. Another way of 
expressing this is to say that the volume of just one oriented tetrahedron 
has a sign which is different from the signs of the other four. 

In accordance with Fig 8) we assume that ~ 1 .~ 2 .~ 3 .~ 4 > 0 
THEOREM: All interior edges ~ p ~ all exterior edges. 
Furthermore, if we assume an ordering for the interior edges 

r < r < r < r 15 25 35 45 
then 

r < r < r r < r < r 14 13 12 34 23 13 
r < r < r r < r < r 24 23 12 34 24 14 

This set of inequalities provides only a partial ordering 

and ~> 0. 
5 

say 

for the exterior 

edges because the relationship between r 14and r 23 
ordering is r 15 < r 25 < {r35 ,r15 } < r 25 < r 35 but 
the inequalities as they are stated in the theorem. 

is missing. This partial 
it is easier to interpret 

Each inequality gives the ordering of the three exterior edges that start 
at an exterior vertex. It relates them to the length of the interior edges 
which end at the other three exterior vertices. It is an inverse relationship 

among the two sets of three edges. The longest exterior edge connects to the 
shortest interior edge, etc. From this it follows that not all tetrahedra can 
be completed to form a central configuration by finding a location for the 
fifth mass in its interior. The inequalities of the theorem require that the 

center of the circumscribing sphere of the tetrahedron has to lie inside this 

tetrahedron. 
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We conclude with the presentation of a symmetric central configuration. 
Three equal masses are placed at the vertices of an equilateral triangle. The 

other two masses are equidistant to these vertices. We model the situation 
after the four body problem and set 

r r 12 

r r 14 

r - r 15 
r 1 

45 

23 

24 

25 

- r -13{3 13 

- r l<a+l)2+ /32 
34 

r / a2 + /32 
35 

l:J. - l:J. - l:J. - 13 {3 2 /12 
1 2 3 

l:J. - /3 a {3 2 /4 
4 

l:J. - - 13 ( 1 + a ) {3 2 /4 
5 

The ratios of the masses are then 

m4 _ 3 a ( 3/32)·3/2_ (a2+/32)·3/2 

m1 ((a+l)2+/32)·3/2 _ 1 

The region in the a - {3 plane where both masses are positive can be displayed 
in a diagram which will look very similar to Fig 3). The only difference is 

that the slopes of the lines where m4 
/2;2. 

and m are zero 
5 

changes from /3/3 to 

Point a) in Fig 3) remains at a - - 1/2, {3 13/2. It represents two 

tetrahedra of height 1/2 and length of the base triangle 3/2 butted against 
each other. The ratio of the masses becomes infinite if this configuration is 

to be realized. Point b) is now at a - -1/2, {3 - /2/4 due to the different 
slope. It corresponds to two regular tetrahedra with a common face, but the 

value of the masses has to be zero. Finally point c) is at a - 1/3 and {3 -

2/2/3. It is a concave configuration with all outside edges of length 2/6/3. 
The interior mass is completely arbitrary. It is the case which leads to the 
bifurcation analysis given earlier. 
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STABLE MANIFOLDS IN HAMILTONIAN SYSTEMS 

Clark Robinson1 

ABSTRACT. In this paper several applications of stable manifold theory are 
given to Hamiltonian systems. The examples are of such a nature so that 
there is an invariant submanifold which is normally hyperbolic. The goal is 
to explain what assumptions are necessary in this situation for there to exist 
stable manifolds of the whole submanifold and of orbits in the submanifold. 
We also state some general theorems for the existence and differentiability of 
stable manifolds of such a submanifold. Sometimes these theorems can be used 
directly, but other times they merely form the model which motivates the type 
of result which is to be expected. In the latter type of problem, the proof of 
the stable manifold theory is used and not the actual theorems themselves. In 
each of the examples, a preliminary choice of coordinates is necessary before 
the theorems can be applied. In one case this is done by using so called McGe-
hee coordinates; in another, the method of higher order averaging removes a 
troublesome angular dependence. In any case, some preliminary work is usu-
ally needed before the stable manifold theorem or theory can be applied. By 
understanding the underlying ideas of this theory for invariant submanifolds 
the reader should be able to determine other situations where it applies. 

1. INTRODUCTION. Stable manifolds have been used on a variety of problems in 

Hamiltonian systems and for a variety of purposes. These submanifolds organize the 

behavior of nearby orbits to cause the existence of horseshoes (chaos), oscillation, or 

stability of various sorts. An example of this use is the existence of oscillatory orbits 

for the three body problem as shown by Sitnikov, [32]. Also see [1]. The treatment of 

Moser emphasizes the connection with stable manifolds, [22]. This work uses the paper 

by McGehee, [19], which proves the necessary stable manifold result for a degenerately 

hyperbolic fixed point. In Section 4 below, we discuss the corresponding stable manifold 

result for partially parabolic orbits for the planar three body problem where one particle 

goes to infinity and the other two remain bounded. This latter problem has more 

degrees of freedom so we need the stable manifold of a degenerately hyperbolic invariant 

submanifold, a three sphere. 

1980 Mathematics Subject Classification. (1985 Revision). 58F05, 58F15, 70F07. 
1 Supported by the National Science Foundation. 

77 

© 1988 American Mathematical Society 
0271-4132/88 $1.00 + $.25 per page 

http://dx.doi.org/10.1090/conm/081/986258

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



78 CLARK ROBINSON 

A second problem where stable manifolds have been used to organize nearby orbits 

is the passage near triple collision. McGehee studied these orbits in [20] for the collinear 

3-body problem, and later together with Mather proved the existence of escape and 

capture orbits, [18]. Also see the paper by Moeckel in these proceedings, [21], for a 

description of many of this type of problem. In section 3 we discuss completely parabolic 

orbits for the three body problem, which is closely connected with this set up and is 

mathematically very similar to total collapse. Using the existence of a stable manifold 

of a two-sphere together with a linearization result, infinite rotation about the limiting 

axis of motion is shown to be possible for completely parabolic motion. This contrasts 

with the impossibility for infinite rotation for total collapse. 

A second use of stable manifolds is to separate the behavior of orbits on the two 

sides, hence the name separatrix for stable manifolds in the plane. In both the types of 

parabolic orbits mentioned above, they separate the orbits where the motion remains 

bounded from the orbits where the particles reach infinity with positive velocity, hyper-

bolic orbits. Another higher dimensional example, where the stable manifolds separate 

phase space and confine other orbits, are certain problems involving capture in reso-

nance. Here the manifolds separate the orbits which are captured in resonance from 

those which pass through resonance. We do not discuss this type of example in this 

paper. See [24] or [25]. Also see [10] or [30]. 

A third use of stable manifold theory, and the last one discussed here, is to prove 

the structure of the orbits which are asymptotic to different limiting orbits as time goes 

to infinity. For example, in the planar partially parabolic case discussed above and in 

Section 4, the map, which assigns to a parabolic orbit the limiting motion of the binary 

as t goes to infinity, can be shown to be a smooth map on the set of all parabolic orbits. 

To control the orbits which are nearly parabolic, this natural foliation of the parabolic 

orbits needs to be extended to nearly parabolic orbits to be a continuous foliation that 

is invariant. This extension is not intrinsically defined, but does show that the change 

in eccentricity of the binary is a negligible amount no matter how close the motion come 

to parabolic motion. See [26, Theorem E and Section 4] for the precise statement and 

use of this foliation. 

Such foliations are also used to study attractors. Williams has studied hyperbolic 

attractors by collapsing stable manifolds to points and forming a branched manifold. 

See [33], [34], or [35]. To be able to form these equivalence classes and proceed with the 
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STABLE MANIFOLDS IN HAMILTONIAN SYSTEMS 79 

investigation, it is necessary to show that the stable manifolds of points in the attractor 

vary differentiably as the point varies. See [14, Theorem 6.5]. 

The two examples to be treated in this paper are given in sections 3 and 4: com-

pletely parabolic orbits and partially parabolic orbits. Section 2 introduces the ideas 

and some more specific results from stable manifold theory. The particular emphasis is 

on the existence and differentiability of a stable manifold of an invariant submanifold. 

I would also like to state that this paper emphasizes the use of the stable manifold 

theory and makes no attempt to give the definitive result. Also, some references have 

been given to make a connection with the existing literature but they are not exhaustive 

by any means. I have also often referred to my papers on the particular problem where 

others have made more fundamental contributions. 

2. STABLE MANIFOLD THEORY FOR INVARIANT SUBMANIFOLDS. The sim-

plest case of stable manifold theory is for a fixed point with eigenvalues with nonzero 

real part: 

i: =ax+ O(x2 + y2) 

iJ = -by+ O(x2 + y2 ) 

with a, b > 0. Here and throughout the paper O(r) means terms of order rand higher. 

These remainder terms are assumed to be differentiable. For this type of system there 

is an invariant curve for the nonlinear equations, W' (0), tangent to the y-axis of orbits 

which go to the origin as t -+ oo. Similarly wu(O) is a curve tangent to the x-axis of 

orbits which go to 0 as t -+ -oo. 

In this paper we are interested m examples where there is an invariant set, S, 

which is more complicated than a single fixed point: often an invariant manifold. We 

are interested in showing that the set of orbits which are asymptotic to the S as t -+ oo, 

W' (S), is a smooth manifold. Also we are interested in the subsets of points which 

are asymptotic to the orbit of a particular point, W'(p) = {q: d(cp1(p), cp1(q))-+ 0 as 

t-+ oo}. Here d(-, ·)is the distance between points. When the set is hyperbolic in the 

correct sense it is possible to show that the orbits which are asymptotic to S are in 

phase with some orbit within S, so W'(S) = U{W'(p) :pES}. Also under the correct 

assumptions the map 71' : W'(S) -+ S, which satisfies 11'W'(p) = p, is a differentiable 

map. 
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We will proceed to make these results more precise. We denote the norm of a linear 

map L by IlLII = sup{ILvl : lvl = 1}. The minimum norm of a linear map L is defined 

as m(L) = inf{ILvl : lvl = 1}, and when Lis invertible this equals IIL- 111- 1 . The 

minimum norm measures the least amount any vector is stretched by the linear map in 

the same way that the norm measures the maximum stretch. 

Assume that the phase space is a manifold M and r.p1 : M __. M is a cr flow. 

Assume that Sis a compact submanifold without boundary that is invariant, r.p1(S) = S 

for all t. For the examples, Sis often a circle, torus, or sphere. The submanifold is said 

to be normally hyperbolic if the tangent bundle of M, restricted to S, splits into three 

continuous subbundles 

each of which is invariant by the derivative of r.p 1 (first variation of the flow), Dr.p1 , and 

such that 

(a) Dr.pT expands Nu more sharply than it expands anything in TS, i.e., for each 

pinS there is aT= T(p) such that m(Dr.pT(P)IN;) > max{IIDr.pT(p)ITpSII,1}, 

(b) Dr.pT contracts N• more sharply than it contracts anything in TS, i.e., for each 

pinS there is aT= T(p) such that IIDr.pT(P)IN;II < min{m(Dr.pT(p)ITpS), 1}. Note 

that by a change of metric on M to a so called adapted metric, the time T = T(p) can 

be taken uniformly to be one in the definition. See (15], (8], or (31]. 

The submanifold S is said to be r-normally hyperbolic if r.p1 is cr and for all p in 

Sand 0 ~ k ~ r 

(a) 

(b) 

m(Dr.pT(P)IN;) > IIDr.pT(P)ITpSIIk 

IIDr.pT(p)IN;II < m(Dr.pT(p)iTpS)k. 

Notice that the assumptions of normal hyperbolicity are not pointwise conditions 

on the differential equations but depend on the derivative of the differential equation 

along the orbit which determines Dr.pT by the first variation equation. Therefore they 

can not be verified by eigenvalue conditions. (Dr.pT(p) is usually a linear map between 

different subspaces.) See the example of a closed orbit in (1l,p. 121]. 

We can now state the theorem. 

THEOREM 2.1. Assume S is a compact r-normally hyperbolic submanifold of M 

without boundary for a cr flow r.p1 on M, with r 2:: 1. Then 
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(i) there exists a cr locally <p 1-invariant submanifolds wu(s) and W'(S) tangent 

at S to Nu EB TS and TS EB /;' respectively. 

(ii) W'(S) consists of all points whose forward <p1 orbit stay near S for all t ~ 0. 

Similarly, wu(S) consist of all points whose backward <p1 orbit stays nearS for all t ~ 0. 

(iii) W'(S) = U{W'(p) : p E 5} where each W'(p) is a cr manifold and the map, 

1r: W'(S) ___. S given by 1r(W'(p)) = p, is cr. Points q of W'(p) are characterized by 

the fact that the distance from <p1(q) to <p1(p) goes to zero as t--> oo at an asymptotic 

rate of at least that of IID<p1(p)IN;II. 
(iv) Similarly, wu(S) = U{W ... (p) : p E S}, and 1r : wu(S) --> S is cr where 

1r(W ... (p)) = p. Also for q in wu(p), the distance from <p1(q) to <p1(p) goes to zero as 

t--> -oo at an asymptotic rate of at least that of IID<p1(p)IN;II· 

This theorem has appeared many times in various generalizations and with different 

conclusions as to the differentiability. For a proof see [15, Theorem 4.1). For a slight 

variation see [8, Theorem 6), [7), and [29]. Also see Hale, [12]. 
There are various approaches to proving stable manifold theorems. Basically, the 

proof either uses the graph transform idea of Hadamard, the variation of parameters 

with boundary conditions of Peron, or the method of partial differential equations of 

Sacker. We follow the first of these methods. Also see [15) and [14). For the second 

method see [17], [16], [2]. For the third method see [29]. Also see [13] for other references. 

In the approach of [15), the key step to prove the differentiability is a cr -section 

theorem. The idea is that once the manifold has been shown to exist as a Lipschitz 

manifold then the derivatives of the manifold (foliation, or other object studied) can be 

viewed as elements of a bundle over the manifold. Each fiber of the bundle is a space of 

linear maps of possible derivatives, or trial derivatives. By taking a possible derivative 

and taking it forward by the derivative of the flow we get an induced flow on the bundle 

of trial derivatives. The cr -section theorem gives conditions for there to be an invariant 

section of such a bundle and for this section to be differentiable. With some technical 

work and care, this section can be shown to be the derivatives of the invariant manifold. 

For a proof see [14], [15], or [31]. 

THEOREM 2.2 (Cr-section Theorem). Let 1r : E --> X be a vector bundle over a 

metric space X with a norm on the fibers. Let X 0 C X be a subset and D be a disk 

bundle of radius CinE, where Cis a finite constant. Let Do= D n 7r- 1 (Xo) be the 

restriction of D to X 0 . Let F: Do --> D be a cr+a map for r ~ 0 and 0 ~a< 1 which 
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covers h : X 0 - X, i.e., the cr derivative is a-Holder (if a = 0 then disregard this 

aspect). Assume h is an overflowing cr+a homeomorphism, h(Xo) ::> Xo. We assume 

the derivatives of F and h are uniformly bounded for all degrees $ r, and the Holder 

constant is uniform. Suppose that F contracts on each fiber, i.e., there exists a constant 

k, 0 < k < 1, such that for each :z: in Xo, the restriction ofF to the fiber over :z: is 

Lipschitz with constant at most k, Lip(FIDz) $ k. (IfF is differentiable, then this can 

be expressed as a bound on the derivative on each fiber, IIDF(pz)IDzll $ k.) Assume 

Lip(h- 1) $ Jl, kJ.lr+a < 1, and kJ.li < 1 for 0 $ j $ r. Then there is a unique section 

u: Xo- Do such that 

F(image u) n D0 = image u 

and (1 is cr+a. 

In other words, if there is a fiber contraction, then there exists a continuous in-

variant section. In fact, if (1 is any section, then Ut = r(u) = F 0 (1 0 h- 1 is its graph 

transform, and rn(u) converges to the invariant section as n goes to infinity. To get the 

existence of derivatives the possible negative effect of h- 1 must be overcome by a larger 

fiber contraction. The logic behind this is that if u is a differentiable section then the 

derivative of its graph transform is given by 

Thus the term Dh- 1 (:z:) has a possible negative effect on the derivative of the trans-

formed section. Similarly 

where the unspec;fied terms involve lower order derivatives of u. Thus the contracting 

effect of DF, k, must overcome the possible negative effect of [Dh- 1(:z:W, J.lr. With 

the assumptions of the theorem, if u is a differentiable section then r(u) and all its 

derivatives converge, so they converge to the invariant section and its derivatives. 

Another way to understand the negative effect of h- 1 is that if h brings close 

together two points which were farther apart then this makes the derivative of u 1 larger. 

The constant Lip(h- 1 ) measures the extent that h brings together points which are 

farther apart. 

In the next three sections, we use these ideas to examine three specific examples of 

differential equations. 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



STABLE MANIFOLDS IN HAMILTONIAN SYSTEMS 83 

3. COMPLETELY PARABOLIC ORBITS The first example is completely parabolic 

motion for three bodies where the mutual distances between all the particles go to 

infinity and the velocities all go to zero. This example is easier than the others because 

the invariant manifold is made up of all fixed points for the equations, so the normal 

hyperbolicity can be calculated by means of eigenvalues. (Similar type analysis applies 

to triple collision, see [3] or [4] for a similar treatment.) 

Let q = ( q1, q2 , q3) where <J.i is the location of the jth particle in R3. Thus q is 

an element of R9 • We assume the center of mass of the system is fixed at the origin 

which reduces the dimension of the configuration space to six and phase space, which 

includes the velocities, to twelve dimensions. Let M = diagonal(m1/3, m2/3, m3/3) be 

the 9 x 9 matrix of the masses, where /3 is the 3 x 3 identity matrix, and mj is the mass 

of <J.i. Let V( q) be the Newtonian potential energy which is negative and has terms 

proportional to the inverse of the mutual distance between each pair of particles. The 

equations of motion are 

p = -8Vf8q. 

To study parabolic motion we introduce McGehee coordinates which divides the 

distance by the square root of the moment of inertia. See [3], [4], or [20]. Let p = 
( q1 Mq) - 112. The scaled configuration is 8 = pq, where 8 lies on the ellipsoid s1M8 = 1. 

The velocity is decomposed into the radial component along s and the component 

tangent to the ellipsoid, and then each component is scaled by p-112 : 

With this scaling, there is a common factor of p-312 in each term of the differential 

equation, so making the change of time scale dr / dt = p312 and using (') for d/ dr, the 

equations become 

p' = -vp 

v' = u 1Mu + (1/2)v2 + V(s) 
(3.1) 

8 1 = u 

u' = -(1/2)vu- (u1Mu)s- V(s)s- M-1VV(s). 

The energy relation is hfp = (1/2)u1Mu + (1/2)v2 + V(8), where h = 0 for parabolic 

orbits. The equations extend naturally to p = 0 to give the motion at infinity. See [4] 

for more details. 
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For parabolic orbits, we get that v' = (1/2)utMu on the energy surface h = 0. 

Thus v( T) is nondecreasing and the flow on the manifold at infinity is gradient-like. If 

v(r) is unbounded, then V(s) must go to minus infinity by the energy relation, so the 

upper bound on the distance between one binary pair must go to zero in the scaled 

variables. In his classification of motion [28], Saari showed that this could not occur for 

completely parabolic orbits, even in the scaled variables. In fact, if V(s) goes to zero, 

this corresponds to the binary staying a bounded distance apart and the distance to 

the third body growing at the rate corresponding to hyperbolic motion. For the planar 

isosceles problem discussed in [3], it is easily seen that the binary would have to undergo 

repeated binary collisions and so could not correspond to parabolic motion. Thus, v 

must remain bounded and so u(r) must go to zero. 

Since v is monotone and stays bounded, its limit set is contained in a single level 

set of v. Also u must be identically equal to zero in the limit set and so u' must 

also equal zero. Looking at the u' equation, we need -V(s)s- M- 1\7V(s) to go to 

zero. Solutions, s0 , of this equation are the central configurations which are either 

collinear or an equilateral triangle. The value of v at the fixed point is determined by 

the energy relation, v2 = -2V(s), or for v > 0, v0 = ( -2V(s0 )) 112 . Thus the trajectory 

must approach the set where p = 0, u = 0, s0 where so is parallel to M- 1V(s0 ), and 

v0 = ±(-2V(s0 )) 112 . These are just the set of fixed points. 

Because the invariant manifold we are considering in this problem is made up 

completely of fixed points the normal hyperbolicity conditions can be determined by 

eigenvalues. Let D be the linearization of equations (3.1) at the fixed point, and B be 

the submatrix from the linearization of M- 1V(s) + V(s)s. A direct calculation shows 

that if Jl. is an eigenvalue of Band p+,A-} are the corresponding eigenvalues of D, 

then 

See [4, p. 238]. 

Notice that the original equations are invariant by an action of S0(3), so each 

fixed point lies on a 2-sphere of fixed points. Thus B has zero as an eigenvalue with 

multiplicity two, Jl.- 1 = Jl.o = 0. The corresponding eigenvalues for D are A:!: 1 = Ad = 0 

and ..\: 1 = ..\0 = -vo/2. 

For the rest of the section we will only consider the orbits which are asymptotic to 

the collinear central configuration and ignore the equilateral case. The two eigenvalues 
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of B, J-L- 2 , J-L- 3 , correspon,ding to perturbations along the axis are negative for all choices 

of the masses. The two eigenvalues of B, associated with perturbations off the axis and 

orthogonal to the S0(3) action, are positive. Thus the corresponding eigenvalues of D 

satisfy the following: 

>..j > 0, 

>..+ = 0 
} ' 

-vo/2 < 

>..j < -vo/2 

Aj = -vo/2 

Re(>..j-) < 0 

j = -3,-2 

j = -1,0 

j = 1,2 

along the axis 

S0(3) directions 

off the axis. 

Applying the theorems of section 2 yields the following Theorem. Notice that the stable 

manifold of particular points on the sphere differ by an action of S0(3) because the 

equations are invariant by this action. 

THEOREM 3.2. For the three body problem, the set of completely parabolic orbits 

which are asymptotic to a collinear configuratipn form 10 dimensional C 00 manifold 

of extci1ded phase space (as given by equations (3.1).) The set of solutions of (3.1) 

which are asymptotic to a paJ"ticular point on the sphere of such configurations also 

forms a coo manifold and the assignment of the point on the sphere (the limiting axis 

of the collinear configuration) is a coo map. In fact, the stable manifolds of particular 

points differ by the action of 50(3), AW"(p) = W"(Ap). The rates of convergence are 

determined by the eigenvalues. In fact if the motion ,is not collinear, then the distance 

of the unsealed coordinates to the limiting axis does not go to zero but grows as t or r 

goes to infinity. 

For parabolic orbits in the stable manifold, the scaled variables which measure 

directions off the axis approaches the equilibrium at a rate .which is at most.exp( -rv0 j2). 

However, p""' exp( -rv(O)), so these unsealed directions grow at a rate which is at least 

cxp( rv(0)/2). 

The eigenvalues can be explicitly calculated for the isosceles 3-body problem. This 

restricted phase space is obtained by assuming m 1 = m3 , and looking at the invariant 

set of configurations which is an isosceles triangle with axis of the triangle along the 

x-ax1s. For this system, the eigenvalues at the collinear central configuration are 

each with multiplicity two, since we are still wor~ing with the spatial problem. See 

[3, pp. 259-260] where he determiqes these eigenvalues on the collision manifold. Also 
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compare [27). Note that these eigenvalues are complex whenever ma/m2 > 4/55. If 

the motion is not coplanar then it has two oscillatory modes in perpendicular planes. 

Thus the motion of the parabolic orbit will have an infinite rotation about the axis as 

Tort goes to infinity. The rate of change of the angle about this a."<is with respect to T 

has a nonzero limit determined by the imaginary part of the eigenvalue. A calculation 

shows that this rate of change with respect to t goes to zero as it must because of the 

conservation of angular momentum since the distance from the axis is unbounded. This 

infinite rotation in the completely parabolic motion contrasts with the case of total 

collapse where such infinite rotation is not possible. See [27] for further discussion. 

4. PARTIALLY PARABOLIC ORBITS In this section, we consider the motion of t.hrce 

particles is the plane, with positions r1, r2, and ra, and with masses mt, m2, and m:l· 

The distance between the first two particles is to remain bounded and the distanc1• 

to the third particle is to become unbounded as t goes to infinity (or minus infinity). 

We want to consider the situation where the third particle has just enough <'ncrgy to 

reach infinity, so we assume that its velocity goes to zero. An orbit. is called w-paf'lit&lly 

parabolic or just w-parabolic (resp. a-parabolic) if as t goes to infinity (r<'sp. minus 

infinity) r2 - rt remain bounded, ra - r 1 goes to infinity, and the velocity of ra goPs 

to zero. These parabolic orbits separate the orbits of the system in which the third 

particle remains bounded and those in which it reaches infinity with non-zero V<'locity. 

There are several change of coordinates to get the equations into the form in which 

to apply the stable manifold theory. See [5] for more details on these change of coor-

dinates. After using the angular momentum integral to det<'rrnine on<' variahl••, and 

dropping the angular variable which measures the direction of m3 from the Cf'lltN of 

mass, we are left with 6 real variables, or 2 real and 2 complex variables. The first. r1~al 

variable, x, is defined so that x- 2 is proportional to the distance from the center of 

mass to m3 . The real variable y is proportional to radial component of the momentum 

of m3 . Using a complex variable to denote the position in the plane and complex mul-

tiplication, z is the position of the binary measured relative to the axis formed by tlw 

third mass: 

The final complex variable, w, is determined by the momentum vector of the binary 

relative to the unit vector formed from r 3 . Given these variables, the Levi-Cevit.a 
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regularization removes the singularity caused by collisions of the binary: 

where 11 = m 1 + m2 and 12 = ee + TJiJ. Then letting K = 4"Yile{ and rescaling time by 

multiplying the vector field by K the equations become 

y' = -K[x4 + O(x6 )] 

e' = TJ + O(x4 ) 

TJ' = -e + O(x4 ) 

with energy integral h = H = (1/2)k1 1(J2y2 - k2(ee + TJ'iJ)- 1 + O(x2), where k1, k2, 

and f3 are constants determined by the masses. These equations extend naturally to 

x = 0, where, for h < 0, ll = h defines a three sphere for each y (and in particular 
" 

for y = 0). These are the same as equations [5, 1.8 on p. 123]. The next change of 

coordinates in [5] should have been unitary, so there is a square root missing. There are 

also several typographical errors in the energy formulas on the top of [5, p. 124), which 

were corrected by the author of that paper making them compatible with the above. 

The motion of the system for ma at infinity is given by the motion on the subset 

with x = 0. Those orbits which correspond to parabolic orbits at infinity would have 

y = 0 in addition. Fixing x = 0, y = 0, and a total negative energy h < 0, the motion 

that results is the IIopf flow on the three sphere: e = TJ, TJ' = -e with 1e1 + ITJ21 = 1. 

Thew-parabolic orbits are those which are asymptotic to this sa, i.e., to W'(Sa), and 

the set of a-parabolic orbits is wu(sa). The motion normal to sa is to lowest order 

terms 

This motion normal to the invariant manifold is attracting and repelling but the rates 

are not determined by the linear terms but only occur at the fourth order terms in x 

and y. Therefore we can not apply the usual stable manifold theorems are discussed in 

section 2. However the timeT-map of motion on the sa is an isometry so these rates of 

hyperbolicity are stronger to any order than any rates within the invariant submanifold, 

so it is reasonable to hope that the stable and unstable manifolds still exist. 

Indeed this is the case, the manifolds W'(Sa) and wu(sa) are coo manifolds. 

Moreover, they are smoothly foliated by the orbits asymptotic to a single orbits in the 
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three sphere. Let 1r : 5 3 --+ 5 2 be the map which assigns to an orbit of the Ilopf flow 

in the three sphere a point in the two sphere; let o(p) be the set of a-limit points of p 

and w(p) be the set of w-limit points; and finally let 

w• = 1rw : W'(53 ) --+52 and 

o• = 1ro: Wu(53 ) ...... 5 2 

be the maps which assign the limiting motion of the binary as t goes to ±oo. (Giving 

the point in S 2 is the same as specifying the motion of the binary by the eccentricity 

and the axis of the ellipse of motion.) 

THEOREM 4.1. The manifolds W'(S3 ) and wu(S3 ) are coo submanifolds. Moreover 

the. maps 

w• = 1rw : W'(53 )--+ 5 2 and 

o• = 1ro : Wu(53 ) ...... S 2 

. are coo. 
This theorem is proved in (26], and (5] contains a very similar result. Earlier, 

McGehee had proved a similar result where S3 is replaced by a point. (19]. As discussl'd 

in section 1, this latter theorem is used by Moser to prove the Sitnikov result on the 

existence of oscillatory, escape, and capture orbits, (22]. 

There are several ways to approach the difficulty caused by the lowt'r order hyper-

bolicity. One way is to divide through in the equations by a factor of x3 (actually a 
' ' change of time scale) which results in the equations 

x' = -1\y 

y' = -1\[x + O(x3 )] 

( = TJX- 3 + O(.r) 

rl = -~x- 3 + O(.r). 

The first two equations are now hyperbolic. (Although 1\ does vanish for ~ = 0, the 

integral over a positive time interval gives a positive value.) However the last two 

equations have a singularity at X = 0. Although S3 is not a product of 5'2 and 8 1 ' 

the analytical difficulty can be understood by writing the equations as if they were a 

product with z in 8 2 and 0 in 8 1. The equations then would be of the form 

O' = x- 3 + O(x) 

z' = O(x). 
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These equations have a sheer in the 0 direction. Points which are far apart on the 

trial unstable manifold can be brought close together by the graph transform. However 

the equations are well behaved in the z-direction. The difficulty can be overcome by 

averaging out the dependence in the equations on the 0 variable by a C00 change of 

coordinates. Then the graph transform can be used for points with x :f. 0 and extended 

to x = 0 in the obvious manner. This process works to show that both the whole 

manifold of w-parabolic orbits and the foliation by orbits asymptotic to a particular 

limiting motion of the binary are coo. 
In an appendix to this section we give the details for the averaging argument since 

the treatment in the original paper is somewhat confused. Also a slightly more general 

set of equations than those above are given for which the result is true. 

Another aspect of this example, which is different than the previous one of com-

pletely parabolic motion, is that the calculation of the hyperbolicity is not a matter of 

calculating eigenvalues at fixed points. In fact the calculations are along closed orbits 

of the flow in sa. However, the fact that the flow is almost a constant one in the normal 

direction to sa minimizes the difficulty of verifying the assumptions in this case. 

The original motivation for this problem came from the attempt by Easton and 

McGehee, [6] to show the existence of oscillatory motion for the planar three body 

problem. Also see [26] and [5]. In addition to showing that these manifolds are coo, 
there are several transversality conditions which need to be verified. So far no one has 

shown that the necessary map has zero as a regular value. However, Quillen has verified 

numerically that two of the necessary coordinates behave correctly, [23]. He also realized 

that the best way to set up the problem is to perturb way from m1 = m2 = 0 and not 

from ma = 0. This keeps the problem as a perturbation away from a known solution but 

the integrals of motion do not change as much with the correct choice. As observed in 

[26] and verified by this numerical work, the correct hi-parabolic orbit to consider is the 

one where at one instant all three particles pass through a common line (the axis of the 

binary) in a perpendicular direction, and the third particle has just the right velocity 

to be a w-parabolic orbit. By the symmetry of the equation, this particular orbit will 

also be a-parabolic. The work of Quillen partially verifies the transversality conditions 

necessary to show that the symbolic dynamics can be used to prove the existence of the 

oscillatory orbits. 

4A. APPENDIX: AVERAGING OF THE PARABOLIC EQUATIONS The type of 
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equations treated are of the form 

0= l+p(z)g(O,z,z) 

i =p(z)h(O,z,z) 

i =p(z)f(O,z,z). 

In these equations, z is a vector variable. Later in the section we split z into the 

contracting and expanding coordinates. Also, 0 is an angular variable, z is a variable in 

a compact manifold so that the set z = 0 is a compact manifold, p(z) is a homogeneous 

polynomial of degree p > 0, and/, g, and hare of degree at least one in z (not necessarily 

homogeneous.) It is important in the proof that the same function p(z) occur in all the 

equations in the lowest order terms (except for the 1 in the 0 equation). The following 

result says that we can average out the dependence on 0 to all orders, leaving dependence 

on 0 only in terms which are C 00 flat. Note that the form of the equations is much 

simpler than given in [26]. 

PROPOSITION 4A.l. There is a coo change of coordinates such that (keeping the 

same letters for the new coordinates) the equations become 

0= 1+p(z){yl11'(z,z)+G(O,z,z)} 

i = p(z){h 0 v(z, z) + H(O, z,z)} 

i = p(z){rv(z,z) + F(O,z,z)} 

where G, H, and Fare C00-flat as a function of 0, i.e., they are all O(lzl"') for all k. 

PROOF. Averaging, by means of a change of coordinates which is of a homogeneous 

degree in z, can only remove the 0 dependence from the terms of this single degree in 

z. Therefore, we proceed by induction on the degree in z. Assume that the averaging 

has been carried out to terms of order j in terms of z, and the resulting equations are 

of the form 

iJ = 1 + p(z)gj~ 1 (z, z) + p(z)gj(O, z, z) 

i = p(z)hj~ 1 (z, z) + p(z)hj(O, z, z) 

x = p(z)/j 0 ~ 1 (z, z) + p(z)/j (9, z, z) 

where ft!!. 1 , gj~ 1 , and hj': 1 are all made up of terms of degree less than or equal j - 1 

in z and are independent of (}, and /j, 9i, and hi are all made up of terms of degree 

greater than or equal to j. 
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To remove the dependence on () in the terms of degree j, we make the change of 

variables 

() = t/J + p(e)u( t/J, ('e) 

z =(+p(e)v(t/J,(,e) 

x = e + p(e)w(t/J,(,e) 

where u, v, and w are of degree j in e. By differentiating these equations and setting 

them equal to the original differential equations with the substitutions made, we get 

the following equality 

( 
1 + p(e + pw)g(t/J + pu,( + pv,e + pw)) 

p(e + pw)h(t/J + pu,( + pv,e + pw) 
p(e + pw)f(t/J + pu,( + pv,e + pw) 

= ( 1 ;:tP I ~u;V( ~: ) ( ~: ) 
pwtP PW( I + w{ e' 

where everything is evaluated at (t/J,(,e), U = pu, V = pv, and W = pw, and g = 

Yi-1 + g;, h = h;-1 + h;, and f = h-1 + f;. 
Note that in first side of this equality we have the term p(e + p(e)w(t/J,(,e)), but 

this equals 

p(e) + 11 p'(e + sp(e)w(t/J,(,e))p(e)w(t/J,(,e)ds 

= p(e){1 + Jn(t/J,(,e)}, 

where fn is of degree at least j in e. Therefore 

p(e + p(e)w(t/J, (, e))u( t/J + pu, ( + pv, e + pw) 

= P(e)oj~1(<.e) + P(e)o;(t/J, <.e)+ p(e)o(eH1). 

Note that this means that the same function p is a factor of the equation. This is the 

point which was not done correctly in [26]. Similar expressions are true for the terms 

ph and pf. We use these in the first side of the above equality. 

To solve for the derivatives t/J', (', and e' we need to invert its coefficient matrix 

using the formula that (I+ A)- 1 =I- A+ E~= 2 (-1)nAn: 
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(Remember that p(~) is of degree p and u, v, ware of degree j in~-) 

Combining the above and multiplying the two matrices we get 

Then we can solve Yi- u.p, hi- v.p, and /j- W.p for u, v, and w so the difference are 

terms of degree at least j + 1 in ~. This completes the induction step of the proof of the 

proposition. 

Next by a change of time scale, we can divide the differential equations by p(x) and 

take the time one map of the flow to get a map which is coo flat in 0 and hyperbolic in 

x. At this point we need to split the x coordinates (or really the x and y coordinates 

of Section 4) into (X, Y) where the X coordinates are expanded and theY coordinates 

are contracted by the lowest order terms. In terms of the equations of Section 4, 

x = 2- 112(X + Y) andy= 2- 112(-X + Y). Then the time one map (of the rescaled 

equations) become 

0(1) = 0 + q1(z, X, Y) + R1(8, z, X, Y) 

z(1) = z + q2(z, X, Y) + R2(8, z, X, Y) 

X(1) = A(z)X + q3 (z, X, Y) + R3 (0, z, X, Y) 

Y(1) = B(z)Y + q4 (z, X, Y) + R4 (0, z, X, Y) 

where (A(z)X, B(z)Y) is the linear term as a function of X and Y resulting from the 

linear terms of rv with z m(A) > 1 and IIBII < 1, the Rj terms are C00-flat in X and 

Y, and the derivatives of the functions qi satisfying the following conditions as I(X, Y)l 

goes to zero: 

f)~f)Xi;;~k (z, X, Y) ~ C(i,j, k)j(X, Y)i-p-i-k I i+j+k I 

Dq2 (z, X, Y) has a bounded limit Dq2 (z, 0, 0) with 

8q2/8z(z, 0, 0) = 0 

jDq;(z,X, Y)l = O(I(X, Y)l) for i = 3 and 4. 

As explained in [26, p. 368], it is now possible to show that these equations have 

a Lipschitz unstable manifold. This argument also shows that it is real analytic for 

X "I 0 by showing that the graph transform preserves functions with specified radii of 
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convergence (which depends on X). The manifold is not always real analytic at X = 0, 

see [19]. This much of the result is shown in [5] without averaging the equations. To 

show that it is coo at X = 0, we need to show that the graph transform preserves 

sections sufficiently flat in (), as given by the following lemma, [26, Claim 3.6]. 

CLAIM 4A.2. For allj ~ p + 3, the graph transform, r, preserves sections with 

lw4(8, z, X)l ~ lXI, 

l
ow4(8,z,X)I < C·IXIj 

()() - 1 ' 

low4(~~z,X)I ~ CzlXI, IOWr~;,X)I ~ CxiXI 

for constants C;, Cz, and Cx chosen sufficiently large. 

PROOF. The following calculations corrects the typographical errors contained in [26]. 

The notation O(k) is used to mean O(I(X, Y)l"), and O(oo) to mean O(k) for all k. We 

also write the equations as if X andY were scalars, A(z) =A, and B(z) = 11-· Actually, 

similar esti~ates hold in higher dimensions where m(A(z)) ~A and IIB(z)ll ~ 11-· 

Assume the estimates hold for w and let v = f( w). The proof that v satisfies the 

first condition is standard and we will skip. Then differentiating the graph transform 

gives 

where u = (8, z, X), u-1 = (Fo o w)- 1(u), and m_ 1 = w(u_l). Then evaluating the 

terms at the correct points as indicated above and using bounds which are independent 
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of w unless indicated, 

Dw(u-t) = ( ~. . 
C;>.-' lXI' c.J.IXI Cxj,IXJ 

( 
1 + O(oo) 

DFoDw = ~ 
0(-p) 0(-p-1) 0(-p-1)) 

1 + 0(1) 0(0) 0(0) Dw 
0(1) >. + 0(1) 0(1) 

( 
1 + 0(2) 

= O(j) 
O(j + 1) 

0(-p) 0(-p-1)) 
1 + 0(1) 0(0) 1 

0(1) >. + 0(1) 

(
1+0(2) 0(-p) 0(-p-1)) 

(DFoDw)- 1 = O(j) 1 + 0(1) 0(0) 
O(j + 1) 0(1) >.- 1 + 0(1) 

Dw[DFoDwt 1 = 

( 
1 + 0(2) 0(-p) 

O(i) 1 + 0(1) 
O(i + 1) 0(1) 

C;>.-iiXIi +O(i+ 1) C:>.- 1IXI+0(2) 
DF4 = (O(oo), 0(1), 0(1), J.l + 0(1),) 

0(-p-1) ) 
0(0) 

>.- 1 + 0(1) 
Cx>.- 2 IXI + C:0(1) 

Dv4 = (C;>.-i J.liXIi + O(j + 1), C:>.- 11-liXI + 0(1), 

Cx>.- 2J.liXI + C:0(1) + 0(1)). 

Therefore, by taking C; I C: I and Cx large enough the bound on the derivatives or 

v4 are satisfied. (Remember that terms like 0(1) = O(I(X, Y)l) in the second component 

have bounds which are independent of the bounds on the sections, and since lv4 1 :5 lXI 

this term is also O(IXI).) 

The next claim is used to show that r preserves sections with uniform bounds 

on the derivatives. The exponent on X is assumed to be higher on partial derivatives 

involving() because these terms get multiplied by terms of order 0(-p) or 0(-p-1) 

which appear in [DF0 Dw]- 1 . 

CLAIM 4A.3 ([26, 3.7]). r preserves Ci+i+l: sections with derivatives bounded by 

for J ~ max( n, p + 1 + i + j + k) and for suitably chosen C( n, i, j, k ), as long as 

low/891 = O(J), lowfozl = 0(1), and low/oX I= 0(1). 
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In the proof the in [26] it is noted that 

Dkv4 = DF4Dkw[DFoDw}-k 

- DF4Dw[DFoDwr 1 DFoDkw[DFoDwrk 

+ terms in Diw with j < k. 

95 

The first term is a contraction, the second term is shown to be smaller than the 

first term, and the terms in the lower derivatives of w are already bounded. To be 

more careful, the term that involve the derivatives of F1 should be checked, since they 

have some terms which are unbounded. However, they are acted on by terms of the 

lower derivatives of v4 , so are of order 0( 1) and are 0( oo) in the terms which involve 

a derivative of F1 with respect to 0. Then, this derivative acts on terms involving 

some Dmw(DF0 Dw]-m which gives term which are at least 0(1) and O(iJ) if the term 

involves i derivatives with respect to 0. The result follows as discussed in [26]. 

Using the above two claims, it follows that if w0 is a section that is coo flat in 

0, then so is wk = r( wk-l) = rk ( w0 ). Therefore this forms an equicontinuous family. 

Since wk converges C0 uniformly to some w•, it follows that w• is coo . This completes 

the proof of the result for equations in the form given at the beginning of this section. 

For the modifications for the equations given in Section 4 see [26]. 
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REDUCTION OF HAMILTONIAN SYSTEMS FOR 
SINGULAR VALUES OF MOMENTUM 

Judith M. Arms 

Abstract. Reduction for singular values of an equivariant momentum 
for a compact group action has been defined and studied by Arms, Go-
tay, and Jennings. The present paper builds on that work in the case of 
torus actions. Results are obtained on the lifting the reduced flow, on 
the equivalence of regularity and weak regularity, and on the variation 
of the dimension of the reduced space at singular values. An exam-
ple shows that the first and last of these results fail to extend to the 
nonabelian case. 

1. INTRODUCTION 
The basic idea of reduction is to factor out the symmetries of a system, leaving a 

smaller system containing the essential information of the original. Specifically, suppose 
a Hamiltonian system is invariant under some group action, and there is an equivariant 
momentum mapping for the action. (A momentum mapping generalizes such ideas as 
integrals in involution and angular momentum. See §2 for details.) For any regular value 
of momentum, the orbit space of the level set for that value is called the reduced space. Any 
invariant Hamiltonian on the original phase space induces a Hamiltonian on the reduced 
space. There is a computable algorithm for lifting the reduced Hamiltonian flow back up 
to the flow of the original Hamiltonian. One can compute how the canonical structur;:; on 
the reduced space varies with the value of the momentum; this provides a tool for studying 
perturbation questions. 

The present paper generalizes some of theSe ideas to the case of singular values of 
the momentum for a torus action. Section 2 briefly reviews reductiorc in the regular (and 
weakly regular) case and §3 discusses the lifting process for the same. Reduction is defined 
(following [AGJ]) for the singular case in §4. Theorem 1 in §5 describes reduction and lifting 
of the reduced flow in terms of global invariants of the action. This description applies 
to both the regular and singular cases, and shows that the flow in the orbit directions is 
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100 JUDITH M. ARMS 

determined by how the Hamiltonian depends on the momentum. A discussion of Theorem 
1 in §6 leads naturally to the question of how the reduced space varies with the value of the 
momentum. The latter has been studied in the regular case by Duistermaat and Heckman 
[DH]. By Theorem 2 in §7, if the momentum is weakly regular at all smooth points in 
a level set, then the action factors through the action of a smaller torus for which the 
momentum is regular at all smooth points. As a corollary, the Duistermaat and Heckman 
results generalize to the weakly regular case. For singular values that interpolate between 
(weakly) regular values, the reduced space is singular but, by Theorem 3 in §8, has the 
same dimension as the reduced spaces for nearby regular or weakly regular values. Finally, 
§9 gives an example to show that Theorems 1 and 3 do not generalize to the nonabelian 
case. 

Acknowledgements. The present paper grew out of joint work of the author with 
Mark Gotay and George Jennings [AGJ], and insights garnered from conversations with 
these two coworkers are gratefully acknowledged, as are helpful conversations with Tom 
Duchamp. 

2. REDUCTION IN THE REGULAR CASE. 
Let us first review how the reduction process works in the case of regular (or weakly 

regular) values. The case where the group is abelian is classical; the generalization to 
the nonabelian case was done independently by Meyer [Me] and Marsden and Weinstein 
[MaW]. 

We begin by establishing some notation. Let (P, 11) be a connected symplectic man-
ifold. For any f E C00(P), let X1 represent its Hamiltonian vector field. The Poisson 
bracket of two functions f and g E C00(P) is given by {f,g} := il(X,,X9 ). Suppose G 
is a compact Lie group acting (on the left) on P by symplectomorphism. Let g be the 
Lie algebra of G. For any e E g, let ep represent the generator of the action on P of the 
one parameter subgroup {et{}. We assume throughout that there exists an equivariant 
momentum map J1. : P -+ g •, where g * is the dual Lie algebra. That is, if J1. is evalu-
ated on e, the resulting function (J.t, e) is a Hamiltonian for ep; and for every q E P and 
g E G, p(g · q) = g · p(q). (Here the dot on the left hand side represents the given action 
of G on P and that on the right hand side represents the coadjoint action of G on g.) 
Let V., = p-1 (v); when v = 0, the subscript often will be omitted. We will call V., a 
constraint set because J.t = constant often appears as a constraint on initial data for a 
Hamiltonian system. Let G., represent the isotropy group of v under the coadjoint action. 
(For additional background information, see [AbM] or [AGJ].) 

THEOREM. [Me, MaW; see also AbM, pp. 299-300, 304] Let P,il,G,G.,,J.t, and 
V., be as described above. If v is a (weakly) regular value of J.t, then the reduced space 
V., := V.,jG., has a unique symplectic form w such that 1r*(w) = i*(f!), where 1r is the 
canonical projection of V., onto V., and i is the inclusion of V., into P. Furthermore if 
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SINGULAR VALVES OF MOMENTUM 101 

H E C 00 (P) is G-invariant, then the Hamiltonian flow of H induces a flow on Vv; and this 
flow is also Hamiltonian with Hamiltonian function fi defined by fi o 1r =Hoi. 

Remark. The reduced space V11 may fail to be a manifold because of finite isotropy 
groups for the action of Gv on V11 • However the singularities are not serious: it will still be 
a V -manifold, and will carry all the usual differentiable structures such as forms, vector 
fields, etc. (See also the discussion of this matter in [DH].) Another way around this 
difficulty is to work locally, as discussed in the "important remark" on p. 300 of [AbM]. 

For simplicity, let us assume that v = 0; then G11 = G. This is no real loss of generality 
because there is a standard proceedure for identifying V11 as the reduced space for the zero 
value of a momentum map on a larger space. (See [AGJ]); a similar construction appears 
in [GS, §26].) The results in [AGJ], which we will be using heavily below, assume v = 0; 
but most can be extended to v =I 0 as mentioned above. Also when v =I 0 is important 
below G will be abelian. Then the value of vis completely irrelevant, for jJ. = p.- vis also 
an equivariant momentum for the G action. 

3. LIFTING THE DYNAMICS. 
Suppose the reduced Hamiltonian flow is known (i.e. that of fi on V). One wants an 

algorithm for lifting the dynamics back to V; that is, for reconstructing the flow of H on 
V. Such an algorithm is described on pp. 304-5 of [AbM]. Briefly, it goes as follows. Given 
a trajectory C(t) on V, lift to any smooth c(t) such that 1r o c =c. Then the trajectory of 
His c(t) = g(t) · c(t), and the problem is to determine g(t). In the reference it is shown 
that dgfdt is determined entirely by data at c(t) (not at the as-yet-to-be determined c(t)). 

By choosing a particularly nice coordinate system, a sort of "partial action-angle" 
system, we may describe the lifting process even more explicitly. Essentially the idea 
is to pull back canonical coordinates on the reduced space and supplement them by the 
momentum p. itself and coordinates along the orbits. Let U be a neighborhood of V. There 
exists a smooth projection .,P : U -+ V that projects each V11 on V. (There are various 
ways to construct this projection. For instance, one may use the gradient flow of the norm 
squared of the momentum, as in Kirwan [K], or the construction in §1 of Duistermaat and 
Heckman [DH]. The latter deals only with torus actions, but the construction generalizes.) 
Choose canonical local coordinates (x, y) on V and define x = x o 1r o .,P and y = yo 1r o .,P, 
where 1r is the projection onto the orbit space. Choose a coordinate system a on G so that 
a(identity) = 0 and the k-th coordinate axis is a one parameter subgroup with generator 
~k· Let cp be a cross section for 1r. Define coordinates a on G · u so that a(q) = a(g) if 
g · If'( 1r( q)) = q. Now ( x, y, p., a) are local coordinates on G · u. Furthermore n I v contains 
terms dxi 1\ dyi and dai enters into only in terms of the form f · dai 1\ dp.i. In fact if G is 
abelian t.p and a can be chosen so that n = dxj 1\ dyj + daj 1\ dp.j. 

Now suppose C(t) = (x(t),y(t)). The lifted trajectory c(t) = (x(t),y(t),p.(t),a(t)), 
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102 JUDITH M. ARMS 

where of course p.(t)::: constant . For the other coordinates one easily computes 

dxi _ dxi = 8H dyi dyi 8H and 
dt - dt 8y ;' dt = dt = -ax;' 

(1) dai " 8H 8H 8H -dt = L.){aj,xk}-8 + {aj,yk}-8 + {aj,Jlk}-8 ]. 
k Xk Yk J.l.k 

If G is abelian, the last equation simplifies to 

(2) 
dai 8H 
dt= 8p.k' 

In any case ( 1) shows that da i / dt is determined by the dependence of H on the coordinates 
on the reduced space and the momentum p.. 

4. REDUCTION IN THE SINGULAR CASE. 
Now consider the case when zero is a singular value of the momentum. It follows 

from the definition of the momentum that at singular points there is a nontrivial isotropy 
subgroup. The flow of any invariant Hamiltonian commutes with the group action, so 
every point in one trajectory of the Hamiltonian will have the same isotropy subgroup. 
The set of all point invariant under that subgroup is itself a symplectic submanifold ( cf. 
[GS, Thm. 27.2]). Furthermore the points with exactly that subgroup as isotropy subgroup 
are weakly regular points for the momentum restricted to the submanifold ( cf. Lemma 
7 in [AMM]). Thus one way to deal with singular values is to restrict a priori to points 
invariant under a subgroup. This approach will suffice if one is only interested in the 
trajectory of one particular set of initial conditions. In most cases, however, this restricted 
view will not give the entire reduced space for a singular value (because the preimage of 
such a value includes both (weakly) regular and singular points, and/or singular points 
with varying isotropy groups), let alone any idea of how toe reduced spaces for varying 
values of momentum fit together. It is natural to ask for a larger view, i.e. one without the 

· a priori restriction suggested above. Besides the intrinsic interest of such a view, it should 
be helpful in various applications (e.g. studying perturbation or quantization questions). 

A general definition of reduction for singular constraint sets V is given in [AGJ), 
using ideas of Sniatycki [Sn]. This reduction uses the intrinsic geometry of V, in particular 
the restriction of the symplectic form S1 to the (generalized) tangent space of V; in the 
reference it is called the "geometric reduction". When V is the zero set of the momentum 
for a compact group action, the description of the reduced space and its Poisson algebra 
may be simplified, as follows. 

The reduced space is still V = VJG. (Note: this may not be true if G is not compact. 
An example is the skew action (x, y) o-+ (x + ty, y), [AGJ], Ex. 7.1]) The smooth functions 
on V are the G-in variant Whitney smooth functions on V; these will be denoted by W00(V). 
(Whitney smooth functions are the restrictions of smooth functions on the ambient space.) 
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It remains to define the Poisson bracket on W00 (V). Given f and g E TV""(V), let flv 
and glv be the corresponding functions in w=(V) = the Whitney smooth functions on 
V. Extend to G-invariant functions j and g in C 00(P). (This is possible because G is 
compact, so we can average over the orbits.) Define 

(3) [f,g] := {f,g}. 

In Proposition 5. 7 of (AGJ] it is shown that the bracket ( , ] is a well defined Poisson bracket 
on W00(V) and that it agrees with the more generally defined reduction process mentioned 
above. Given any invariant Hamiltonian H on P, it induces a function fiE W00(V). Then 
the Poisson bracket [ , ] in (3) is used in the usual way to compute the flow on V. That is, 
djj dt = [f, H] for any function f E W00(V).) As there are enough invariants to separate 
orbits in V (Prop. 5.5 of (AG], or Hilbert's invariant theory), this defines the reduced flow 
on W. 

5. LIFTING AND INVARIANTS 
To lift a single trajectory of the reduced flow, it suffices to restrict a priori to points 

of one symmetry type and apply the regular case as discussed at the beginning of §4. One 
would like also to have analogs of equations (1) and (2); that is, to know how the derivatives 
of the Hamiltonian affect the lifting. We can not use the components of the momentum 
as corrdinates now; instead, the role of the coordinates in equations (1-2) is played by 
invariants of the action. With mild restrictions on P, the essence of equation (2) holds for 
torus actions even when p. is singular; that is, the flow in the orbit directions is determined 
by the dependence of H on p.. (This need not be the case when G is nonabelian; see §9 
below.) 

THEOREM 1. Suppose G is a k-dimensional torus and P has finitely gene~ated 
homology. Then there exists a (finite) basis for the G- invariants [C00(P)]0 of the form 

so that for some m ~ c, f):l, ... , Xm} is a basis for the reduced algebra woo(v), where 
V = p.-1(0). Thus any invariant Hamiltonian H is H(p., .\),and the corresponding reduced 
Hamiltonian fi depends only on 'S.i>j = 1, ... , m. If a trajectory C(t) of fi is lifted to a 
trajectory c(t) = g(t) · c(t) as described earlier, the .\i may be chosen so that dgjdt is 
determined (at least on some neighborhood) by the partials of H with respect top. .. (Thus 
if m < C, the dependence of H on .\ j, j = m + 1, ... , C is irrelevant to the dymanics on V.) 

Proof The fact that P has finitely generated homology implies that there are only 
finitely many orbit types for the action of G on P ( cf. (B].) The following argument is found 
in Schwarz (Sch]. A theorem of Mostow-Palais (Mo, P] implies that P may be equivariantly 
embedded in an orthogonal representation space, say X, for G. Then the Hilbert invariant 
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theory (see e.g. [Wy]) says that the invariant polynomials on X are finitely generated. 
Let a 1 , ... , as be the restriction of these generators to P '--+ X (discarding any that are 
redundant after restriction). Then by Theorem 1 of Schwarz [Sch], 

where a = ( a 1 , ... , a 8 ). That is, the a i are a basis for ( C 00 ( P) ]0 , not just for the invariant 
polynomials. 

Furthermore we may choose a;= p.;,j = 1, ... , k, as follows. Without loss of gener-
ality we may assume that the action of G does not factor through the action of a smaller 
torus, that is, there is no e E g * such that (p., e) is constant. (If not, replace G by the 
smaller torus.) The J.Li are certainly invariant because G is abelian, and furthermore they 
are quadratic polynomials on X because G acts linearly on X. On the other hand they 
are not combinations of other invariants, as is immediately obvious in the local normal 
coordinates given in Theorem 4.1 of (AGJ]. (Briefly, in normal coordinates the isotropy 
group action looks like a subgroup of U(n) acting on a:n, and the "other" components of 
the momentum are linear.) Relabel the remaining ai as ak+i = >.i,j = 1, ... ,.e.= s- k. 

Let I(V) be the ideal of smooth functions vanishing on V, and (I(V)]0 the ideal of 
G-invariants in I(V). After possible recombination and reindexing, [I(V)] 0 is generated 
by the p. i and possibly some of the >. i, suppose the last few. Then 

(4) 

is generated by the remaining Aj, say j = 1, ... , m. (The last equality above depends on 
the compactness of G; the proof is similar to the proof of Proposition 5.12 in (AGJ].) 

Thus we have any invariant H = H(p., >.), with the induced fi = fi().l> ... , Xm), as 
required. It remains to discuss the lifting, and for this we work locally. Choose q in the 
image of the lift c and let Gq be the identity component of the isotropy group of q. By 
Theorem 4.1 and the first paragraph of the proof of Theorem 6.8 in (AGJ], there are local 
canonical coordinates (xi, Yi), j = 1, ... , n with the following properties. For convenience, 
impose an almost complex structure locally by letting Zj = xi+iy;. (i) For some p :5 n, Gq 
acts on the local neighborhood identified as an open subset of <C n :::::: <C P x <C n-p by diagonal 
matrices on the first factor and trivially on the second. (ii) The remaining components of 
p. (those for GfGq) are the Yi,j = p+ 1, ... , n. (iii) The Xj,j = p+ 1, ... , n. parameterize 
the G/Gq orbits. (Thus for points with isotropy group Gq, like those in the image of c, 
these xi parameterize the whole orbit.) 

By (iii) the >.i must be independent of the x;,j > p. By (ii) the>.; may be modified 
(by adding multiples of the J.Li and the other>.;) to eliminate dependence on Yi,j > p. 
(This last may be done so as to preserve the separation of the >.i which do and do not 
vanish on V.) It follows that we may choose the>.; to depend only on (xi, Yi),j = 1, ... p. 
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Thus if h > p, 
dxh _ { H} dt - Xn, 

k 8H t 8H 
= I::{xh,Jlj}a-:- + I::{xh,>.j} 8;.. 

j=l JlJ j=l J 

k 8H 
= I:: 5;" a-:-' 

j=l Jl J 

where Djh = 1 if j =hand Jli is a component of the momentum for G/Gq, and Djh = 0 
otherwise. 

Now x = (xp+l, ... , Xn) may be identified with as a point in G/Gq. The required g(t) 
satisfies 

dg = ~[x(c(t))- x(c(t))] = ddx- dd [x(c(t))] 
dt dt t t 

By the proceeding equation, this shows that dgfdt is determined by the 8Hf8p.; and is 
independent of the 8Hf8>.i. • 

6. DISCUSSION 
The fact that dgfdt is independent of 8Hf8>.j, j = l, ... ,m, seems reasonable be-

cause the Aj's parameterize the reduced space. The irrelevance of the 8H / 8>. i, j > m is 
somewhat harder to understand; in the proof, the reasons are buried in the choice of local 
normal coordinates. 

In fact one can show the Hamiltonian vector fields X>.,, s > m, vanish on V. Let 
I(p.) be the ideal of smooth functions generated by the components of p., and (l(p.)]G the 
corresponding ideal of invariants. If m < £, then 

(5) 

(because>.., s > m, is the ideal on the right but not in that on left.) By Theorem 6.8 of 
h 

(AGJ], inequality (5) may occur only if p. has a semi-definite component, e.g. L: a;(x~+yJ) 
i=l 

for some h, a i > 0, in some local normal coordinate system. This implies that invariants 
must be either constant or quadratic or higher order with respect to the (x;,Y;), j $h. 
It follows that we may restrict to the set P = {xi = 0 = y;, j $ h}, ignore the problem 
component of p., and obtain the same dynamics. Repeating as necessary to eliminate all 
semi-definite components of p., so (5) no longer holds. Thus the >.., s > m, have been 
eliminated. This implies they were quadratic in the ( x j, y i ), j $ h, from which it follows 
that the X;..,, s > m, vanish on V C P. 

Sniatycki and Weinstein (Sn W] have proposed an algebraic reduction which yields a 
reduced Poisson algebra (C00(P)/I(p.)]G but not neccessarily a reduced space. If G is 
compact, 

(6) 
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Comparing ( 4) and (6) shows that (5) holds if and only if the algebraic reduction does 
not give the same algebra as the (geometric) reduction we are using in the present paper. 

Thus we could summerize the first part of §6 as follows. It seems reasonable that 
dg / dt is unaffected by the dependence of H on the A i when the geometric algebraic and 
reductions agree. When they do not agree, one might expect dH/dAj to affect dgfdt for 
the Aj which vanish on V. This does not happen in the torus case, however, because the 
Hamiltonian vector fields of such A i vanish on V. 

Theorem 1 shows that in the torus case (5) has no effect on lifting the action from V 
to V. Condition (5) may be important for other questions in dynamics, however. Consider, 
for instance, perturbation of initial conditions. Let V., = J.L-1(v) and V., the corresponding 
reduced space, apd consider to what extent the dynamics on V0 determines the dynamics 
on nearby V.,. Suppose two invariant Hamiltonians differ by t::.H, t::.H = 0 on V = Vo. 
When l(J.L) = I(v), t::.H E I(v) must be parameterized by the J.L, i.e. by the invariant 
intergrals at the group action. When (5) holds, t::.H may not be so parametrized. 

Investigation of perturbation questions requires a good picture of how the V., fit to-
gether. When v varies through regular values, the V., and therefore the V., are all differ-
morphic. For P compact (and G a torus) Duistermaat and Heckman [DH] have obtained a 
formula for the variation of the cohomology of the symplectic form on the V., with respect 
to (regular) v. 

7. WEAK REGULARITY FOR TORUS ACTIONS. 
In fact Duistermaat and Heckman's result may be extended to the weakly regular 

case. Recall that J.L is said to be weakly regular at q E P if J.L- 1(J.L(q)) is a manifold at q 
whose tangent space is the kernel of dJ.L. 

THEOREM 2. Suppose G is a torus and J.L is weakly regular at each smooth point 
of a connected component C of one of its level sets. Then J.L is regular _at each smooth 
point of C if and only if the action of G (on any invariant neighborhood of C) does not 
factor throught the action of a smaller torus G. 

Proof. It suffices to prove the proposition on a neighborhood of each point q of C, 
because C is connected. It further suffices to consider only the action and momentum of 
the isotropy group G9 of q, because the momentum for G/Gq is regular. Thus without 
loss of generality we work on a neighborhood of a fixed point of G. 

There are canonical coordinates (xi> y i) centered at the fixed point in which G acts 
like a subgroup of U(n) acting on <Cn with coordinates Zj = Xj + iYi· Essentially this 
follows from the compactness of G via the equivariant Darboux Lemma. See step 1 of the 
proof of Theorem 4.1 in [AGJ] for more details. (All theorems, etc., quoted in this proof 
are from [AGJ].) 

A further canonical change of coordinates will diagonalize the action of G. Thus if G = 
Ttl = ( S 1 )d, the j th S 1 factor acts by a diagonal matrix with entries say exp( ia jk8 i ), k = 
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1, ... , n. Let r = rank at the matrix [ajk]· If r < d, a reparameterization of G can be 
made so that ll'jk = 0 if j > r. (The algebra involved is essentially row reduction of the 
matrix [ajk]· See also the proof of Theorem 6.8.) Let G = Tr acting as dictated by the 
row-reduced [ll'jk]· Then the action of G factors through the action of G. That is, there 
is a projection 1r: G--+ G so that for each q E <Cn, 1r(g) · q = g · q. 

By Theorem 6.8, weak regularity at all smooth points implies that l(p,) is a real 
ideal, i.e. is equal to its own real radical. Let lp(P,) be the ideal of polynomials (in the 
coordinates) generated by the components of p,. By Theorem 6.3, l(p,) real implies lp(P.) 
real. 

Now complexify the real coordinates xi and y i and analytically extend p, to the re-
sulting <D 2n. Let Vc C <C 2 n be the zero set of the extended M. By Theorem 6.5, the fact 
that Ip(P.) is real implies that 

(7) dimiR(V) = dime (Vc ), 

where of course dimension is computed at smooth points. 
From the form of p, given in equation (6.6) in [AGJ], it is easily computed that the 

(complex) codimension of Vc (at its smooth points) is r. By (7), the real codimension of V 
is also r. But because p, is weakly regular at smooth points of V, codimiR V = rank dp,. 
It follows immediately that p, is regular at the smooth points if and only if r = d, that is, 
G=G .• 

COROLLARY. In Duistermaat and Heckman {DHJ the hypothesis of regularity may 
be replaced by weak regularity. 

Proof. If p, is only weakly regular, replace G by the Gas above of minimum possible 
dimension. The momentum ji for the G action will be regular, and the level sets, orbits, 
and reduced spaces will be the same as those for p,. • 

8. THE DIMENSION OF SINGULAR REDUCED SPACES. 
For singular v-alues which are not weakly regular, there is currently no general analog 

of the results above. Not only are the reduced spaces of singular values not diffeomorphic to 
those for nearby values (regular or singular), they may not even have the same dimension 
as those nearby! The most important singular values are those which interpolate between 
regular (or weakly regular) values, i.e. not those on the boundary of the image of p,. For P 
compact and G a torus, we can say something at least about the dimension of the singular 
reduced spaces for these interpolating values. 

The convexity results of Guillemin and Sternberg and, independently, Atiyah say that 
if P is compact and connected and G is a torus, p,(P) is a convex polytope. (See (§32 of 
GS], and references therein.) As in the proof of the Corollary, project onto a G of minimal 
dimension. This corresponds to projecting g • down to a subspace which contains p,(P) 
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and such that J.L(P) has nonempty interior in the subspace topology. Callv E J.L(P) interior 
value of J.L if it is in this (nonempty) interior. 

THEOREM 3. Suppose P is compact and connected and G is a torus. The reduced 
spaces for the interior values of J.L all have the same dimension. 

Proof. As before, project G onto a minimal dimensional G with the same action. By 
Lemma 32.1 of [GS], each component J.Le of J.L has a unique local maximum. But P is 
compact so this unique local maximum occurs on the boundary of J.L(P). Thus singular 
points in the preimage of interior values for J.L must be saddle points for all components 
J.Le; i.e. the nonpositivity condition (6.5) of [AGJ] holds for the level set V,_ of an interior 
value v. By Theorem 6.8 of [AGJ] this implies that V,_ is weakly regular at its smooth 
points. By Theorem 2 and our initial assumption in this proof, V,_ is regular at its smooth 
points, and codim V11 =dim G. Furthermore the orbit dimension at such regular points is 
also dim G. Thus for each interior value v, dim Vv = dimP- 2dimG. • 

Remark. The reduced spaces for boundary values will have smaller dimension than 
those for interior values. For instances, vertices of the polytope are global extrema for all 
components of J.L, so their reduced spaces are points. 

Theorem 3 may be combined with the arguments of Schwarz [Sch] to obtain the 
following nice picture. Because P is compact, it has finitely generated homology and may 
be equivariantly embedded in an orthogonal representation space for G, as in the proof 
of Theorem 1 above. Also as above, we may choose a basis for the G-invariants on P 
to include the components of J.L, say {J.Lt, . .. ,J.lk,>.1 , ••• ,>.t}. Now by Schwarz [Sch], if 
u = (J.L, >.) : P -+ IR.k+t, u(P) is the orbit space of P. Define a projection 1r : IR.k+t -+ 

IRk. Then J.l = 1r o u, and 1r(u(P)) is the convex polytope J.L(P). For each v E J.L(P), 
1r-1(v) = u(J.l-1(v)) ~ V11 , so the fibers of 1r are the reduced spaces. Some of these fibers 
may be singular. (Even for regular values there may be mild V -manifold singularities 
resulting from discrete isotropy groups; cf. discussion in [DR].) But by theorem 3, the 
fibers over interior values all have the same dimension. Thus one may hope to be able to 
say something about the cohomology of the interior singular fibers [Ar]. 

9. THE NONABELIAN CASE. 
Now suppose G is nonabelian (but still compact.) As in the discussion §6, it seems 

reasonable to expect an analog of Theorem 1 when the components of J.L and the coordinates 
on V give a basis for the invariants; i.e., when 

(8) [I(J.L)f = [I(V)]a. 

It appears to be difficult to prove, however. The problem is to show that, in the notation 
of Theorem 1, the Aj commute with the orbit variables. 
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If (8) fails, then we have the following counterexample. That is, it is not true in 
general that the lifting of the dynamics from the reduced space is determined by how 
the Hamiltonian depends on the reduced space coordinates and the momentum! The 
conclusions of Theorem 3 also fail for this example. 

EXAMPLE. Let 5U(2) act on a:; 2 in the canonical way. Regard a:; 2 as lR4 with 
the canonical metric. (Thus we have the SU(2) action embedded in the canonical action 
of 50(4).) Now lift the action to T*lR4 = P. The zero set V for the momentum J-1. = 
(J-L1,f-L2,f-La) for the G = SU(2) action is V = {(X,Y) E lR4 x lR4 ~ T*lR4: X and 
Yare proportional}. (See Example 7.13 of [AGJ] for computation of f-L, V, and the 
invariants discussed below.) 

The momentum for the SO( 4) action has six components, the three J-L 1S and three 
others, say h, h, and fa. These fi also vanish on V; but their Hamiltonian vector fields 
do not. Furthermore they are SU(2) invariant. (Thus (8) fails for this example.) The fJ 
are invariant Hamiltonians which are independent of f-L i and give rise to the zero Hamil-
tonian on the reduced space, but nonetheless affect the lifted dynamics because they have 
nontrivial Hamiltonian vector fields on V. This example shows that the description in 
Theorem 1 of lifting the dynamics fails here. 

The failure of (8) and the lifting result are particularly surprising in this example be-
cause V, though singular, is reasonable nice. At smooth points it is regular and (therefore) 
coisotropic. It has only one singular point, the origin, and the span of the tangent cone at 
the origin is also coisotropic. 

The regularity at smooth points implies that zero is an interpolating value. But for 
v =j:. 0, Gv = S1 , not G. Thus dim V., = dim[J-L-1(v)/Gv] ~ dimP- dimG- dimGv = 4; 
while dim Yo = 2. Thus Theorem 3 can not be generalized to the nonabelian case. 
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A Variation on the Poincare-Birkhoff Theorem 

BY JOHN FRANKS 

Abstract 

In this article we give an exposition of the work of C. Conley on chain recurrence and complete 
Lyapounov functions and use it to prove the following special case of a theorem of P. Carter. 
THEOREM. If J : A -+ A is a homeomorphism of the annulus which is homotopic to the identity 
and satisfies a boundary twist condition, then either f has at least one fixed point or there is a 
smoothly embedded essential curve C in A with f(C) n C = 0. 

The well known fixed point theorem of Poincare and Birkhoff (see [B] or [BN]) asserts 
that an area preserving homeomorphism of an annulus which satisfies a boundary twist 
condition possesses at least two fixed points. In an attempt to replace the area preserving 
hypothesis with a more topological one, Birkhoff [B2] showed that if f : A -+ A satisfies a 
boundary twist condition and has at most one fixed point, then there is a "ring" S C A 
whose boundary is one component of the boundary of A together with a continuum C 
(which separates A) such that f(S) is a proper subset of S. This result was improved by 
P. Carter [Ca] who proved that under the same hypothesis one can find an essential simple 
closed curve C such that f(C) n C consists of at most a single point and if it does consist 
of a single point, then that point is the unique fixed point of the homeomorphism. She 
also gives an example of such an f with exactly one fixed point and f( C) n C consisting 
of a single point. Thus one cannot hope to prove that either f has at least 2 fixed points 
or there is a curve C with J( C) n C = 0. 

It follows immediately from Carter's theorem that either f has at least one fixed point 
or there is an essential simple closed curve C with f( C) n C = 0. We give a new proof of 
this result in Theorem (2.4) below. The proof is elementary and relatively easy compared 
to the work of Carter. It makes use of the theory of chain recurrent sets and complete 
Lyapounov functions developed by C. Conley [C]. Since Conley's results are not widely 
known and his presentation is for flows, we give a brief exposition in §1 of the basic results 
of this theory in the setting of homeomorphisms. 

§1. CHAIN RECURRENCE AND COMPLETE LYAPOUNOV FUNCTIONS 

In this section we briefly review the elementary theory of attractor-repeller pairs and 
chain recurrence developed by Charles Conley in [C]. In the following f : X -+ X will 
denote a homeomorphism of a compact metric space X. 

(1.1) Definition. An E:-chain for f is a sequence Xt, x2, ... , Xn of points in X such that 

d(J(x;),x;+t) < E: 

Ill 

for 1 :::; i :::; n - 1. 
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A point x E X is called chain recurrent if for every e > 0 there is an n (depending on e) 
and an e-chain x1, x2, ... , Xn with X1 = Xn = x. The set R of chain recurrent points is 
called the chain recurrent set of f. 

It is easily seen that R is compact and invariant under f. 
If A C X is a compact subset and there is an open neighborhood U of A such that 

f(cl(U)) C U and nn>o j"(cl(U)) =A, then A is called an attractor and U is its isolating 
neighborhood. It is easy to see that if V = X- cl(U) and A* = nn>o f-n(cl(V)), then 
A* is an attractor for f-1 with isolating neighborhood V. The set A* is called the repeller 
dual to A. It is clear that A* is independent of the choice of isolating neighborhood U for 
A. Obviously f(A) =A and f(A*) =A*. 

(1.2) LEMMA. The set ofattractors for f is countable. 

PROOF: Choose a countable basis B = {Vn}~=l for the topology of X. If A is an at-
tractor with open isolating neighborhood U, then U is a union of sets in B. Hence, 
since A is compact, there are v;,, ... , v;k such that A C v;, U · · · U v;k C U. Clearly 
A = nn>O f"(U) = nn>o !"(Vi, u ... u v;k). Consequently there are at most as many 
attractors as finite subsets of B, i.e., the set of attractors is countable. q.e.d. 

(1.3) LEMMA. If {An}~=l are the attractors off and {A~} their dual repellers, then the 
chain recurrent set R(f) = n::'=1(An U A~). 

PROOF: We first show R c n(An u A~). This is equivalent to showing that if X tJ. Au A* 
for some attractor A, then x tJ. R(f). If U is an open isolating neighborhood of A and 
x tJ. AU A*, then x E f-n(U) for some n. Let m be the smallest such n. Replacing 
U with f-m(U) we can assume x E U- f(U). Now choose eo > 0 so that any eo-chain 
x = x1,x2,X3 musthavex3 E j2(U). Ife1 = d(X-f(U),cl(j2(U))) ande = t min{eo,ed, 
then no e-chain can start and end at x, since no e-chain from a point of j2(U) can reach 
a point of X- f(U). Thus x tJ. R(f). We have shown R(f) C n(An U A~). 

We next show the reverse inclusion. Suppose X E n:=l (An u A~). If X is not in R(f), 
there is an eo > 0 such that no eo-chain from x to itself exists. Let Q(x, e) denote the set of 
y EX such that there is an e-chain from x toy. By definition, the set V = Q(x, eo) is open. 
Moreover, f(cl(V)) C V, because if z E cl(V), there is zo E V such that d(f(z), f(zo)) <eo 
and consequently an eo-chain from x to zo, gives an eo-chain x = Xl,X2,···,xk,Zo,f(z) 
from X to f(z). Hence A= nn>o f"(cl(V)) is an attractor with isolating neighborhood v. 
By assumption either x E A or-x E A*. Since there is no e0 -chain from x to x, x tJ. A. On 
the other hand, if w(x) denotes the limit points of {f"(x) In;?: 0}, then clearly w(x) C V, 
but this is not possible if x E A* since A* is closed and x E A* would imply w( x) C A*. 
Thus we have contradicted the assumption that x tJ. R. q.e.d. 

If we define a relation "' on R by x "' y if for every e > 0 there is an e-chain from x 
toy and another from y to x, then it is clear that "' is an equivalence relation. 

(1.4) Definition. The equivalence classes in R(f) for the equivalence relation "' above 
are called the chain transitive components of R(f). 

(1.5) PROPOSITION. Ifx,y E R(f), then x andy are in the same chain transitive com-
ponent if and only if there is no at tractor A with x E A, y E A* or with y E A, x E A*. 
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PROOF: Suppose first that x andy are in the same chain transitive component, i.e., x "'y, 
and x EA. If U is an open isolating neighborhood for A, let c: = dist(X- U,cl(f(U))). 
There can be no c:/2-chain from a point in f(U) to a point in X-U, hence none from a 
point in A to a point in A*. By (1.3) yEA U A*, but x "'y implies y ~A*, soy EA. 
This proves one direction of our result. 

To show the converse, suppose that for every attractor A, x E A iffy E A (and hence 
X E A* iffy E A*). Given£> 0 let v = n(x,c:) =the set of all points z in R for which 
there is an £-chain from x to z. Since x is chain recurrent x E V.Also as in the proof of 
(1.3) V is an isolating neighborhood for an attractor Ao. Since x E Ao U A0 and x E V 
we have x E A 0 • Thus y E Ao C V so there is an £-chain from x toy. A similar argument 
shows there is an £-chain from y to x sox "'y. q.e.d. 

We are now prepared to present Conley's proof of the existence of a complete Lya-
pounov function. 

(1.6) Definition. A complete Lyapounov function for f : X -+ X is a continuous function 
g : X -+ R satisfying: 

(1) If x ~ R(f), then g(f(x)) < g(x) 
(2) If x, y E R(f), then g(x) = g(y) iff x "' y (i.e., x and y are in the same chain 

transitive component 
(3) g(R(f)) is a compact nowhere dense subset of R. 

By analogy with the smooth setting, elements of g(R(f)) are called critical values of g. 

(1.7) LEMMA. There is a conti.ooous function g : X -+ [0, 1) such that g-1(A) = 0, 
g-1(A*) = 1 and g is strictly decreasing on orbits of points in X- (AU A*). 

PROOF: Define go :X-+ [0, 1) by 

d(x,A) 
go ( x) = d( x, A) + d( x, A •) 

Let g1(x) = sup{go(r(x)) I n ~ 0}. Then 91 :X-+ [0, 1) and g1(f(x)) $ g1(x) for all 
x. We must show 91 is continuous. If limx; = x E A, then clearly limg1(x;) = 0 so g1 is 
continuous at points of A and the orne argument shows it is continuous at points of A*. 
If U is an open isolating neighbot'hood as above, let N = U- f(cl(U)). Let x E Nand 
r = inf{go(x) I X E N}. Since r(N) c fn(cl(U)) and nn>O r(cl(U)) =A, it follows 
that there is no> 0 such that go(r(N)) C [O,r/2) whenevern > n0 • Hence for x EN, 

g1(x) = max{9o(r(x)) I 0 $ n $no} 

so 91 is continuous on N. Since U::":-oo fn(N) =X- (AU A*), 91 is continuous. Finally, 
letting 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



114 JOHN FRANKS 

we obtain a continuous function g: X-+ [0, 1] such that g-1(0) =A, g-1(1) =A*. Also 

which is negative if x t1. AU A*, since g1(f(y)) :'.5 91(Y) for ally and 91 is not constant on 
the orbit of x. q.e.d. 

The following theorem is essentially a result of [C]. We have changed the setting from 
flows to homeomorphisms. 

(1.7) THEOREM. Iff : X -+ X is a homeomorphism of a compact metric space, then 
there is a complete Lyapounov function g : X -+ R for f. 

PROOF: By (1.2) there are only countably many attractors {An} for f. By {1.7) we 
can find Yn : X -+ R with g;1(0) = An, g;1(1) = A: and Yn strictly decreasing on 
X- (An U A:). Define g: X-+ R by 

g(x) = ~ 2gn(x). 
L....J 3n 
n=1 

The series converges uniformly so g(x) is continuous. Clearly if x t1. R{f), then there is an 
A; with x tl. (A; U At) so g(f(x)) < g(x). 

Also, if x E R{f), then x E (An U A:) for every n, so Yn(x) = 0 or 1 for all n. It 
follows that the ternary expansion of g(x) can be written with only the digits 0 and 2, and 
hence g(x) E C, the Cantor middle third set. Thus g(R{f)) C C so g(R{f)) is compact 
and nowhere dense. This proves (3) of the definition. 

Finally, if x,y E R{f) and g(x) = g(y), then it is clear that for all n, Yn(x) = Yn(Y) 
since 2gn(x) is the nth digit of the ternary expansion of g(x) and, as above, this expansion 
will contain only the digits 0 and 2 iff there is non with x E An, y E A: or with x E A:, 
yEAn. Thus by (1.5), g(x) = g(y) iff x andy are in the same chain transitive component. 
q.e.d. 

§2. BOUNDARY TWIST MAPS 

In this section we consider homeomorphisms of the annulus A which are homotopic 
to the identity map and satisfy a boundary twist condition. 

(2.1) Definition. A homeomorphism f : A -+ A, homotopic to the identity satisfies a 
boundary twiJt condition provided there is a lift of J, J: A-+ A to the universal covering 
space A= RxJsatisfyingft(x,O) < x andft(x, 1) > x, wheref(x,s) = (ft(x,s),h(x,s)). 

The key lemma for finding fixed points is the following, which is essentially from [F]. 

(2.2) LEMMA. Suppose f : R2 -+ R2 is an orientation preserving homeomorphism and 
the chain recurrent set R{f) is not empty, then for any e > 0 there is a point x E R2 with 
llf(x)- xll <e. 
PROOF: We briefly recall the argument from [F]. If the conclusion is false there is an eo 
with llf(x) - xll ~ eo for all x E R2 . A result of [Ox] asserts that there is a o > 0 such 
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that for any finite set of pairs {(x;, y;)} with llx; - y;ll < 8 there is a pairwise disjoint set 
of piecewise linear arcs /i from x; to y; with the length of each < co/2. If z E R(f) let 
z1 = z, z2 , ••. , Zn = z be a h-chain from z to z. Setting y; = z;, x; = f(zi-1) we see that 
there are pairwise disjoint arcs /i from f(zi-1) to z; all of length < co/2. By isotoping in a 
neighborhood of these arcs we can produce a perturbation goff satisfying g(zi-t) = g(z;) 
and llf(x)- g(x)ll <co for all x. 

Now g has a periodic point, namely z. Hence by results of [Br] or [Fa] g has a fixed 
point p. Thus llf(p)- Pll :5 llf(p)- g(p)ll + llg(p)- Pll <co which is a contradiction. q.e.d. 

(2.3) PROPOSITION. Suppose f : A -+ A is a homeomorphism homotopic to the identity 
and satisfies the boundary twist condition. If for every c there is an £-chain for f from 
S 1 x {0} to S 1 x {1} and one from S 1 x {1} to S 1 x {0}, then f has at least one fixed 
point. 
PROOF: We first observe that it is possible to extend f to a homeomorphism of S 1 x 
[-8, 1 + 8] in such a way that f is a rotation on S 1 x { -h} and S 1 x {1 + 8}, and that the 
lift 1: R x [-h, 1 + 8] -+ R x [-8, 1 + 8] satisfies: 

(1) fcx, t) = (h (x, t), t) fortE [-8, 0] U [1, 1 + 8] 
(2) h(x,t) < x 
(3) h(x,t) > x 

fortE [-8, 0] 
for t E [1, 1 + h]. 

From these properties it is easy to check that S 1 x [-8, 0] is contained in a single chain 
transitive component as is S 1 x [1, 1 + 8]. Since there can be no fixed points in S 1 x 
[-h, 0] U [1, 1 + 8], it suffices to prove the result for the enlarged annulus for which f is a 
rotation on each boundary component. We proceed to do this referring to the annulus as 
A= S 1 x [0, 1] rather than S 1 x [-8, 1 + h]. 

Consider the lift f: A-+ A (A= R x [0, 1]) satisfying 

fcx, 1) = (x + rt, 1) and fcx, 0) = (x- r2, 0) 

for some r 1 , r 2 > 0. We will show that every point of R x {0} is chain recurrent for [; 
before doing so, however, we show that this will suffice to complete the proof. We can 
extend 1 to R2 by setting fcx, t) = (x + rt, t) fort > 1 and fcx, t) = (x- r 0 , t) fort< 0. 
Thus by (2.2), for every c > 0 there is an (x, t) with llfcx, t) - (x, t)ll < c. Since this 
inequality also holds for f and the projection of (x, t) on the compact annulus A, it follows 
that f has a fixed point. 

It remains to show that points of R x {0} are chain recurrent. Let x 0 E S1 . By our 
remarks above, for every c there is an £-chain for f from (x 0 ,0) to (x 0 , 1) and likewise 
one from (xo,1) to (xo,O). If (x,O) is a lift of (x 0 ,0), then lifting the £-chain on A we 
obtain an £-chain for 1 : A -+ A from ( x, 0) to ( x + a, 1) for some a E Z. The fact that 
fey, 1) = (y + rt, 1) for ally E R implies there is an £-chain from (x, 1) to (x + p, 1) for 
any sufficiently large p E Z. Likewise there is an £-chain from (x, 1) to (x + b,O) for some 
bE Z. Using the fact that fcx, t) + (0, 1) = fcx + 1, t) to translate these £-chains we can 
piece together an .::-chain from (x, 0) to (x +a, 1) to (x +a+ p, 1) to (x +a+ p + b, 0). If 
p is sufficiently large m = a + p + b > 0. 
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We also know that f(x, 0) = (x- r2 , 0) so there is an £-chain from (x, 0)) to (x- n, 0) 
for some integer n > 0. Once again piecing together we obtain an c:-chain from (x, 0) to 
(x + m,O) to (x + 2m,O) to ... to (x + mn,O) to (x + mn- n,O) to ... to (x,O). Thus 
(x, 0) is chain recurrent. q.e.d. 

We can now give the proof of our main result. 

(2.4) THEOREM. Iff : A --+ A is a homeomorphism homotopic to the identity and 
satisfying the boundary twist condition, then either f has at least one fixed point or 
there is a smoothly embedded essential closed curve C C A such that f(C) n C = 0. 
PROOF: As in the proof of (2.3) we enlarge the annulus to A0 = S 1 [-8, 1 + 8] and extend 
f so that it is a rotation on each boundary component and so that the circles { S1 x 
{t} It E [-8,0) U [1, 1 + 8]} are invariant and contain no fixed points. It follows that if 
A+= {(x, t) E Ao It E [1, 1 + 8]} and A- = {(x, t) E Ao It E [-8,0)}, then A+ and A-
are chain recurrent and each is a subset of a chain transitive component, (i.e., between any 
two points of A+ there is an £-chain and similarly for A-). 

If A+ and A- are in the same chain transitive component for f, then f has at least 
one fixed point by (2.3). So suppose this is not the case. Let g : Ao --+ R be a complete 
Lyapounov function for f. Then g is constant on A+ and A- and g(A+) =f. g(A-). Choose 
c E R which is not a critical value of g and which lies between g(A+) and g(A -). The set 
g-1 (c) C A has the property that it separates A and f(g- 1(c)) n g-1 (c) = 0. It is possible 
to construct gin such a way that it is C00 (see [W)), though that is not necessary for our 
purposes. In fact, if g0 is a coo function which is a sufficiently close C 0 approximation 
to g, then g01(c) will separate A and f(g01(c)) n g01(c) = 0. By Sard's theorem we 
can pick a regular value of g0 arbitrarily close to c. We choose a regular value c0 such 
that g01 (c0 ) separates A and f(g01 (co)) n g01(co) = 0. The components of g01 (c0 ) are 
smoothly embedded circles, at least one of which must be essential since g01 ( c0 ) separates 
A. Let C be such an essential component, then f( C) n C = 0. q.e.d. 
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AN ANALOG OF SHARKOVSKI'S THEOREM 
FOR TWIST MAPS 

Philip Boyland1 

ABSTRACT: In this exposition, we present a partial order on the periodic 
orbits of twist maps of the annulus. It is the analog of Sharkovski's theorem 
for maps of the line. A periodic orbit is specified by its "orbit type" which is 
essentially the isotopy class of the map rei the orbit. This isotopy class is then 
analyzed using the Thurston-Nielsen theory of surface automorpisms. If this 
class has a pseudo-Anosov component, then the given orbit type dominates the 
infinite number of orbit types of the canonical representive in the class. The use 
of the partial order as a tool in understanding the birth of periodic orbits after 
the loss of a invariant circle is also discussed. 

Section 1. Introduction: 
The study of twist maps of the annulus was initiated by Poincare in his investigation 

of the restricted three body problem. These maps were also a central focus in Birkhoff's 
work on dynamical systems. In the ensuing years, twist maps have been found to occur in 
numerous situations of mathematical and physical interest. As maps they are relatively 
simple, yet they can give rise to very complicated dynamics. For this reason, they provide 
a nice model problem for Hamiltonian dynamical systems. In recent years there has been 
great progress in understanding the behavior of these maps (for a survey, see [Mr] or 
[Me]), but there is much to do before a complete understanding is available. 

The range of dynamical behavior in twist maps is from simple in the integrable case, 
to very complex, stochastic type behavior in the unstable case. For a typical twist map, 
the dynamics are composed of a combination of these two behaviors. The characteristic 
configuration consists of invariant circles which wrap around the annulus and divide it 
into "zones of instability". It is in these zones that the apparently random motion occurs. 
The transition from simple to complex dynamics in parametrized families is therefore 
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closely connected to the phenomenon of the loss of invariant circles. Consequently, this 
phenomenon has been the subject of much study resulting in deep results, most notably, 
the Kohnogorov, Arnol'd, Moser (KAM) theory and the Aubry-Matl1er Theorem. 

Very roughly, the KAM theory gives conditions which ensure that an invariant circle 
is preserved under perturbation. The Aubry-Matl1er Theorem gives information about 
what remains after _an invariant circle is lost. What remains is a "circle with gaps", 
or more precisely, an invariant Cantor set (called an Aubry-Mather set). It has been 
known since Birkhoff that when an invariant circle disappears, there is transit in both 
directions through the region formerly occupied by the circle. This results in a kind of 
local cir~ulation around the Aubry-Mather set which gives rise to, among other things, 
new periodic orbits {(BH]) and invariant Cantor sets {(Ma]). One would like to understand 
the type of periodic orbit created and the order of their creation when an invariant circle 
is lost. This is the question we wish to begin addressing here by developing an analog of 
Sharokovski's Theorem for twist maps. 

This question forms a special case of a more general strategy: One attempts to under-
stand complicated dynamics by understanding how the transition to this behavior occurs 
in parametrized families ([cf.[E]). It is somewhat remarkable that in certain (admittably 
special) instances there are sequences of events (i.e. bifurcations) which must always oc-
cur in this transition. In the current language of physics, there exist "universal structures 
in the transition to chaos." It is worth noting that the study of structures intrinsic to the 
transition from simple behavior to complexity is not restricted to dynamics. It occurs, 
for example, in the theory of critical phenomena {as critical exponents), in the study of 
the transition to turbulence, in unified quantum field theories (as sequential spontaneous 
symmetry breaking) and even in recent proposals for the identification of pure conscious-
ness with the unified field (as the sequential unfolding of the unmanifest relationships 
between observer, observed and process of observation [Hal). 

Within dynamics, this strategy has been most successful to date when applied to 
one dimensional maps. The first example of a qualitative "universal structure" was pro-
vided by Sharkovski's Theorem ([Sh] and [St]). (Quantitative universality usually arises 
from the use of renormalization techniques in situations such as Feigenbaum doubling). 
Sharkovski's Theorem consists of a total order on the natural numbers, denoted "?-", 

with the property that n ?- m if and only if any continuous map of the real line which 
has a periodic orbit of period n also has one of period m. One implication for bifurcation 
theory is the following: For JL E (0, 1], let J,. be a parametrized family such that fo has 
no periodic orbits and ft has periodic orbits of all periods (eg. J,. = 4p,:r:{l- :r:)). If 
ILn denotes the infimum of the parameter values for which J,. has a period n orbit then 
n )>- m implies JLn 2: JLm· {The stronger result JLn > I-'m is true by (BkHt]. One also ~as 
JLn > JLm implies n ?- m since the order is total). In this way, the partial order on N 

1 yields an order on parameter space, i.e. information on the order in which periodic orbits 
must be born. 

One obvious limitation of Sharkovski's Theorem is that it only involves the period 
of the orbits. One may gain more information about the sequence of bifurcations by 
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gen<'ralizions of the following form: First, some type of specification is assigned to periodic 
orbits. Then, an order relation is put on the set of specifications which is defined hy the 
property that a first specification dominates a second if and only if any map that has 
a periodic orbit of the first type also has one of the second type. As with Sharkovski's 
Theorem, one then obtains information about the order in which periodic orbits (with 
given specifications) can be born in parametrized families. 

One such generalization bears useful parallels to the two dimensional theory we de-
velop here. In this generalization one specifies a periodic orbit by the cyclic permutation 
induced by the action of the map on the points of the orbit as ordered in R ((Ba),(J2),(Bt) 
and [BkHt]). The resulting order relation is now partial and not total. The main tool for 
computing in this order is the primitive map. The primitive map is the simplest piecewise 
linear map that has a periodic orbit with the given permutation (see fig. 4 below). Using 
what is essentially a Markov partition argument (the segments between adjacent points 
on the orbit act as Markov boxes), one can show that the permutation of any periodic 
orbit of the primitive map must be represented by a periodic orbit in any map that has 
a periodic orbit with the given permutation structure . Thus using the primitive map, 
one can compute all the permutations dominated by the given one. One sees then that 
the existence of a periodic orbit with a given permutation structure implies that the map 
must be at least as complicated as the primitive map of the given permutation. What is 
important then about the existence of a periodic orbit with a given permutation structure 
is what is implied about the action of the map on the complement of the orbit. The pas-
sage from the permutation of a periodic orbit to the implied behavior of the map is made 
possible by the one dimensionality of the system. In two dimensions a similar passage is 
only possible with addition hypotheses such as the twist condition. 

The overall form of a two dimensional ''Sharkovski's Theorem" is the same as the 
form given above for one dimensional maps. The question is, of course, what to chose as 
a specification of periodic orbits. The notion of permutation is not well defined in two 
dimensions and the period as a specification yields a trivial order relation (for example, in 
maps of the annulus no two numbers would be related). An appropriate two dimensional 
notion of permutation would describe how the points on the orbit are moved around the 
surface topologically by the map. One way to capture this notion is by the isotopy class 
of the map rel the orbit, or equivalently, the isotopy class of the map restricted to the 
surface minus the orbit ((cf (Bn]). The specification we assign to periodic orbits is called 
the orbit type and is basically this isotopy class. (This idea is essentially due to Bowen 
[Bo). We will review the history of this circle of ideas at the end of the introduction.) 

Continuing the analogy with the one-dimensional permutation order, we now seek 
the simplest map in the isotopy class rel the orbit and hope it will play the role of the 
primitive map. Specifically, we want its pe~iodic orbits to be present, in the appropriate 
sense, in any map contained in the isotopy class rei the orbit (and thus in any map that 
has a periodic orbit with the given orbit type). In addition, the periodic orbits of this 
simplest map should be computable via a Markov partition. In short, the simplest map 
should allow us to compute precisely which orbit types are dominated by the given one. 
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A simplest map with these properties docs, in fad, exist as is shown in Thurston's work 
on isotopy classes of diffeomorphisms of surfaccs of negati\·e Eukr charnderistic ([T],cf 
(FLP],(C]). Although Thurston's work lies at the foundation of all we develop here, there 
is regretably insufficient space to desnibe it in any detail. A brit•f outline is included in 
section 3. 

The main difficulty in implementing this program lies in computing the behavior of 
the simplest map when given a combinatorial desniption of an isotopy class (or orbit 
type). In addition, the set of orbit types is large and the partial order appears to be quite 
complex. For these reasons it is useful to restrict consideration to certain more easily 
understood (but still interesting) subcollections of orbit types. In this paper we present 
the intial stages of an investigation into the partial order restricted to orbit types that 
arise from periodic orbits of monotone twist maps of the annulus. Complete proofs will 
appear elsewhere. 

The monotone twist hypothesis is quite convenient in this setting as it allows the 
passage from permutation information about an orbit to the behavior of the map on its 
complement. (Recall that this passage is the main principle underlying the one dimen-
sional permutation order.) More precisely, if one knows the ordering of the iterates of a 
periodic orbit around the annulus (i.e. its permutation in the angular coordinate) then 
as a consequence of the twist hypothesis, one can deduce the nature of the isotopy class 
on its complement (i.e. its orbit type). This allows one to use an angular permutation 
to represent the orbit type. This in turn, allows one to use the more easily understood 
partial order on periodic orbits of circle maps as a tool in studying the partial order on 
orbit types. This is possible because the orbit type order relationis a subset of the per-
mutation order relation in the sense that a first orbit type dominating a second implies 
that a permutation representing the first dominates one representing the second. The 
problem basically reduces to discovering in which cases anq in what sense the converse of 
this statement is true. 

We have thus far presented the two dimensional theory as a generalization of the 
one dimensional theory. This was primarily for thf' purpost' of motivation and exposition 
and is not an accurate representation of the histoy of tht' ideas Wt' have prest•nted. Put 
somewhat loosely, the basic principle that underlies these ideas is that certain dynamical 
behavior is caused by topological complications of a map and is thus preserved under 
isotopy. This principle goes back at least to Lefschdz and Nielsen and has arisen in 
numerous guises in the ensuing years. The instance of this principle applied here is its 
application to pseudo-Anosov isotopy classes on surfaces. Our utilization of this follows 
that of Birman and Williams who used it in a similar manner in the context of flows in 
their study of the planetary orbits of a fihef{'(l link ([HWJ). The investigation of perio<iic 
orbits using the isotopy class rei the orbit is the other main idea t'lllployed here. As 
noted above, this idea seems to be due to Bowell ([Ro]). It has lwen applif'd by nnmerons 
authors, for example, [BF],[lld] aud [Fr]. The nse of tlw kn<Jt type in the snspension as in 
[HW] is a closely related notion. The comhinatiou of thf"st' basic ideas to yif'ld a partial 
order on periodic orbits oftlw disk or anuulus app•·ars f.o have lwl'n in tit<' folklore for some 
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time. The idea occured to J .Smillie, the author and certainly others. It does not seem 
to have been the subject of a sustained investigation or published t>xposition. This is our 
justification for writing this rather lenghthy introduction. Matsuoka has investigated the 
partial order related to period three orbits using techniques connected with the Bureau 
representation of the braid group ([Ms2], d. [Ms1]). In the context of monotone twist 
maps, the work of J ungries [J 1 J should also be noted. 

Section 2. Order Structures 
We begin by defining the object that will specify the order structure of a periodic 

orbit around the annulus. It is essentially just the permutation of the points on the orbit 
under the map. However, because we are interested in what the orbit implies about the 
topological complications of the map, it turns out to be necessary to work with the lift of 
the orbit in the universal cover and to describe the permutation structure there. 

] ··.·~~~~~~~::. a • ~ • • • • • • • • 
b] -~:.....--- .,.....--:::t --- / ~ ~ ~ ~--~-. 

~. . . . - . . . . . . 
1 2 3 4 5 6 7 8 9 10 

Fig. 1 

In figures Ia) and b), we show the lifts of two different orbits to the universal cover. 
The forward iterate of each point is indicated by an arrow. Both orbits have rotation 
number 2/5. Note that a single orbit in the base can be covered by several orbits (in this 
case, by two orbits). 

DEFINITION: If 0' : Z--+ Z is a bijection and p and q are positive integers, then 
the tri pie ( 0', p, q) is called a (p, q) -order structure if for all n E Z the following hold: 

1) 0'( n + q) = 0'( n) + q 

2) O'q ( n) = n + pq 
3) 0'1 ( n) =/: n + kq for 0 < j < q and 0 :=:; k < p. 

Statement (1) implies that 0' projects to a permutation 0'1 : Z/qZ--+ Z/qZ. In other 
words, our "fundamental domain" is q points long. Statements (2) and (3) imply that 0'1 

is cyclic and the resulting periodic orbit has "rotation number" pfq. Note that we are 
not assuming that p and q are relatively prime. In figures 2(a) and 2(b), we show the 
projection of the orbits in figures 1(a) and (b) to Z/5Z. 

Because we do not want an order structure to depend on the placement of zero, we 
need to introduce an equivalence relation. If {0', p, q) is an order structure, let 0' ~ 

TmO'y-m for all m E Z, wht>re T is the translation, T(n) = n + 1. The resulting 
equivalence classes will also be called order structures and we will not be unnecessarily 
careful in distinguishing between the two. 

A given bijection, 0', may be part of a (p, q)-order structure for many p's and q's. 
For example, if O'n(n) = n + p, then for each relatively prime pair, (p,q), the triple 
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( u B, p, q) is a (p, q )-order structure called the monotone or Birkhoff (1'• q )-order structure. 
(cf. [K],[H]). Figures l(a) and 2(a) show the monotone (2,5)-order structure and its 
projection. Note that the monotone order structures arc the only ones in which u is 
order preserving. This means that the monotone (p, q )-order structure is associated with 
periodic orbits of circle homeomorphisms. Put in another way, if the projt•ction of UB is 
u~ which acts on on ZjqZ, then u~ preserves the "radial order". However, it is not the 
only order structure with this property. For example, if r : Z -+ Z is defined by 

( ) _ { n + p for n t 0 mod q; r n - 1 . n + 2p ot terwtse, 

then rand ITB project to the same permutation on ZjqZ. This loss of information after 
projecting is what necessitates the use of the c.over in the definition of order structure. 

Before defining what we mean by the order structure of a given periodic orbit, we 
introduce some notation. The annulus A = 5 1 x [0, 1] has universal cover A= R x [0, 1) 
with projections 11'r : A -+ Rand 11'y : A -+ [0, 1] onto the first and second coordinates 
respectively. The maps we shall consider are diffeomorphisms of A that are orientation and 
boundary preserving. The set of all such maps is denoted Diff+(A). Given f E Diff+(A), 
a map F : A -+ A is called the lift off if it is a lift in the usual sense and in addition 
F(O, 0) E [0,1) x {0}. The orbit of a point {3 E A under f is denoted o({3, f) and the 
eztended orbit of {3, denoted eo(f3, f), is the set of points in A which cover a point of 
o({3, f), i.e. eo({3, f) = p- 1 (o({3, f)) where p : A -+ A is the projection. If o({3, f) is a 
periodic orbit with period q, its rotation number, denoted p(x, f), is pjq, where p satisfies 
11'.,(Fq(tJ)) = 11'.,(tJ) + (p, 0) for tJ and F lifts of {3 and f respectively. 

DEFINITION: Let f E Diff+(A) have a periodic orbit o({3,!). Fix a f3o E co(f3) 
and if we assume that 11'., restricted to eo(f3) is injective we may label the elements of 
eo(f3) as {f3i: i E Z} with 11'.,({3i) < 11'z(f31 ) if and only if i < j. Now let u: Z-+ Z be the 
bijection induced on Z by the action ofF on eo({3), i.e. F({3,) = f3u(•)· If o(/1) has period 
q and rotation number pjq then (u, p, q) will be a (IJ, q)-order structure and will be called 
the order structure of the periodic orbit of o({3, f). We denote this as os(fl, f) = (u, p, q). 

In order to have this definition make sense we needed to assume that 11' r restricted 
to eo(f3) was injective. If this is not the case it may always be arranged by a small 
change of coordinates which keeps the map monotone twist. However, two choices of 
new coordinates can yield different order structures for the given periodic orbit. This is 
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illustrated in figure :J(a) where we show the lift of a periodic orbit with two points on the 
same vertical line. The lines labeled (h) and (c) art> transformt>cl into verticallint>s under 
the changes of coordinates indicated in 3( b) and 3( c) respedi vely. From this we see that 
if we try to use the order structure to specify a periodic orbit in a partial order of the 
Sharskovski type then we will find differing specifications for the two orbits that should 
be the same. 

• • • • -----~·- -----... "---- ·-___.;" 

b a 

-------~-~ .~ ~ . .,.... . . . 
a Fig. 3 

Section 3. Orbit Types 
The situation discussed at t'he end of the previous section is resolved by introducing 

the following equivalence relation on periodic orbits. Because we are going to use the 
equivalence classes under this relation to specify a periodic orbit, we also require that the 
action of the appropriate maps on the complement of the orbits be isotopic. Although 
we restrict our attention here to periodic orbits of monotone twist maps, the definition is 
made for any f E Diff+(A). 

DEFINITION: Let/, g E Diff+(A) have periodic orbits o(x, f) and o(y, g) respec-
tively. The orbits o(x, f) and o(y, g) have the same orbit type if there exists a homeomor-
phism h: A---> A with h := id, h(o(x, f))= o(y, g), and hfh- 1 := g rei o(y, g). 

The conjugation in the definition of equivalence means that periodic orbits which 
correspond under changes of coordinates are equivalent. The requirement of isotopy 
rei o(y, g) ensures that the action of f and g on the complement of their respective 
orbits are topologically the same. The equivalence class of o(x, f) under orbit types 
is denoted ot(x, f) and for f E Diff+(A), ot(f) denotes the collection of orbit types 
of periodic orbits off, i.e. ot(f) = {ot(x, f) : x is a periodic orbit off}. The set of 
all possible orbit types for maps of the annulus is defined as OT = {ot(x, f) : f E 
Diff+(A) and x is a periodic orbit off}. 

For a fixed f with periodic orbit, o(x, f), the isotopy class off rei o(x, f) gives an 
isotopy class (or mapping class) on the q-punctured annulus, where q is the period of 
o(x, f). The orbit type of o( x, f) can thus be thought of a conjugacy class in the mapping 
class group of the q-punctured annulus ( or more properly, the q + 2-punctured sphere 
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since we allow isotopies that move the boundary of th<' annulus). The set OTis th<' union 
of such classes as q goes to infinity. 

We now define the order relation on OT that is the analog of Sharkovski's ord<'r. 

DEFINITION: If 1,11 E 01' lt'l 1 .?:: 11 if for all f E Diff+(A), 1' E ot(f) implies 
11 E ot(f). 

THEOREM 1: The order relation (OT, .?::) is a partial order. 

We sketch the proof. To be a partial order, an order relation must be reflexive 
(o ~ o), transitive (o ~ {3 and {3 ~ 1' implies o ~ 1) and antisymmetric (a ~ {3 and 
{3 ~ o implies o = {3). The first two properties are obvious. The main ingredient in 
the proof of the third is the fact that any map of the disk is isotopic to the identity. 
This means that any periodic orbit can be isotoped away. In particular, using somewhat 
standard techniques (cf (Br]) one can find an isotopy that forces a given pair of orbit 
types to "disappear " at different points in the isotopy. This implies that distinct orbit 
types are never co-related, in other words, ( OT, ~) is antisymmetric. 

The first issue to confront is the nontriviality of this order relation. Do most (or any) 
elements dominate infinitely many others? For this we need to briefly (and informally) 
describe the origins of the partial order in Thurston's work 011 surfaces (for more details, 
see (T], [FLP], (C]). Thurston shows that isotopy classes of diffeomorphisms on surfaces 
of negative Euler characteristic are either simple (= finite order), very complicated (= 
pseudo-Anosov), or are built up from components of these types. In the pseudo-Anosov 
classes, the infinite collection of periodic orbits of the pseudo-Anosov representative are 
unremovable in the sense of Asimov and Franks ([AF]). If one can show that the isotopy 
class off rei o(:r, f) is of psuedoAnosov type, this implies that ot(:r, f) will dominate 
the infinitely many orbit types of the psendo-Anosov representative. Sinc.-e most (in a 
certain sense) mapping classes have at least one pseudo-Anosov c.-omponent, one sees that 
most Qrbit types dominate infinitely many others. An orbit type with all finite order 
components will dominate a finite (usually nonzero) number of orbit types. 

The general structure of ( OT,.?::) thus appears to be quite rich. One general strategy 
for computing in ( OT, ~) follows the discussion above. First decide the Thurston type 
of one of the isotopy classes within the orbit type (the Thurston type is invariant under 
conjugacy). One then computes the dynamics of the canoni<"al representative in the class. 
The first task is relatively straight forward, especially for <"ertain restrided classes of 
orbits. The theory of train tracks ([Kn], [HPJ, [BS]) provides a powerful tool for attacking 
the second task but the actual computation of a train track appears to be highly trivial 
in general. 

There is an analogous partial orrler for periodic orbits of difl'eomorphisms of the disk 
and sphere. The obvious generalization to other two manifolds fails due to the existence 
of Anosov or psuedo-Anosov isot0py classes on the <>ntire manifold and not just for classes 
rei a periodic orbit. In these class('S, as noted above, many periodic orbits are present 
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111 every map Ill the isotopy class and so the order relation on orbit types_ fails to be 
antisymmetric. 

Section 4. Monotone Twist Maps 
Since computation in ( OT, 2) appears to be rather difficult in general, we restrict 

our attention to orbi.t types arising in monotone twist maps (defined below). Given 
permutation information about a periodic orbit of a monotone twist map (i.e. its order 
structure) one can immediately compute the action of the map on the complement of 
the orbit up to isotopy (i.e. the orbit type). Thus within the class of monotone twist 
maps, the order structure provides a convenient combinatorial tool for working with orbit 
types. These notions are made precise in the follwing lemma and definitions. A map 
f E Diff + (A) is called monotone twist if 

fhry 0 f 
OX > o. 

The set of all monotone twist maps is denoted MT. 

LEMMA 2: Let J, g E MT have periodic orbits o(x, f) and o(y, g), respectively. If 
os(x, f)= os(y, g) then ot(x, f)= ot(y, g). In addition, given any order structure (O',p, g), 
there exists an f E MT with periodic orbit o(x,f) with os(x,f) = (O',p,q). 

Lemma 2 allows us to make the following definition. 

DEFINITION: Given an order structure (0', p, q), choose an f E MT with periodic 
orbit o(x,f) with os(x,f) = (O',p,q). Define the orbit type of (O',p,q) as ot(O',p,q) = 
ot(x, f). 

The converse of the first statement of Lemma 2 is false. Many order structures can 
give rise to the same orbit type. The two order structures arising from the coordinate 
changes illustrated in figure 3 are an example of this. (It would be nice to have an 
algorithm which decides when two order structures give rise to the same orbit type. This 
appears to be difficult.) There is one case in which the corespondance between order 
structures and orbit types is one to one. It follows from Hall((H 1]) that if ( O'B, p, ~) 

is the monotone (p,q)-order structure and f E MT then ot(x,f) = ot(O's,p,q) if and 
only if os(x, f) = (O's, p, q). We also note that ot(O'B, p, q) is a finite order class in the 
sense of Thurston and thus does not dominate anything in ( OT, 2: ). In fact, the minimal 
elements of ( OT, 2:) (i.e. the elements that are smaller than anything with which they 
are comparable) are precisely the orbit types of (O'B, p, q) for relatively prime pairs (p, q). 

If ( <7, p, q) is not monotone the situation is quite different as is indicated in the 
following theorem. It is rather easily proven by showing the isotopy class in question is 
pseudo-Anosov. 

THEOREM 3: If (<7, p, q) is a (p, q)-order structure that is not monotone and p 
and q are relatively prime, then ot( <7, p, q) dominates infinitely many elements in ( OT, 2: ). 
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We now move on to the question of computing in ( OT, 2:) using an order structure 
t.o specify an orbit type. Given an order strud liT<', we const.rnc.t. a map of the circle, 
called the tight circle map, whir.h is, in a certain sense, the simplest map of the circle 
that has a periodic orbit with the given order structure. This map plays the role of the 
primitive map discussed in the introduction.The ordt•r structures of periodic orbits of this 
tight r.irde map are precisely the order structures dominated by the given one in maps 
of the circle. In pushing everything up a dimension, one finds that the orbit types of 
these order structures contain all the orbit types dominated by the orbit type of the given 
order structure. However, the containment is often proper and the problem becomes 
one of determining which of the dominated order structures "go up a dimension". Our 
primary success to date has been in finding order structures where all the order structures 
dominated in the one dimensional setting "go up" to orbit types dominated in the two 
dimensional case. We have recently made some progress on the general case. 

Before stating our theorems, we need to develop a fair amount of combinatoric. ma-
chinery for describing order structures. 

DEFINITION: Given an order structure (u,J>, q), extend O": Z---+ Z to a piecewise 
linear F,. : R -+ R that satisfies F,.(x + q) = F,.(x) + q and for a.ll x (/. Z, dF(x)/dx 
exists. The tight circle map of (u, 7>, q) is the projection of Fu to !u : 5 1 ........ 5 1 , where 
5 1 = R/qZ. Since f,. is a continuous, degree one circle map, the set of rotation numbers 
of fu, denoted p(fu ), is a closed interval ([I]). We define the rotation band of (u,J>, q) as 
RB(u,p,q) = p(fu)· If (u,p,q) is such that Fu has exactly two turning points in each 
fundamental domain (x, x + q) and these turning points are adjacent in Z (as in fig. 4), 
we say that (u,p,q) is a bimodal o1·da stucturc. 

3 5 7 
Fig. 4 

9 

Figure 4 shows the tight circle map of the order structure shown in Figure 1(b). The 
rotation band of this order structure is [1/3, 1/2]. This was shown in [BH] where the 
rotation band was used in a criterion for the nonexistence of invariant circles ( cf. [Bd2] 
and [Bd3]). 

The next definition formalizes the notion of two pt•riodic orbits fitting together in a 
prescribed manner. Figure 5 shows one way in which a monotone ( 1, 2) and a monotone 
( 1, 3) order structure can fit together to makt· what we call a monotone, joint ( 1, 3)- ( 1, 2) 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



PARTIAL ORDER FOR TWIST MAPS 129 

... --.. .-------...... ...--... ......-----... ...-- .... 
··~-~~~~~~?· . . . .. . . . . . . 

1 '} 3 4 5 6 7 8 9 10 11 

Fig. 5 

structure. This joint order structure is closely related to the order structure of Figure 
1 (b) in a way we will explain shortly. 

DEFINITION: A bijection T : Z -+ Z is called a joint order structure if it satisfies 
( 1) and (2) in the definition of a (p, q) order structure with p = r + m and q = s +nand 
further: 

(a) The projected map r': ZlqZ-+ ZlqZ has exactly two periodic orbits which we 
denote as o( xt) and o( x2 ); 

(b) If 7r: Z-+ lqZ is the projection, r restricted to ;r- 1(o(xt)) and ;r- 1 (o(x 2 )) are 
required to be (r, s) and (m, n) order structures, respectively (after relabeling). 

The bijection T is called a monotone joint ( r, s) - ( m, n) order structure if the re-
stricted ( r, s) and ( m, n) order structures are both monotone. It is not difficult to show 
(using, for example, techniques of[Bd 1) section 2) that there is exactly one bimodal mono-
tone joint ( r, s) - ( m, n) order structure when the integers within each pair are relatively 
prime. By a Markov partition arugument (as in [BGMY)) one may constuct a periodic 
orbit of period s + n that "shadows" the pair of orbits described by the joint order struc-
ture. This periodic orbit behaves like a monotone (r, s)-orbit for s iterates and then 
like a monotone (m, n)-orbit for n iterates. The order structure of this orbit is called a 
( r Is, min) concatenation order structure and is defined precisely below. It turns out to 
be more convenient to define the concatenation order structure in terms of how it can be 
transformed into a joint monotone order structure. In the example of Figure l(b), the 
point 6 is a local maximum of the order structure (more precisely, of F17 ) and the point 
7 is a local minimum. If¢ is the map that transposes these two points (as well as their 
translates), then cr o ¢is the order structure of Figure 5. This means that Figure 1(b) is 
what we call the ( 113, 112) concatenation order structure. 

DEFINITION: Given rationals in lowest terms 0 < rls <min< 1, let p = r + m 
and q = s + n. The ( r Is, ml n) concatenation order structure is a bimodal (p, q )-order 
structure ( cr, p, q) with the property that cr o ¢ is a monotone, joint ( r, s) - ( m, n) order 
str~cture where ¢: Z-+ Z is defined using a local maximum, m 0 , of F17 as ¢(n) = n + 1 
and ¢( n + 1) = n for n = mo mod q and ¢( n) = n, otherwise. 

One can show that these properties define a unique order structure whose orbit 
type which we denote as ot( 1·1 s, min). These concatenation order structures are well 
behaved in the sense discussed above. All the orbits dominated in one dimension are also 
dominated in two dimensions. One proves this by constructing the train track for the 
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isotopy class rei the orbit and comparing the action on it to the tight circle map. This 
is the basis of the first three theorems of tlw next section. In Fig li, we illustrate t.ht• 
invariant track and its image for the orbit type of Fig. l(b). 

Fig. G 

Section 5. Results 
THEOREM 4: If (o-,p,q) is a bimodal order structure and 0 < 1·ls <min< 1 are 

fractions in lowest terms with R B( o-, p, q) C ( 1'/ s, min), then ot(o-, p, q) ::; ot( 1'/ s, min). 

The next theorem states that the partial order restricted to the concatenation orbits 
looks like set-theoretic inclusion. 

THEOREM 5: If 0 < rl s < min < 1 and 0 < ,.'Is' < m' In' < 1 are ratio-
nals in lowest terms then (r'ls',m'ln') C (rls,mln) if and only if ot(r'ls',m'ln')::; 
ot(r Is, min). 

The topological entropy of a map is denoted h(f). It is a measure of the complication 
of the dynamical system induced by the map (see, for example, [Bo] for precise definitions). 
The proof of the next theorem relies on the fact that the entropy of a pseudo-Anosov map 
is a lower bound for the entropies of all maps isotopic to it ([FLP) expose 11). Because of 
the nice property of the concatenation orbits noted above, the entropy of the tight circle 
map is the same as the entropy of the pseudo-Anosov pre presentative in the isotopy class. 
The entropy of the tight circle map can be computed using techniques of [BGMY]. 

THEOREM 6: If 0 < rls < min < 1 are rationals with lrn- msl = 1 (such 
rationals are called Farcy adjacent) and ot(r Is, min) E ot(f) for some f E Diff+ (A) then 
the topological entroppy satisfies h(f) ~ log(~) where ~ is the biggest positive root of 
(x' - 2)(x" - 2) = 3. In particular, 

h(f) ~ log(i + hh). 
n + ·' 

Thus, for example, any twist map f that has a periodic orbit with the order structure 
illustrated in Figure 1(b) has entropy h(J) 2 log(~) = /og(l.i2208) = .5435 where we 
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numerically estimated the largest positive root of (x 3 - 2)(x 2 - 2) = 3. The estimate in 
the last line of the theorem is a consequence of an elementary computation of a lower 
bound for A. 

We note that the previous three theorems apply to all diffeomorphisms f E Diff+(A). 
We have only used the monotone twist hypothesis to constuct orbit types out of order 
structures. The notion of orbit type is independent of the twist hypothesis. For example, a 
periodic orbit of an arbitrary diffeomorphism could appear quite complicated but actually 
be the same orbit type as a bimodal concatenation. We should also note that orbit 
type information does not give complete order structure data since the passage from 
order structure to orbit type was not one-to-one. This means that the conclusion that 
ot(p' lq', m' In') E ot(f) from Theorem 5 does not imply that f has a periodic orbit with 
the (p' I q', m' In') concatenation order structure even iff is monotone twist. 

The next theorem states that periodic orbits with monotone orbit types and the 
appropriate rotation numbers are always present when one has a bimodal orbit type with 
nontrivial rotation band. The corresponding fact about monotone order structures under 
the monotone twist hypothesis was proved in [Bd3] ( cf [J2]). We note that one piece of 
the Aubry-Mather Theorem is that area preserving monotone twist maps always have 
periodic orbits with monotone (p, q)-order structures for all the expected rationals plq. 
Also, Hall ([HI]) shows that a twist map with any plq-periodic orbit has a monotone one. 

THEOREM 7: If (u, p, q) is a bimodal order structure and r Is is a fraction in lowest 
terms with rls E RB(u), then ot(u8 ,r,s) ~ ot(u,p,q) where (u8 ,r,s) is the monotone 
( r, s )-order structure. 

The hypothesis that (u, p, q) is bimodal is probably unnecessary. The proof of this 
theorem uses different techniques than those discussed previously. By "fattening up" the 
tight circle map as in the appendix of [Fk], one obtains an Axiom A representative in 
the appropriate isotopy class. One then shows directly that the desired orbits satisfy the 
hypothesis of [AF] and are thus unremovable under isotopy. 

Our final conjecture concerns the question posed in the introduction. What happens 
to the dynamics of an area-preserving, monotone twist map when an invariant circle 
breaks? It is known that the loss of an invariant circle is always accompanied by the birth 
of nonmonotone periodic orbits whose rotation bands include the rotation number of the 
broken circle ([BH], (H2], (J2)). The order in which these new orbits are born is, of course, 
restricted by the partial order on OT. Our conjecture is that the simplest nonmonotone 
orbit types, namely, those arising from bimodal concatenations, must be among the orbits 
born. 

CONJECTURE: If f is an area-preserving monotone twist map that has no in-
variant circle with rotation number equal to the irrational w, then there exists an n E N 
with ot(PniQn,JJn+tfqn+t) E ot(f) where p,lq, is the nrh convergent of the continued 
fraction of w. 
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Further, if /p. is a generic, one paramder family of area preserving monotone twist 
maps in which fo has an invariant circle with rotation numlwr w, which i~ ahsPnt when 
It> 0, then n(~t) -+ oo monotonically as 11 -• 0 for 11 C (0, 1) for some t > 0. 

If the first sentence of the conjecture is true, ont• could then use Theorems 4 and 
5 to infer the existence of other orbits. The proof of tlw second sentenet• will involve 
techniques different from those discussed here. It appears likely that this conjecture (if 
true) could be proved using the constrained variational techniques recently developed by 
Mather. 
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SOME PROBLEMS ON DYNAMICS OF ANNULUS MAPS 

Glen R. Hall* 

In this exposition we will discuss some recent results on the dynamics of maps of the 

annulus. Since the health of an area is closely related to the availability of open problems, we 

will organize what follows around a collection of problems. Personal preference has guided 

the choice of these problems and the discussions which follow and hence there is a heavy bias 

towards "topological" theorems and techniques. Excellent discussions of the "variational" 

approach and its relation to differential geometry can be found in Bangert [Ba1] and Moser 

[M1]. Many of these questions arose in a topics class in twist maps taught by the author 

in Winter, 87 at the University of Minnesota. Thanks are due for the comments and the 

patience of those that attended: D. Aronson, M. Jolly, R. McGehee, R. Moeckel, D. Norton 

and B. Peckham. Also conversations with P. Boyland, C. Gole and D. Goroff have been a 

useful and most enjoyable part of thinking about these problems. 

Notation: We collect here a small amount of notation which will be used throughout. 

Let A= R/Z X [0, 1] be the annulus C = R/Z x R be the cylinder. They have covers 

A = R x [0, 1] and R 2 respectively with natural projections: TI :A-+ A (or R 2 -+ C). A 

lift of a point ( E A will be any point in TI- 1((). A lift of a subset B ~ A will be the set 

n-1(B). 

We consider maps f : A -+ A which have lifts ] A -+ A satisfying the following 

assumptions which hold throughout the paper 

(1) f is degree one (i.e. V(x,y) E A, f(x + 1,y) = f(x,y) + (1,0)) 

* Partially supported by the Sloan Foundation. 
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136 GLEN R. HALL 

(2) f is injective and orientation preserving. 

We let 7rt,7r2 denote the usual projections onto coordinates, i.e. 7rl(x,y) = x, 1r2(x,y) = y. 

Given f : A-> A and ( E A we define the rotation number of ( by choosing a lift z E A of 

( and setting 

rotation # of ( under f = p(z, f) = lim 7rljn(z) if it exists 
n-+oo n 

where j is a lift of f. For definiteness we take j so that 

1r1j(O,O) E [0, 1). 

We note that a periodic point (of period q for a map f: A-> A will satisfy f9(() =(,so 

there will exist p E Z so that if z E A is any lift of ( then 

and the rotation number of ( will be pfq. Finally we give the following definition of two 

special types of maps. 

Definition: A map f : A-> A will be called a monotone twist map if it is a diffeomorphism 
( d b ) d . . fi 8( 11") 0 f) satisfying 1 an 2 a ove an 1t sat1s es By > 0. 

A diffeomorphism f : A-> A will be called a boundary twist map if p((O, 0), f) =/:- p((O, 1), f). 

Hence the monotone twist condition says the change in the angular component increases 

as radial component increases while a boundary twist condition says only that one boundary 

rotates more than the other. We can display these conditions by looking at the images of 

typical radial segments in A or in A 
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PROBLEMS, DYNAMICS OF ANNULUS MAPS 137 

Nonotone twist map Boundary twist map 

...... 
X 

Monotone twist map on A Boundary twist map on A 

Fig. 0 

Problem 1: Given a map f: A-+ A with no periodic orbits and a neighborhood 

U of f in the analytic topology, does U contain a map g : A -+ A which has a 

periodic orbit? (Are maps with periodic orbits dense in the analytic topology?) 

There are many theorems on periodic orbits of annulus maps dating back at least as far 

as Poincare and Birkhoff (see [Bl]). The recent work of. Franks [Fl,F2] has given some of 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



138 GLEN R. HALL 

the best insight i~to the existence of fixed points. We state an example: 

THEOREM (Franks [Fl]): Suppose f : A -+ A is a homeomorphism and A is a chain 

transitive compact invariant set for f then if A is the lift of A to A either 

(1) j has a fixed point (so f has a fixed point), or 

(2) lim 'I!"J(jn(z)- (z)) = +oo for all z E A or -oo for all z E A and the limits are 
ft-+00 

uniform in z. 

COROLLARY (Franks [Fl]): If f has no periodic points then for A a chain transitive 

compact invariant set, every point ( E A has the same irrational rotation number. 

The motto seems to be that if there is recurrent behavior in the map (which can't be 

avoided by compactness) and points in the same recurrence component are moved by the 

map on the lift at (asymptotically) different speeds left or right then there must be periodic 

points. Hence there seem to be strong restrictions on maps without periodic points. In 

particular, if we take f : A -+ A a diffeomorphism then f will preserve the boundary 

circles of A. If for any w E R we let R., : A -+ A be the map whose lift is given by 

R.,(z,y) == (x + w,y) then there will exist arbitrarily small w such that R., of has periodic 

orbits (on the boundaries). When f is not a diffeomorphism onto A, but has f(A) ~interior 

(A) then we might hope that the attractor formed by n r(A) will retain enough of the 
n>O 

topology of the circle (Conley [C1]) or at least enough on~ dimensional character that a one 

dimensional approach could produce periodic points (see Young [Yl]). However, the map on 

the resulting attractor and the attractor itself can be quite non-standard (see for example, 

Handel [H2], Hall [Hl], Aronson et al. [All), motivating the following: 

Problem 1 A: Given a diffeomorphism f : A -+ A with no periodic points and a neighborhood 

U of f in the analytic topology is there a diffeomorphism g : A -+ A in U with interior 

periodic points'! 

Problem 1B: Given a map f : A -+ A(f(A) ~ A) with no periodic points is there an 

(arbitrarily small) wE R such that R., of has periodic points (where R.,(z,y) == (:z: + w,y) 

as above)'! 

We note that if we replace "analytic" with "C1" in the above then the answers to 1 and 

lA are yes by the C1 closing lemma ( [P]). \Ve don't know the answers to the above in the C2 

case and recent work of Grutierenze [Gl] indicates the situation for the C2 closing lemma is 
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PROBLEMS, DYNAMICS OF ANNULUS MAPS 139 

quite delicate. Of course the above questions do not require we "close" a particular orbit so 

they do not imply the closing lemma. 

If we add additional hypotheses to the mapping f : A -+ A then the situation regarding 

fixed points becomes more clear. For example, Boyland [Bdl) has classified fixed point free 

twist maps of A. He shows that for twist maps the hypotheses of Franks' theorem may be 

considerably weakened. 

THEOREM (Boyland [Bdl)). Iff : A-+ A is a twist map (or positive tilt map) and there 

ezist Zt, z2 E A such that for j the lift of f we have 

'11't(zt) < 'll't{j(zt)) and '11't(z2) > 'II'J{j(z2)) 

'11'1{j(zt)) > 'II'I{j2(z1)) 'II'J{j(z2)) < 'll't{j2(z2)) (See Fig.1) 

then f has a fized point. 

Fig. 1 

The proof shows that the box in Figure 1 connecting the boundaries between j(zt) and 

j(z2) will contain a set which has non-zero index under j. The twist condition forces 

the topological complication to appear after just one iteration. The topological approach 

exhibited here could be useful for the other problems and we will return to it later. 

Finally, if we assume f : A -+ A is area preserving then constructing examples of periodic 

point free maps (besides rotations by irrationals) becomes quite difficult -See Anosov-Katok 

[A,K], Fathi-Herman [F H] and Handel [Hl]. 
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140 GLEN R. HALL 

Problem 2: Giv~n a diffeomorphism f: A--+ A show {p(z, f): z E A} is closed. 

[Added in proof: M. Handel has proven that the rotation set is closed via techniques of 

[H3].] 

The spark for much recent work in the dynamics of annulus maps and twist maps in 

particular is the theorem of Aubry and Mather which states 

THEOREM (Aubry, et al. [Ayl], Mather [Mal]): If f : A --+ A is an area preserving 

monotone twist map then {p(z, f) : z E A} is a closed interval. 

The above problem is a natural generalization of the theorem (this question is also posed 

by Botelho [Bo]). From Franks' theorem (or the Poincare Birkhoff theorem) such an f has 

periodic orbits of all rational rotation numbers between the rotation number of I on the 

boundary of A. Hence the new information in the Aubry-Mather theorem is the existence 

of points with irrational rotation number. (These are the "ghosts" of invariant circles of the 

KAM theory, see Moser [M2].) 

The original proofs of Aubry and Mather were variational, i.e., they defined an energy 

function related to the given map on a space of possible orbits, then showed that the minimum 

of this energy was an orbit of the map. Moreover, this minimum orbit could be found for any 

rotation number and had very nice properties which we discuss below (see Katok [Kl]). Very 

similar ideas had been used by Hedlund in studying geodesics on tori (see Bangert [Ball). 

It is unclear how to extend the above approach to maps without a twist condition and/or 

without an invariant measure. Using topological techniques one can recover versions ofthese 

theorems without the area preservation hypothesis which points the way for generalizations 

to maps without twist conditions. 

First we need to define some special types of orbits for a map I : A --+ A. 

Step 1: Given a diffeomorphism f : A --+ A, find a suspension ¢ of I, i.e. find a map 

¢ : A x R--+ A such that ¢is continuous and 

¢:Ax {0} --+A is the identity 

¢ : A x { 1} --+ A is equal to f 
¢(z,t) = ¢(Jl1l(z),t- [t]) where[·] denotes the greatest integer function 

and¢: Ax {t}--+ A is a diffeomorphism for every t E [0, 1]. 
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Step 2: Let j: A.,..-. A be the liftoff and~: Ax [0, 1] --+A be the lift of~. We can display 

~ as in Fig. 2. 

-X 

Fig. 2 

t=l 

t=O 

where (x,y) are the coordinates in A and tis the new time coordinate in [0, 1]. (So f is the 

"time one" map of cP·) 

Step 3: Define the extended orbit of z E A by 

eo(z) = {ji(z) + (j,O): i,j E Z}. 

Now we may define a monotone periodic orbit as follows. 

Definition If (o E A is a pfq periodic point off and zo E A is a lift of (o (so f9(zo) = 
zo + (p, 0)) then we call (o a monotone pf q periodic orbit if the curves 

lz = {{(c/J(z,t),t): t E [O,q]}: z E eo(zo)} ~A X [O,q] 

(i.e., the flow lines of points in eo(zo) under 1/J) are unlinked. 

Here by "unlinked" we mean the following: 

If we let {i .. : z E eO(zo)} be the image of the curves /z under the map h :A x [0, q] --+ 

A X [O,q] : (x,y,t)--+ (x- t · pfq,y,t) then the end points of each '1-z are directly above 

each other. If we can defor~ the '), 's to straight vertical lines, leaving the end points fixed, 

without intersectng any two of them then they are called unlinked and the associated orbit 

is monotone. A picture makes this clearer, here q = 2, p = 1 
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Unlinked 

J ' t I t•2 

fi--1~:_ ~-B- -1-1-k 
,t/~/s;:_ -~-)- ·-J-J-1~., 
-X 

'( 's z 

-X Y 's z 

~ 
apply h 

..------, 
apply h 

r 's z 

~ 's z 

fig. 3. 

"straightened i.. 's" z 

can't be 
straightened • 

Of course the definition above requires proof that the notion of monotone is independent 

of the choice of suspension, an instructive exercise for the reader. The remarkable fact about 

monotone twist maps is that an equivalent definition of monotone orbit can be given which 

completely avoids the construction above. 

THEOREM (see Hall [Hll]): Iff: A--+ A is a monotone twist map with pjq periodic point 

( E A and j : A --+ A, z E A are lifts of f and ( then ( is monotone if and only if 
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Hence we can. use condition ( •) as a definition of monotone. 

This condition is equivalent to saying that j preserves the :c-coordinate ordering on eo(z ). 

Since condition ( *) makes sense on any orbit we say 

Definition: Given f: A--+ A a monotone twist map with lift j, we say ( E A is monotone 

if ( •) is satisfied for z E A any lift of (. 

Monotone orbits behave nicely under limits, i.e., we have the following facts (see Katok 

[Kl]): 

and 

(1) Iff: A.--+ A. is a monotone twist map, {(;}~ 1 a. sequence of monotone points and 

(; --+ (o as i --+ oo then (o is monotone, 

(2) the rotation number exists for every monotone point and p( (;,f) --+ p( (o, f) as i --+ oo 

Hence to prove the Aubry, Mather theorem it suffices to find monotone periodic points !>f 

all rotation numbers, then take limits. One can either use the variational techniques and show 

that the minimal energy orbit of a given rotation number for an area preserving monotone 

twist map is infact monotone. Alternately, one can use a more topological approach to show 

THEOREM (Hall [Hll]): Iff : A.--+ A is a monotone twist map and f has a pfq periodic 

point (p, q relatively prime) then f has a p/ q monotone periodic point. 

Using the fixed point theorems already available for area preserving monotone twist 

maps, the above provides all the required monotone orbits (see also Le Calvey [LC]). 

The definition of monotone given earlier does not require a twist condition, hence we 

can ask 

Problem !A: Iff : A-+ A has a p/q periodic point does it have a monotone pfq-periodic 

point? 

Problem 2B: Iff: A.--+ A. has a sequence of monotone periodic points {(;}~ 1 what can be 

said about their limit points? 

For example, each (; in 2B might look complicated (see Fig. 3) but actually can be 

"straightened out". However, if the rotation numbers p;fq; of (i have q; --+ oo as i -+ oo 

then the limit point of the (;'s might have a quite complicated orbit (see the example of 

Handel [HI]). 
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! / t=q 

rl-/ 
tl 

y_,)t ~ 
~ 

X 

this is "unlinked" 

Fig. 4 

Finally we note that another possible definition of monotone (see Mather [Ma2]) is the 

following. 

Definition: Iff : A--> A is a diffeomorphism and ( a pfq periodic point off then (is 

called monotone if there exists a one-parameter family of diffeomorphisms ft : A-+ A and 

a one-parameter of points (t fort E [0, 1], continuous in t such that fi = f, (1 = (,for each 

t, (tis a pfq point for f and fo is a map with lift of the form (x,y)--> (x + cy,y) for some 

constant c E R. 

The property of "linked" or "unlinked" isolates a set of orbits (the monotone orbits) 

from others and only monotone orbits occurs near simple maps like the integrable map 

above (where "near" depends on the rotation number). Hence the feeling is that a fixed 

point theorem (e.g. Poincare's Last Geometric Theorem) should give this simplest fixe.d 

point. This leads to the following not very well posed problem 

Problem ~C: Given a path connected set of maps X for which there is a fized point theorm 

(i.e. every map in X has a fized point and "one proof works for all of X") then for f, g E X, 

does there always ezist fized points z for f, w for g and a one parameter family of maps ft 

in X withfized points Zt such that fo = f, zo = z and h = g, ZJ = w? 

An affirmative answer to the above with X = area preserving diffeomorphisms of A 

with a boundary twist condition and Poincare's Last Geometric theorem as the fixed point 

theorem would imply the Aubry, Mather theorem. 
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Problem 3: Given a (monotone twist) map f : A -+ A with a non-monotone pj q 

periodic point what other periodic orbits must f have? 

There has been considerable progress on this problem recently by Boyland [Bd2] and 

Jungries [Jl,J2]. Boyland in particular uses techniques of "Thurston train tracks" so that 

the twist conditions do not play as vital a role. We refer the reader to Boyland [Bd2] for 

the latest developments, noting only that the motto "topologically complicated orbits imply 

lots of periodic orbits" should be very useful in problems 1, lA-B. 

Problem 4: Given f : A -+ A a monotone twist map with lift J : A -+ A what is 

the minimal set.B ~A with lift B ~A such that 'liz E A3w E B: lf"(z)- f"(w)l < 1 

for all n E Z? 

That is, what is a description of a set which "globally shadows" every orbit off (see 

Handel [H2]). Since homoclinic and heteroclinic behavior are to be expected in twist maps 

there could be many points without rotation numbers and whose orbits move about the 

annulus or along the strip in wild ways (see Aronson, et al. [Al], Hockett, Holmes [HH]). 

The set B would "catch all the rotation" behavior of the map. 

For area preserving monotone twist mappings a candidate for B would be "locally energy 

minimizing orbits." Mather [see Hl2] has shown that any sequence of periodic orbits in an 

area preserving monotone twist map withoo.t invariant circles (see below) can be "globally 

shadowed" by locally energy minimizi:ag orbits. The exis-tence of such glol.lal shadows in 

twist maps can also be implied topologically as follows: 

We say a monotone twist map f :A ---> A with lift J : A ---> A satisfies1condition B if f?r 

every £ > 0 there exist ZJ, z2 E A and n1, n2 > 0 such that 1l'J ( ZJ) < £, 11'2( z2) > 1 - £ and 

11'2(j"1(zt)) > 1-£, 11'2cf"2 (z2)) <f. 

THEOREM (Hall [Hl2]): Suppose f: A -+A is a monotone twist map and satisfies condition 

B and has lift j : A -+ A. Let { (;}~_ 00 be a sequence of monotone periodic points (see 

Problem 2) and {n;}~-oo a sequence of positive integers. Tb.en there exists ( E A with a 

lift z E A such that for each i, there exists K; and z; a lift of(; with IJi(z;)- JK;+i(z)l < 1 

for j = O, ... , n;, and Ki+l - K; > n; fQr all i. 

That is, a sequence of monotone periodic orbits can be "globally shadowed." The proof 

of the above theorem indicates that a possible candidate for the set B or its lift B is the 

following: - 0 1 . 
{z E A: Vn,Dr(z)( 1)-( 0 ) ~ 0 for all n E Z} 
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i.e., the set of points whose vertical tangent vector always has image which points to the 

right. (This set is used for showing nonexistence of invariant circles (see MacKay and Percival 

[MP]). An obvious obstruction to building orbits which wander about the annulus is the 

existence of invariant curves which separate the annulus into invariant regions, hence we 

give the following; 

Definition: A map f : A --+ A will be said to have an invariant circle if then' exists a set 

r ~interior of A homeomorphic to 8 1 which is homotopically nontrivial in A and /(f)= r. 
An area preserving monotone twist map with no invariant circles will automatically 

satisfy condition B and infact even stronger versions of condition B (see Le Calvey [LC2]). 

There are several very important questions concerning area preserving m~notone twist 

maps which may be related to the above, for example 

Problem 4A: For generic area preserving monotone twist mappings are "elliptic islands" 

(invariant sets surrounding elliptic periodic orbits} dense'! 

Problem 4B: Does an area preserving monotone twist map without invariant circles have an 

invariant set of positive measure on which the map is ergodic? 

These measure theoretic questions are of a different flavor than the above, but an under-

standing of possible choices might lead to some insight (or not). See Wojtkowski [Wl,W2] 

for recent progress on these problems. 

Finally, we remark that it is possible to think of much weaker "shadowing sets" B, i.e. 

to require that the shadows don't have to stay as close. So we might ask 

Problem 4C: Given f : A--+ A with lift j : A --+ A and a E (0,1) can we describe sets 

Ba ~A with lift Ba ~ A such that Vz E A, 3w E Ba : lin(z)- jn(w)! < !nla for all n E Z 

Such sets Ba would catch the rotation numbers, but miss some of the subtle twisting 

(see the example of Handel [Hl]). 

Problem 5: For the "standard" one parameter family s~; : C --+ C with lift 8~; : 

R 2 --+ R 2 given by s~:(x,y) = (x + y + 2: sin(2n),y + 21c,. sin(2n)) what is the largest 

value of k* for which s~: has an invariant circle? 

(Here, by invariant circle we mean a homotopically nontrivial invariant curve, as defined 

above.) 

The KAM-theory implies that this map will have many invariant circles for k small, 

but these circles will disappear as k grows until they are all gone (see Moser [M3], Mather 
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[Ma3], Herman [Hell). The solution of this problem which would be best is a "closed 

form" expression for k* (e.g., k* is the value of some definite integral or the root of some 

polynomial) and an answer of this form is probably extremely difficult to obtain. There has 

been considerable numerical work estimating the value of k* (see MacKay, Percival [MP], 

Greene [G], Olvera, Simo [OS]) using various techniques. Recently, Jungries [J2] has shown . 

that it suffices to_ show that s1c ha.s certain types of pseudo-orbits to show that s1c does 

not have invariant circles. This is related to the topological criterion for non-existence of 

invariant circles and existence of monotone (see problem 2) periodic points. 

THEOREM (Boyland,Ha.ll [BH]): An area preserving monotone twist map I : A --+ A 

does not have an invariant circle with irrational rotation number w if and only if I ha.s a 

non-monotone pfq periodic orbit for pfq some convergent of the continued fraction of w. 

This allows a quantitative relationship to be established between existence of non-

monotone periodics and non-existence of invariant circles. Other quantitative techniques 

to show non-existence of invariant circles have been derived by Mather [Ma3,Ma4,Ma5] via 

variational techniques. 

The subtle interplay between smoothness and number theory which arises in the proof 

of existence of invariant circles (KAM theory) for "near integrable" maps (see Moser [M2], 

[Hell) is discouraging for topological techniques on problem 5, however, related problems 

have a more topological flavor. The following closely related problems may also be reminis-

cent of recent results in complex dynamics (see [DH]). 

Problem 5A: For the standard family s1c : C --+ C, is the set of k such that s1c has an invariant 

circle an interval? 

Problem 5B: For the standard family does the area of each "zone of instability" (i.e. the 

annular region between two invariant circles containing no invariant circles) grow monoton-

ically with k 'I 

Recent results of Bullett [Bu] show the answers to SA.and Bare no for a piecewise linear 

model of the standard family! 

Problem 6: Do any of the above results hold for the analogous higher dimensional 

maps on products of annulii? 

This is almost too vague to be meaningful, which is an accurate indication of the state of 

affairs. First it is clear that we must be clear about "analogous, higher dimensional" maps, 
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and we will surely have to add conditions which restrict more strongly the type of maps we 

consider. 

We note that the variational arguments of Aubry and Mather seem to have their natural 

g~neralization in the work of Bangert and Moser [Bal ,Ml,M3~ on variational problems. This 

connects well with the work of Hedlund on geodesics [Bal]. 

Another generalization for area preserving monotone twist mappings of the annulus or 

cylinder is exact symplectic mappings f of (R/Z)n X Rn = (R/Z X R)n or ~-product of 
· .... 

cylinders (see Conley Zehnder [CZ]). The condition analogous t? the twist condition is that 

the projection off({~} x Rn) onto (R/Z)n is a diffeomorphism. While the condition of being 

exact symplectic is much stronger than area preservation in higher dimensions, it turns out 

that time one maps of Hamiltonian systems satisfy this condition automatically and hence 

it has many applications. 

Among the theorems which are known for these exact symplectic twist maps are the 

following: 

(1) KAM theory remains true, i.e. perturbations of integrable maps have many invariant 

tori. However, these tori no longer separate the space and there is the chance for 

orbits to wander long distances around these tori (i.e. "Arnol'd diffusion", see ArnoJd 

and Avez [AA]). 

(2) The Poincare's Last Geometric fixed point theorem has its analog in the Birkhoff-

Lewis and particularly the recent Conley-Zehnder theorem [CZ]. 

(3) A few "regularity" results are known for orbits (Bernstein and Katok [BK]) which 

state that not all periodic orbits and invariant tori can be situated in the space in a 

completely arbitrary manner. 

The first step to generalizing the theorems above is to decide on the proper definitions 

of, e.g., monotone orbit, and so forth. This is far from a trivial problem since we have lost 

the topological restrictions for maps on the (much smaller) annulus. However, there is still 

topological information available. For example, an invariant torus in an exact symplectic 

map will form after suspension by a flow (see problem 2) a three dimensional invariant set 

in five dimensional space and hence there is a possibility that orbits of points might "link" 

with it. 

Perhaps the only thing which is clear concerning these higher dimensional maps is that 

they will provide many interesting problems in the future. 
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AREA PRESERVING HOMEOMORPHISMS OF TWO MANIFOLDS 

Edward E. Slaminka 

ABSTRACT. Using the methods of free modification due to M. Brown 
and its extension to area preserving, orientation preserving 
homeomorphisms by Pelikan-Slaminka, we present the tools needed to 
prove a collection of theorems which are the topological analogs 
of existence and removal theorems for fixed points in the 
differential category. 

The theorems cited concern the bound on the index of an 
isolated fixed point for area preserving, orientation preserving 
homeomorphisms of two manifolds; the removal of index zero 
isolated fixed pointskfor area preserving, orientation preserving 
homeomorphisms (and C -diffeomorphisms) on two manifolds b~ 
an area preserving orientation preserving homeomorphism (C -
diffeomorphism which is a local perturbation; the existence of 
n+l stable and unstable compact, connected, simply connected, 
zero area sets for index -n isolated fixed points for area 
preserving, orientation preserving homeomorphisms of two 
manifolds; and, the Conley-Zehnder theorem for area preserving, 
orientation preserving homeomorphisms of the two torus. 

1. INTRODUCTION. In this paper we present a technique which has proven 

useful in understanding the dynamics of area preserving homeomorphisms of two 

manifolds. This method, called free modification, is an extension of the 

method of the same name developed by M. Brown and used by him to prove the 

Brouwer Translation Arc Lemma [7]. Free modifications give us the tool needed 

to understand the local behavior of a homeomorphism near an isolated fixed 

point of index not equal to one. We use this technique to prove a few fixed 
point theorems which were first stated assuming differentiability. We employ 
free modifications to compensate for the fact that we have neither Jacobians 
to measure area nor linearizations to compute the fixed point index. It must 
be noted that our technique only applies (at present) to orientation 
preserving homeomorphisms of two manifolds. This is due mainly to the fact 
that an essential ingredient in the development of our technique is the 

Brouwer Translation Arc Lemma for which no known applicable higher dimensional 
analog has been found. 
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In Section 2 we will describe the theorems which we have been able to 

prove using this technique. In Section 3 we present the definitions and 
lemmas required in the sequel. The main body of this paper is encapsulated 
in Section 4 wherein we describe the technique of free modification in detail. 
In Section 5 we present the technical arguments needed to modify the 
homeomorphism into a setting for which Section 4 is applicable. 

The following results and constructions apply equally well to 
homeomorphisms which preserve a Lebesgue-Stieltjes measure, that is, a 
measure which is hi-absolutely continuous with respect to Lebesgue measure. 

I wish to thank Ken Meyer and Don Saari for organizing this conference 
and providing me with the venue to present my results. I also wish to thank 
Mort Brown who introduced me to these methods and for the support he has 
shown. 

2. A SURVEY OF RESULTS. The first theorem gives an upper bound to the index 
for isolated fixed points on two manifolds. 
THEOREM (Pelikan-Slaminka [20]). Let h:M2_.M2 be an area preserving, 
orientation preserving homeomorphism of an orientable two manifold, and let 
p be an isolated fixed point for h. Then the index of p with respect to 
h is less than or equal to 1. 

In 1975 Simon [22] proved the above theorem with the proviso that h is 
smooth. 

Using this result and the technique of free modifications Boucher and 
Brown have shown the following. 
THEOREM (Boucher, Brown [4]). Let h:D2_.o2 be an area preserving, 
orientation preserving homeomorphism of a two disc having n stable, n unstable 
fixed points on bd(D2). The h possesses at least n + fixed points in 
the int(D2). 

A fixed point p E. s1 under an orientation preserving homeomorphism 
h:S 1 ~ s1 is stable (resp. unstable) if there exists a neighborhood N of p 
such that if xt N then hn(x) -4 p (resp. h-n(x) -t p) as n-t ..o. 

This theorem extends one of Montgomery which states that if h:int(D")-+ 
int(D) is an area preserving, orientation preserving homeomorphism of an 
open two disc to itself, then h possesses at least one fixed point in the 
int(D). 

Though the local fixed point index of Brouwer gives information about 
the existence of fixed points when the index is non zero, very little is known 
about index zero fixed points. Schmitt [21] proved that if h:R 2 ~R 2 is 
an orientation preserving homeomorphism of the plane and p is an isolated 
fixed point of index zero, then p can be removed by a local perturbation. 

k Simon-Titus [24] proved a similar theorem when h is C , by constructing 
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1 a C local perturbation. We have shown that our technique gives the above 
two results, extends Simon's to a Ck local perturbation, and also proves 
an analogous theorem for area preserving homeomorphisms and Ck-diffeomor-

phisms. 
THEOREM (Slaminka [25]). 
preserving homeomorphism 

Let h:M2--. M2 be an area preserving, orientation 
(Ck or C.- -diffeomorphism) of an orientable two 

manifold M2 having an isolated fixed point p of index zero. Given any 
open neighborhood N of p such that N r\Fix(h) = p, there exists an area 
preserving homeomorphism (Ck or C GO -diffeomorphism) h such that: 

1) h = h on M-N; and, 
"" 2) h is fixed point free on N. 

As corollaries we prove the existence of the second fixed point for the 
Birkhoff Twist Theorem (cf. Birkhoff [2, 3] and Brown-Neumann [9] for 
earlier proofs) which relies only upon the fact that if the first fixed point 
had index zero, then it could be removed; and, we prove the existence of the 
second fixed point for the Conley-Zehnder theorem for area preserving 
homeomorphisms (Franks [17] proved the existence of the first fixed point). 

A standard result in dynamics is the stable/unstable manifold theorem. 
However, it requires that the map be smooth and that the fixed point be 
hyperbolic. We present a version for area preserving homeomorphisms of two 
manifolds which requires only that the index of the fixed point be not equal 
to one. Though our version does not generate manifolds, the continua which 
we do construct will be useful in the next theorem. 
THEOREM (Baldwin, Slaminka [1]). Let h:M2_.M2 be· an area preserving, 
orientation preserving homeomorphism of an orientable two manifold having 
an isolated fixed point p with index equal to -n for n ~ 0. Let D be 
an open disc with p € D, such that nn Fix(h) = p. There exists 2(n+1) 
compact, connected, simply connected, area zero sets u1, u2, .•• , Un+1, and 
S1, s 2, .•. , Sn+1 such that: 

1) Ui, sic D, and Ui, si meet bd(D) for all i; 
2) P € ui, si for all i; 
3) h(Si) C -1 for all i; si' h (Ui) c ui 
4) x E si implies that hm(x) _... p as m-tQO 

x £ ui implies that h-m(x)_... p as m-t oo for all i; and, 
5) si 1"'1 sj '"p=u nu i j for all i I j. 

In 1945 Montgomery [18] proved that if h:Rn_. Rn is a measure 
preserving homeomorphism and A is a compact connected set such that 
h(A) C A, then if U is an open set with compact closure which includes A, 
there exists a compact connected set K of which A is a proper subset and 
such that K is in h -l (U) and h(K) C K. 
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In 1985 Ding [12] proved the existence of a Lagrange stable set for each 

fixed point of an area preserving homeomorphism of the plane. 
Let h:T 2 ~ T2 be an orientation preserving homeomorphism of a two torus 

and let h:R2-+ R2 be a lift of h to its universal cover. Also, let m be 

Lebesgue measure in R2• The mean translation vector of h is defined to 

be }D h(~) - ~ dm where D is a fundamental domain for h. Following an 

argument of Franks [17] it can be shown that free modifications preserve 
mean translation vectors. 

Using the above we prove the following analog of the Conley-Zehnder 

Theorem. 
THEOREM (Slaminka [26]). Let h:T 2 ~ T2 be an area preserving orientation ... 
preserving homeomorphism of the two torus with mean translation vector 0. 

Then h has at least three fixed points. 

Conley-Zehnder [10] proved that every symplectic c1-diffeomorphism h 

on the 2n-torus which is generated by a globally Hamiltonian vectorfield, 

possesses at least 2n + fixed points. John Franks [17] initiated the 

research into the topological setting by proving that one fixed point existed 

for the two torus. 
Our hope is that these same techniques can be used to generalize this 

result to surfaces (the two-dimensional Arnol'd conjecture). The differ-

entiable versions have been proven by Fleer [16], Sikorav [23], and 

Eliashberg [14]. 

3. DEFINITIONS AND LEMMAS. We present here the following definitions and 

lemmas (without proof) which will be needed in the sequel. These include the 

concepts of local fixed point index, the Brouwer Translation Arc Lemma, free 

modification of a homeomorphism and the construction of area preserving 

homeomorphisms. 
If h:R 2 ~R 2 is an orientation preserving homeomorphism, C is a simple 

closed curve with C n Fix(h) = ;, then the index of C with respect to h, 

ind(h,C), is defined to be deg h(x) - x. 
xEC Qh(x) - xd 

One of the main properties of index is an isotopy condition which states that 

if c1 and c2 are two simple closed curves bounding an annulus A such 
that Fix(h) A A=;, then ind(h,C1) = ind(h,C2) (cf. Dold [13]). Thus an 
isolated fixed point p inherits a well-defined index which we call the 
fixed point index of p. Brown [6] and Schmitt [21] observed that if 
C f\h(C) is finite, then the ind(h,C) can be computed by considering the 
orientation of the vector from x to h (x) for h (x) £ C f\ h (C), that is, 
how the vector rotates as h(x) moves through an intersection point of 

C and h(C). 
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As mentioned earlier, our work depends heavily upon the following Lemma. 

LEMMA (Brouwer [5]). Let h:R 2 ~ R2 be an orientation preserving 

homeomorphism, and let D be a disc such that h(D) f\ D =fl. If 
hn(D)f\ D I~ for some n I 0, then there exists a simple closed curve C 

with ind(h,C) 1. 
More recent proofs of this lemma can be found in Brown [7] and Fathi 

[15]. This recurrence type lemma has found applications in the recent work 

of Franks [ 17] . 
The technique of free modification is the cornerstone upon which our 

theorems are built. Let h:M 2 ~M 2 be an orientation preserving 
homeomorphism of an orientable two manifold, and let D be a disc such that 

h(D)f) D = ~. Let g:M 2~ M2 be a homeomorphism supported on D. Then 

f = hg is a free modification of h. 
Note that the following properties hold for free modifications: 

1) Fix(£) = Fix(h); 
2) Ind(f,C) Ind(h,C) for simple closed curves C with 

Fix(h) 1"1 C = ~; and, 

3) f is isotopic to h by and isotopy jt where h-1jt is supported 
on D (by Alexander's isotopy lemma). 

Our use of free modifications alters the orbit structure of h only on 
"small" sets which do not contain the fixed point. In the sequel we will use 

the Brouwer Lemma which requires passing to the universal cover of 

!57 

(M2 - Fix(h)) U p where p is an isolated fixed point. By Montgomery's 
theorem we see that this cover must be R2 (any area preserving, orientation 

preserving homeomorphism of a two-sphere must have at least two fixed points). 

Our use of free modifications will require that either the modification 
preserves area or a measure which is equivalent to area (i.e. Lebesgue-

Stieltjes measure). The following lemma can be proved either using a result 

of Oxtoby-Ulam [19] or can be found in Slaminka [25]. 

LEMMA. Let h:bd(D)~bd(E) be an orientation preserving homeomorphism 
(C 2-diffeomorphism) where D, E are discs (Ck discs) in R2 such that 
area(D) = area(E). There exists an area preserving-homeomorphism 
(Ck-diffeomorphism) h:D-+ E such that h = h on bd(D). 

This next lemma involves constructing an area preserving homeomorphism which 
moves points along an arc in the interior of a disc. 

LEMMA. Let D be a disc (Ck disc) in R2 , let IC int(D) be an arc 
(Ck arc) with endpoints x, y and let JC I be an arc with endpoint 

There exists an orientation preserving, area preserving homeomorphism 
(Ck-diffeomorphism) f:D -t D such that: 

x. 
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1) 
2) 

f = id on bd(D) 
f(I) J. 

EDWARD E. SLAMINKA 

To prove this lemma one merely cuts the disc into two discs so that the arc 
I is on the boundary of both discs. Now apply the previous lemma and paste 
the discs together again. 

Free modifications do not necessarily preserve area. However there is 
a sufficiently large class of free modifications which will preserve a 
Lebesgue-Stieltjes measure. 
PROPOSITION. Let h be an orientation preserving homeomorphism of R2 

preserving a Lebesgue-Stieltjes measure u and let Fix(h) be isolated with 
index of p = n I 1 for each p' Fix(h). Suppose that hg is a free 
modification of h (where g is a supported on the disc D) and that 
is either c2 or hi-Lipschitz. Then there exists a Lebesgue-Stieltjes 

g 

measure v which is preserved by hg. Construction of v: For a measureable 
set A C R2 define A. :: h -j (D)(\ A for j = 0, 1, 2, and set 

J 
A A - UA.. The A = A v UA.. By the Brouwer Lemma we have expressed 

c J c J 
A as a disjoint union. Define the measure v as follows: 

v(A) = u(A) +ru((hg)j+l(A.)) with j = 0,1,2, •.. 
c J 

One can then show that v is thus a lebesgue-Stieltjes measure. The 
condition that g be c2 or hi-Lipschitz is sufficient to ensure that the 
measure v is non-atomic. 

4. REDUCTION TO CANONICAL FORM. Let h:R 2 ~ R2 be an orientation preserving 
homeomorphism having isolated fixed points pi such that the index of 
pi = n for all i, with n I 1. Note that this implies that given any simple 
closed curve C with Fix(h)() C ~ 0, then ind(h,C) ~ 1. 

Let D be a disc with pE int(D), Fix(h) () D = p, and let C = bd(D). 
We will assume the following simplifications in this section. The more 
general case will be considered in section 5. 

1) C intersects h(C) transversely; 
2) C n h (C) is finite; and, 
3) D () h(D) is connected. 

By a result of Curtis-Dugundji [11], if h is c2 then 3) is true for 
"small" discs. -Let cc 1, ... , Q(m be the connected arcs of h(C)-D, let /31, ... , 13m be the 
arcs on C which separate each Qti from p in h(D), and let Ai be the 
discs bounded by O(i V {Ji (See figure below). 
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The arcs will be partitioned into the following four types: 

Type 1: h-1 (Q(i) f) Ai = ~; 
Type 2: h-1 (Cl(i) meets precisely one endpoint of 13 i; 
Type 3: h-1 (O(i) c. ~i (elliptic); and 
Type 4: h-1 (0( i) ::> ~i (hyperbolic). 

We say that a simple closed curve is in canonical form for a homeomorphism 
h if and only if all of the arcs Q(i are hyperbolic, elliptic or 
C n h(C) = 1. Given a simple closed curve our goal is to modify the curve 
and/or homeomorphism to obtain one which is in canonical form. Once the 
curve is in this form it will be relatively easy to prove the theorems 
quoted in section 2. Given a curve in canonical form it is quite simple to 
read off the index of that curve. The ind(h,C) = 1 + E - H where E is 
the number of elliptic arcs and H is the number of hyperbolic arcs. This 
is the topological analog of the Poincar~-Hopf theorem for flows. Arcs of 
type 1 and 2 will be removed showing that these types of intersections are 
inessential in the computation of the index. Elliptic/hyberbolic pairs of 
arcs will be cancelled, resulting in our canonical form 

We now proceed to eliminate the Type 1 arcs. There are three different 
methods for eliminating Type 1 arcs. We present ail three methods due to 
their applicability to a variety of settings. 

Method 1. This method yields only a C0 modification and can be used 
where area preserving is not required. We will repress the subscripts on 

Q(i' f3i' and Ai as we will be concentrating on one arc. There exists 
a disc F containing h- 1 (~) such that h(F) contains A (since 
Fix(h) n C • ~) and such that F (\ h(F) .. ;. Let '/' be an arc in F with 
endpoints on C - h - 1 ( ~ ) such that h('/') C D (see figure below). 

!59 
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h(F} 

c 

Now we can describe the free modification which will remove the arc OC: • 
2 2 Let g:R ~R be a homeomorphism which is the identity off of F and maps 

h - 1 ( OC ) to V . The composition hg will map h - 1 ( 0() to h( v"), 
thus removing the intersection. 

Method 2. This method is identical to method 1 except that we pick g 

to be c 2 or hi-Lipschitz in order that hg preserves a Lebesgue-Stieltjes 

measure. We no longer have an area preserving homeomorphism but we do have 

a measure preserving homeomorphism which is adequate to prove the theorem 

by Pelikan-Slaminka stated in Section 2. 
Method 3. We will remove the intersection using an area preserving 

modification and will also construct a different simple closed curve. We 

consider the inverse of ex. and (3 . We shall first assume that 
h-1( oc) n h(C) = ~ and that h-1( ~) f'l h(C) = ;. We construct a Ck disc 

E containing «u~ such that Ef'lh-1(E} = ~ and h- 1(E){'\h(C} = -J. 
(See figure below.) 

h 1(E) E 

Let C' = bd(D- h-i(E)). The simple closed curve C' bounds a disc D' 

such that p £ int(D') and card Jc• n h(C')J is two less than card 
\c () h(C} J. In effect, we have "removed" the arc OC. 

Assume that h-1(0() ("\ h(C} I~. If card rh-1(cc) I'H(c)l) 
card I h - 1 ( ~) (\ h(C} J then construct a Ck-disc E containing 0( U /3 
suchthatcard IEflh- 1 (~)1 =cardjh(c)nh-1((!1)j and"cutout" Eas 

before (see figure below). 
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Finally, we assume that card \h-1 ((;) n h(C))>card\h-1 (oc) f\ h(C)\ ~ 0. 

We may also assume that cardlh- 1 (~)(\ h(C)\ is finite by the results of 

Section 5. Let F0 be the disc bounded by 0(1.)~, and F~ be the discs 
1 1 

bounded by h - 1 ( /-)) and h (C) with p t F~. We construct arcs O(.i, 13 
1 1 1 1 1 -1 1 i 

suchthat Olivf3i bd(Fi) where ~iCh (~)and oeich(C). 

(See figure below). 

0( 

c 

h(C) 

For each simple closed curve Q(~ U (.3~ we consider h - 1 ( 0( ~) C C and 

h - 1 ( t3 ~) C D, and if possible, apply the above analysis to cut out the disc 

Ei1 containing oc~v ~~ and then cut out the disc E. The only obstruction 
1 1 

to this procedure would be if, for each n > 0, h-1( p~) n bd(C) I i. 
Note that hn( n. ~) C f2. • Choose an orientation for C and let be the ~-'1 ,_. xn 
right hand endpoint of (3 ~. The sequence ~ xn~ C h (C) and hence must have 

a cluster point x ~ h(C). However x cannot be in the fixed point set for 

h, thus by the Brouwer Lemma (or use the proof of Lemma 3.4 of Brown [8]) we 
n 13 n arrive at a contradiction. Hence the construction of the arcs O{i, i 

must terminate for finite n. We then proceed to "cut out" the finite number 

of discs En to obtain a new simple closed curve C' in which 0( has been i 
removed. 

We can now eliminate Type 2 arcs. For simplicity assume the orientation 

as shown in the figure below where a, b are the endpoints of ~ • 
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• ef~ fjil~c 
h(C) 

-1 12 Let e be a point in h (ct) such that e does not meet ~ and 
e # h-1(a). Then there exists a disc F containing the arc eh-1(b) such 
that F f\h(F) = ~. Let f be a point in the arc eh-1(b) which does not 
meet P., and is distinct from e. Construct an area preserving homeomorphism 
g (via a Lemma in Section 3) which is the identity outside of F and which 

-1 maps the arc ef to the arc eh (b) along C. The free modification hg 
then maps h-1(a)f to the arc h- 1(0(). The arc 0( is now a Type 1 arc 
which can be removed using one of the methods noted above. 

We will finally remove pairs of elliptic and hyperbolic arcs. Again, 
for simplicity, assume the orientation given in the figure below where the 
arc 0(1 is elliptic and the arc ~ 2 is hyperbolic. Let the endpoints of 
Q( 1 be a and b, and let the endpoints of e<2 be c and d. Also let t 

be the arc on C between h-1(()( 1) and h-1(oc2) which intersects b. 

Viewing h as a homeomorphism of s2 with oO as a fixed point (note that 
h is not now area preserving) one can see that h(t') is an arc of Type 2. 
By removing this arc the elliptic and hyperbolic arcs coalesce into another 
arc of Type 2 (with respect to the original homeomorphism with p as a fixed 
point), and can then be removed. 

After performing the above reductions a finite number of times we obtain 
a simple closed curve C and homeomorphism h which is in canonical form. 
Depending upon which method we use, we either have a C0 -homeomorphism, a 
homeomorphism which preserves a Lebesgue-Stieltjes measure or an area 
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preserving homeomorphism. 

5. GENERAL CASE. In the general case the intersection of C and h(C) is 
not as simple as presented in section 4. In this section we show that this 
more general setting can be reduced to that of the previous section. As 
before we assume that D is a disc containing a fixed point p in its 
interior and that C is the boundary of D. 
NON TRANSVERSE INTERSECTIONS. Assume that h(C)(\ C consists of non 
transverse intersections. We consider a Lebesgue number ~ for h restricted 
to C such that if I is any connected arc on C with diameter less ~ , 
then h(I) f\ I = 1. Pick a finite collection of such arcs which cover C. 
If h(Ii) forms a non-transverse intersection with C construct a disc 
D containing Ii in its interior such that h(D) (\ D = ~. Let <X be an arc 
in h(D) with endpoints the same as h(Ii) and such that the area of the 
discs in h(D) separated by h(C) equal the area of the corresponding discs 
in h(D) separated by h(C-Ii)u ex (See figure below). 

Now construct an area preserving homeomorphism g:D....,. D which maps Ii to 
h-1( 0(). Extend g to R2 so that g = id off of D. Perform this 
construction for each of the appropriate Ii and obtain a modification 
which has transverse interesections. 
INFINITE NUMBER OF INTERSECTIONS. Assume that h(C) n C consists of an 
infinite number of transverse intersections. Cover h(C) with a finite 
number of discs n1, n2, ••. Dk having the properties that: 

1) h - 1 (Di) (\ Di = i. for each i; and, 
2) h(C) n Di is connected for each i. (See figure below). 
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c 
h(C) 

EDWARD E. SLAMINKA 

Connect the endpoints of h(C) (\ Di by a smooth arc Q( which lies in 

int (D i), intersects C (\ D i a finite number of times, and such that the 
area of each of the two discs bounded by 0( in Di are the same as those 

-1 -1 -1 bounded by C in h (Di). Define gi :h (Di)-+ h (Di) 
an area preserving homeomorphism which is the identity 
h-1(D.) and takes C (\ h-1(D.) to h-1(«) (use the 

1 1 

or constructing such a map). Now extend to all of 

such that gi is 
on the boundary of 
Lemma in Section 2 

R2 so that gi id 
-1 on the complement of h (Di). By considering h o g o • • • 0 g we obtain an 

1 k 
orientation preserving, area preserving homeomorphism under which C 
intersects its image a finite number of times. 
CONNECTED COMPONENT. By the above we can assume that D(\ h(D) is the union 
of a finite number of components Ki, i=1,2, ••• n, with the fixed point 
p E. K1• We will construct a simple closed curve c1 bounding a disc 
D1 CD with p € int(D 1) and a homeomorphism h' such that 
h'(D 1)f\ D1 has fewer components (See figure below). 

"(b) 

h(C) 

Pick a,b C. C" (UKi)c such that a,b, are endpoints of an arc OC in 
V c c { } D f\ ( Ki) and such that Oc I'\ bd (D (\ h (D) ) a, b , with the property that 

Q( separates K1 from at least one Ki (i I 1) in D. Since 
h(o(. )nat.= fl, we may assume that h(OC) intersects C a finite number of 
times (otherwise we can modify the map h on a disc containing 
this). 

to achieve 

Let (3 1 and 13 2 C C be the two arcs with endpoints a and b. If 

h(O() Ki 
and either 

is connected for each i, let D1 be the disc bounded by ~ 
{!1 1 or (3 2 (whichever is such that K1 C D1). Then 
has less than n components. 
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Thus we assume that h(Oi) 1"\ K. is not connected for at least some i 
~ 

(See figure below). 

Let x1, x2 , ... , xm be the intersection points of h(CK) with C. Assume 

that the subscripts give an order to these points which is inherited from 

~ Let xixi+l C h(Ot) be the arc with endpoints xi and xi+l" 
Consider only those arcs which lie in the complement of the interior of 

D. Since h(D) is contractible there exists at least one such arc xjxj+l 
with endpoints lieing in bd(Ki) for some i. Pick xj so that no other 

xk lies between xj and xj+l on C f"'lbd(Ki), where xkxk+l is another 
such arc. We will modify the map h in such a way as to move the arc 

into the interior of D. Since we will focus upon this particular 

arc, we will rename the arc xy, and the component K. 
Let Ybe the arc on C f"'lbd(D) with endpoints x and y. We observe 

that CY" U xy) h-l ('IV xy) = t. Thus there exists a disc E containing 

h-l(~v xy) in its interior such that En h(E) =-~. We now cut out the arc 

xy as we did in Section 2, Method 3 (or if only a measure preserving map is 

required we modify the homeomorphism using Method 2). This procedure reduces 

the number of components, and, by finite induction, we can reduce our example 

to a single component. 
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AN ANOSOV TYPE STABILITY THEOREM FOR ALMOST PERIODIC SYSTEMS 

Kenneth R. Meyer 1 

ABSTRACT. In this paper I discuss a natural generalization of the 
structural stability theorem for Anosov diffeomorphisms i.e. 
diffeomorphisms which have a global hyperbolic structure. The maps 
discussed define skew product dynamical systems over a discrete 
almost periodic system. This is the natural generalization for 
almost periodic systems of the Poincare map for periodic systems. 
This follows from the Miller-Sell method of embedding an almost 
periodic system of differential equations in a flow. General-
izations are given of the shadowing lemma, the expansive property, 
and the openness and the structural stabi 1 ity of Anosov systems. 

I. Introduction. Recently, George Sell and 
theory of systems of almost periodic ( a.p. 

have been developing a geometric 
differential equations along the 

lines suggested by Smale (l967) for autonomous or periodic systems. Smale's 
program seeks global stability results and rest heavily on the concept of a 
hyperbolic structure. One of the main tools of this theory is the shadowing 
lemma of Anosov (1967) and Bowen (1975). 

Miller (1965) and Sell (1967) showed how to embed the solutions of an 
almost periodic system of differential equations in a dynamical system . This 
dynamical system is a skew product flow over the translation flow on the hull 
of the a.p. equations. This embedding introduces geometric techniques into 
the theory of a.p. systems. 

In Heyer and Sell (1987a), we present a simple analytic proof of the 
classical shadowing lemma which easily generalizes to the skew product systems 
of Miller and Sell. In Meyer and Sell (1987c) we present a slightly different 
generalization of the shadowing lemma. In Meyer and Sell (1987b,c), we give a 
generalization the Smale horseshoe basic set and Helnikov's method to a.p. 
systems. This paper will give a generalization to a.p. systems of the Anosov 

1980 Mathematics SubJect Classification (1985 fievision). 58Fl5, 5BF27 
1 This research was supported by a grant from the Applied and Comp-
utational Mathematics Program of DARPA. 
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(1967) stability theorem. The proof of this stability theorem is a simple 
application of the generalized shadowing lemma given in our previous papers 
once we establish that the generalized Anosov systems are open in the 
ap~ropriate topology. 

Although one usually thinks of Smale's program as dealing solely with 
dissipative systems, both.the horseshoe and Anosov systems appear in 
Hamiltonian systems. In fact Poincar6 (1899) discussed transverse homoclinic 
orbits, which imply horseshoes, in the restricted three body problem. 
Geodesic flows on manifolds with negative curvature are Hamiltonian Anosov 
systems -- see Anosov (1967). Markus and Heyer (1974) give another example of 
Hamiltonian Anosov system. 

The Section II gives a brief introduction to some of the basic geometric 
results about almost periodic systems. In particular the hull of an a.p. 
function, the translation flow on the hull, the existence of cross sections, 
and almost periodic suspensions are defined and discussed. Section III gives 
the Miller-Sell embedding of the solutions of a system of a.p. equations into 
a skew product dynamical system. It also gives the definitions of a skew 
Anosov system,.skew equivalence and skew structural stability. With these 
definitions the main theorem says the skew Anosov systems are skew 
structurally stable. Section IV contains a discussion of the shadowing lemma 
for skew Anosov systems, the proof of the openness of skew Anosov systems and 
the proof of the structural stability of skew Anosov systems using these two 
facts. 

II. The Hull, Cross Sections, and Suspensions. Throughout this paper al110st 
perlodlc ( a.p. ) will be in the sense of Bohr(1959). Besicovitch (1932), 
Bohr (1959), Favard (1933) and Fink (1974) are good general references on 
almost periodic functions and differential equations. The examples and some 
of the other elementary facts given here are discussed in more detail in Meyer 
and Sell (1987c). Let C = C(R,Rn) ( or C(R,Cn)) denote the space of 
continuous functions from R into Rn ( or en ) with the topology of uniform 
convergence on compact set -- the compact open topology. Translations define 
a flow on C as follows 

(1) n : C x R ~ C : (f,T) ~ fT 

where fT(t) = f(t+T). For any f e C the orbit closure off is called the hull 
of f and is denoted by H(f). If f is a.p. then R(f) is a compact minimal set; 
each element g e H(f) is a.p. with H(f) = H(g); n!H(f) ls equlcontlnuous; and 
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H(f) can be given a compact, connected Abelian group structure. We also let 
AP denote the space of a.p. functions with the sup norm on R. The hull is 
defined in this space and the above results hold there also -- see Sell 
(1971). 

Iff is a.p., its associated Fourier series will be denoted by 

If fT --+ g, use the Cantor diagonal 
n 

procedure to select a subsequence if necessary such that 

(3) Tn --+ "k mod 2n/~ as n --+ m, for all k. 

Then the Fourier coefficients of fT converge to the Fourier coefficients of g 
so 

Thus, if g E H(f) there are angles "k defined mod 2n/~k such that (4) holds. 

Example 1: Consider a quasi-periodic function of the form 

171 

Thus the two angles u1,u2 are coordinates for H(q), or H(q) is homeomorphic to 
the two torus. 

Example 2: Consider a limit periodic function of the form 

• 
( 6) (,( t) = L ~ exp i2n ( ~ ) 

0 2 

where the ~ are chosen so that the series converges absolutely and uniformly. 
In this case g E H(t) if and only if 

• [ t+"k 
( 7) g ( t ) = L ~ exp i2n k ) 

0 2 

where the angles "k are defined mod 2kand satisfy "k E "k+1 mod 2k. In this 
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case H(t) is homeomorphic to the standard solenoid -- see Figure 1. 

Figure 1. H(t) -- The solenoid. 

A flow a : X x R ~X, X a compact metric space, admits a (global) cross 
sectlon Z if i) Z is a closed subset of X, ii) all trajectories meet Z, and 
iii) there is a positive continuous function T : Z ~ R such that 
a(z,T(z)) e Z for all z e Z and a(z,t) e Z for 0 < t <T(z). The function T 
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is called the first return time. The Poincare map ( or section map ) is the 

map 

(8) P: Z ~ Z: z ~ ~(z,T(z)). 

The translation flow on the hull of an almost periodic function always 
admits a cross section. Let f be a.p. and have a Fourier series given in (2) 

then if g e H(f) 

thus the Fourier coefficient corresponding to the frequency wk is 
~ exp iwk(~+T) which is has a constantly changing argument as T varies 
provided wk ~ 0. Thus a cross section to the translation flow on H(f) is 

(10) Z = { g e H(f) : arg ( ~ exp iwk(~+T) ) = 0 }. 

In this case the first return time is 2n/wk and the Poincare map defines a 
discrete a.p. dynamical system. 

Example 1. A cross section to the translation flow on H(q) is 

173 

a 1 E 0 mod 2nlw1 and a2 can be used as a coordinate it this cross section. In 
this case the Poincare map is the irrational rotation of the circle 
P : a2 ~ a2 +(w21w1)2n. 

Example 2. A cross section to the translation flow on H(t) is 

411 = 0 mod 1 the shaded disk in Figure 1. Topologically, this cross 
section is a Cantor set and the associated Poincare map is equivalent to the 
classical adding machine. The adding machine is the dynamical system 

( 11) 
DO DO 

1I {0, 1} ~ 
0 

i.e. the space is all binary integers with the product topology and the map 
adds 1 to a binary integer. See Meyer and Sell (1987c) for more details. 

Let P : Z ~ Z be a discrete a.p. dynamical· system, say the irrational 
rotation of the circle or the adding machine. Let D : X ~ X be a discrete 
dynamical system, i.e. D is a homeomorphic of the topological space X. The 
P - almost periodic suspension of D is defined as the suspension of the 
product system P x D : Z x X~ Z x X : (z,x) ~ (P(z),D(x)). That is, first 
define the parallel flow 
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1 : ( Z x X x R ) x R ~ ( Z x X x R) : ((z,x,T),t) ~ (z,x,T+t) 

and then drop this flow to the quotient space ( Z x X x R )/- where - is the 
equivalence relation (z,x,T) - (P(z),D(x),T+1). 
Ill. Skew Product Flows and Skew Anosov Systems. Now let C be the space of 

n 1 n 2n functions f from R x R into R such that for every compact set K c R , (i) 
the function is uniformly continuous on K x Rand (ii) there is a constant k 
such that 

lf(x,t) - f(y,t)l < klx- yl, t E R, x,y E K. 

Let C be given the compact open topology. Define the flow n : C x R ~ C : 

(F,T) : ~ F where F (x,t) = F(x,t+T) and define the hull as before. Let T T 
L(x,t) e C be almost periodic in t uniformly in x (u.a.p. ). Consider 
the system of differential equation 

(1) :ic = F(x,t), Fe H(L). 

This might be a Hamiltonian system on an even dimensional space. Let 
t(t,x,F) be the solution of (1) such that t(O,x,F) = x. Assume that t is 
defined for all t e R, x e Rn, F e H(L). Hiller (1965) defined a flow on 
Rn x H(L) by 

n Rn X H(L) X R ~ Rn X H(L) 
(2) 

( ( x, F ), t ) ~ ( t(t,x,F), Ft ). 

This is an example of a skew product flow, where the space is a product and 
the flow acting on the second factor is a flow in its own right. Under the 
general assumption of smooth F in (1) the function t and its first partial 
with respect to x will be continuous on Rn x H(L), but it makes no sense to 
speak of a partial derivative of t with respect to F because H(g) is not a 
manifold in general. See Sell (1971) for a general discussion and more 
details. 

Example 3. Consider the differential equation 

(3) :ic = f(x) + cp(t), p E H(r) 

where f Rn ~ Rn is smooth and r : R ~ Rn is a.p. Also assume that 
solutions are defined for all t and for all values of the small parameter c. 
Let Z be any cross section for the flow on the hull of r with constant first 
return time T and Poincar6 map P. Let ~(t,x) be the solution of (3) such that 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



ANOSOV STABILITY THEOREM 175 

;co,x) = x when c = 0. In order to do a perturbation analysis one considers 
(3) as an a.p. system even when c = 0. That being the case, when c = 0 the 
dynamical system defined by (2) equivalent to the P-almost periodic suspension 
of ;CT,x). Thus we can consider (3) as a perturbation problem where the 
unperturbed system is a P-almost periodic suspension. Notice that in this 
example the perturbation would not change the flow on the base, i.e. the 
translation flow on the hull of r would be the same for all values of the 
perturbation parameter c. This is the motivation for the definitions given 
below. 

Let P : Z ~ Z be a discrete ~.p. dynamical system and H a smooth, 
connected, compact manifold. Then A : H x Z ~ H x Z will be called a skew 
Anosou systea ( over P ) if 
1) 

ii) 

111) 

(4) 

iv) 

A is a skew product system over P, i.e. A(m,z) = (B(m,z),P(z)); 
B : H x Z ~ M, has a continuous partial derivative with respect to its 
first argument, denoted by D1B; 
there exist subspaces ~( ) and Eu( ) such that m,z m,z 

s -Eu 1( ) TmH =·E(m,z) w (m,z) for al m,z E H x Z 

and this splitting is continuous; 

Eu ~ Eu 
(m,z) A(m,z) 

v) there are constants C > 0 and 0 < ~ < 1 such that 

II D1Bn(m,z)(u) II :s C ~n II u II for u E ~m,z) and n > 0 
(5) 

:s C ~n II u II for u e Eu and n > 0, 
(m, z) 

and all (m,z) e H x Z. 

Let Ai : H x Z ~ H x Z: (m,z) ~ (Bi(m,z),P(z)) i = 1,2 be two skew 
product systems over the same base P : Z ~ Z. We say A1 and ~ are 
skew equivalent if there is a homeomorprism H : H x Z ~ H x Z 
: (m,z) ~ (h(m,z),z) such that the following diagram commutes: 
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A1 
HxZ H X Z 

(6) l 
HxZ H X Z 

Note that here and several times below we treat the second variable 
differently. Here we require that H be the identity map on the second factor. 
Thinking about the differential equation examples given above these seems 
natural since the second factor corresponds to the time translate of the 
equations. Thus H does not change the clock. 

1 1 Let Cp = Cp(H x Z, M x Z) be the space of functions 
t : M x Z ~ H x Z : (m,z) ~ (~(m,z),P(z)) where; has a continuous first 
partial with respect to it .first argument and we place the topology of uniform 
convergence of the functions and there first partial with respect to its first 
argument. That is two such functions are close if their values are close and 

1 their first partials are close. We say that t e Cp is skew structurally 
1 stable if the is a neighborhood N of t in CP such that if ~ e N then t and ~ 

are skew equivalent. The main result of this note is: 

Theorem: Skew Anosov systems are skew structurally stable. 

IV. The Shadowing Lemma, Openness, and the Proof of Structural Stabilit~. Let 
P : Z ~ Z be a discrete a.p. dynamical system, H a smooth compact, connected 
manifold and A : H x Z ~ H x Z : (m,z) ~ (B(m,z),P(z)) be a discrete skew 
product dynamical system. For a > 0 a (skew) a-pseudo-orbit for A is a 

bisequence {(mi,zi)}, -m < i < m, with zi+ 1 = P(zi) and d(mi+l'B(mi,zi) < « 
for all i. Here d is some distance function on H. Note that {z1} is a 
P-orbit and so we allow jumps of distance a in the H direction only. If we 
think in terms of the differential equation examples of the previous section 
this means we allow jumps in the solutions of one equation but do not allow a 

i jump in the equations. An A-orbit { A (m0,z0 ) = (mi,zi) } (skew) ~-shadows an 
a-pseudo-orbit { (pi,zi) } if d(mi,pi) <~for all i and of course 
zi+l = P(zi). Note that the base orbits are the same. In Meyer and Sell 
(1987c) we give a simple proof of: 
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Theorem ( The skew shadowing Lemma ): lf A is an skew Anosov system, then for 
every ~ > 0 there is an a > 0 such that every a-pseudo-orbit is ~-shadowed by 
an A-orbit. l'foreover, there is a ~O > 0 such that if 0 < ~ < (30 then the 
A-orbit given above is uniqueLy and continuousLy determined by the 
a-pseudo-orbit. 

Continuity means that the map which sends p0 ~ m0 is continuous. The 
constant ~O is a function of the constants C and A in the definition of an 
Anosov system. 

A is (skew) expansive 
A-orbits { Ai(m,z) } and 
d(BJ(m,z),Bj(p,z)) > c. 

if there is an £ > 0 such that given any two 
Ai(p,z) } with m ~ p there is some j such that 

Note that the second argument is the same. Again 
thinking in terms of the differential equations the expansiveness is for the 
solutions of one equation. In Meyer and Sell (1987c) an immediate corollary 
of the proof of the skew shadowing lemma is: 

CoroLLary: Skew Anosov systems are skew expansive. 

177 

In fact the £ can be taken as the (30 of the shadowing lemma and therefore is a 
function of the constants C and A in the definition of an Anosov system. 

Here we shall give a new definition of skew Anosov which is different 
from the one given in the previous section. In the old definition the 
manifold H was given one Riemannian metric and the estimates in III.6 
contained a constant C. In the new definition we assume that 
A: H x Z ~ H x Z: (m,z) ~ (B(m,z),P(z)) satisfies conditions 1), 11), 
iii), and iv) of the old definition but change v). Now assume that for each 
z E Z, H is given a metric ( , ) : TH x TH ~ R which varies continuously z 
with z and which in tern defines a norm II liz : TH ~ R. Assume there is a 
constant 0 < A < 1 such that 

v') D1B(m, z) (u) IIP(z) < A II u liz for u E E~m. z) 

and all (m,z) e H x Z. 

Lemma: The new and oLd definition of skew Anosov system are equivaLent. 
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Proof. That the old definition implies the new is proved precisely in the 
same way as Proposition 4.2 of Shub (1987). Assume that A satisfies the new 
definition as given above and fix w E Z. Since M and Z are compact and the 
metric varies continuously there is a constant IC :t: 1 such that 

(1) JC - 1u u "z < U u Uw < K H u "z' 

for all u E TPM, p E M and Z E Z. s Iterating (1) for u E E ( )gives m,z 

U D1Bn(m,z)(u) UPn(z) < :\n U u Hz 

for u E E~m.z) and using (2) gives 

u And similarly for u E E( )" Thus the old definition holds with the single m,z 2 
metric ( , )w on M with the constant C = K. 

Theorea: 1 The set of Anosov systems ts an open set tn Cp(MxZ,MxZ). 

Proof: Let A : M x Z ~ M x Z: (m,z) ~ (B(m,z),P(z)) be an Anosov 
diffeomorphism by the new definition given above and A' : M x Z ~ M x Z 
(m,z) ~ (B'(m,z),P(z)) be close to A in the C~ topology. Let s1 = s1(M,Z) be 

the space of c1 vector field depending on a parameter z E Z, i.e. X E s1 if 
X : M x Z ~ TM x Z : (m,z) ~ (Y(m,z),z) is continuous, has a continuous 
partial derivative with respect to it first argument, denoted by n1x, and 
Y(m,z) E T M for all (m,z) E M x Z. Place on s1 the topology of uniform 

m 
convergence of functions and their first partial derivative with respect to 
their first argument. Define mappings F, F' : s1 ~ 71 by the formulas: 

(3) 
-1 -1 F(X)(m,z) = CD1B(A (m,z))(Y(A (m,z)),z) = (G(X)(m,z),z) 

F' (X)(m, z) -1 -1 (D1B'(A' (m,z))(Y(A' (m,z)),z) (G' (X)(m,z),z) 

The tangent bundle TM x Z = v TmH x Z ( union on m E M ) admits a 
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decomposition 

(4) 
u u 

E '"' u E( ) m,z 

where the latter unions are over all (m,z) E H x Z. The first factor of F and 
F', G and G', are linear and so using the splitting (4) we can write 

(S) [ 
G++ 

G= 
0 

0 l G 
[ 

G' 
G' = ++ 

G' -+ 

G' l +-

G' 

The matrix for G is diagonal since the splitting is invariant for A. B.y v') 
1 and the fact that we have taken A' close to A in the Cp topology it follows 

that 

U G++ u H < A U u II and II G~+ u II < A U u U for u E ~ 

(6) a G-1 v II < A U v II and n G'-1 v II < A D v H for v E Eu 

U G~- v II < £ II v II for v E Eu, II G' u II < £ II u R for u E ~ -+ 

where 0 < A < 1 and £ can be taken arbitrarily small by taking A' close to A. 

be the space of continuous vector bundle maps with the 
s u sup norm, 1. e. L E l, L(m, z) : E( ) --.. E( ) is linear. We want to find L m,z m,z 

so that { (u,Lu) : u E ~ } is F' invariant subspace. Since 

(7) 
G' ++ 
G' -+ 

invarlance takes the form 

G' +-

G' 

(8) L G~+ + L G~_L = c:+ + G' L 

or 

(9) L = G'-1 -c:+ + L c:+ + LG:_L} 

G' u + G' Lu l ++ +-
c:.u + c:_Lu 
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Define an operator T l -+ l by 

(10) TCL) G'-1 { -G' + L G' + LG'L -+ ++ + -

so a fixed point of T solves (10). Let 

( 11) L { L E l II L II sup sup II L(m, z)(x) II s 1 } . 
(m, z) llxll=1 

If L E L then 

II T(L) II s II G' - 1 II ( II G' II + II L II II G' II + II L 11 2 II G' -+ ++ +-

(12) 

$ ~ ( £ + ~ + £ ) $ 1 

provided £ is sufficiently small, so T : L -+ L- Furthermore, for L, K e L 

II T(L) - T(K") II s II G' -l II { II L - K II II G' II + II LG' L - KG' K II } ++ +- +-

(13) s ~ { ~ II L - K II + II LG:_(L-K) II + II (K-L)G:_K II 

s ~ { ~ + 2£ } II L - K II 

and so for £ sufficiently small T is a contracting map which has a unique 
fixed point L in L-

Thus we have constructed a bundle E' s = { (u, Lu) : u e Es } wh.ich is F' 
invariant. The bundle E'u = { (Ku,u) : u e Eu} is constructed in a similar 
manner. By construction both K and L have norm less than 1 and the dimensions 
of the fibers of E's andEs are the same as are those of E'u and Eu. If 
v =(vs,vu) e E'(s ) n E'(u ) then vu = Lvs = LKvu but since the norms of Land m,z m,z u s 
K are less that 1 this implies v = v 0. Thus TH x Z = E's e E'u. The 
estimates of the form (1) follow at once from the inequalities (7). 

Proof of the structural stability of Anosov systems. 

Let A be an Anosov system where A : H x Z-+ H x Z : (m,z) -+ (B(m,z),P(z)) 
and first fix « so that all functions in this «-neighborhood of A are Anosov 
with the same constants C and ~- Let £ > 0 be the uniform expansive constant 
and ~ 0 the uniform constant of the shadowing lemma for all functions in this 
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neighborhood. Let ~ = min( c/3, ~ 0 /3 ) and restrict a further if necessary so 
that the conclusion of the shadowing lemma holds for this a and ~ and a < ~ 0 . 

Let D : H x Z ~ H x Z : (m,z) ~ (E(m,z),P(z)) be within this a of 
neighborhood of A. Let (m,z) e H x 2 be arbitrary. 

Then since A and Dare a close { Di(m,z) } is an a-pseudo-orbit for A and 
so there exists a y = h(m,z) such that the A-orbit { Ai(y,z) } ~-shadows 
{ Di(m,z) }. The function h : H x 2 ~ H is continuous by the shadowing lemma 
and hence so is H : H x 2 ~ H x 2 : (m,z) ~ (h(m,z),z). Let 
(m,z) ~ (m',z' ). Clearly if z ~ z' H(m,z) ~ H(m',z') so let z z' and 
m ~ m'. By the expansive 
d(EJ(m,z),EJ(m',z)) >c. 
(EJ(m',z),BJ(y',z)) < ~ $ 

property of D there is a J such that 
But d(Ej(m,z),Bj(y,z)) < ~ $ c/3 and 
c/3 and so d(BJ(y,z),BJ(y',z)) > c/3 or y ~ y'. 

Therefore hand Hare one to one. Thus for fixed z e 2 the map h(.,z) : H ~ H 
is a continuous, one-to-one mapping of a compact, connected Hausdorff space 
and so is a homeomorphism. This implies that H is a homeomorphism also. 

Since d(Ei(m,z),Bi(y,z)) < a for all i we have 

Thus the A orbit through A(y,z) = (B(y,z),z) ~ 0 -shadows the D-orbit through 
D(m.z) = (E(m,z),z)and so by uniqueness A(y,z) = H(D(m,z)). But 
(y,z) = H(m,z) so AoH = HoD or H is a skew equivalence. 
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THE PRESCRIBED ENERGY PROBLEM FOR PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS 

Paul H. Rabinowitz 

During the past several years there has been considerable progress in the 
study of the existence and multiplicity of periodic solutions of prescribed 
energy of Hamiltonian systems. The goal of this talk is to survey this 
work. Let H = H(p,q) denote the Hamiltonian where p,q £ Rn. For 
simplicity suppose H is smooth. (For the results below H continuously 
differentiable is generally sufficient.) The corresponding Hamiltonian system 
is 

(1) p = -Hq(p,q) 

q = Hp(p,q) • 

Setting z = (p,q) and J = (;~ -6d) where id denotes the n x n 
identity matrix, (1) can be written more succinctly as 

( 2) ~ = J Hz ( z) • 

As is well known, if z(t) is a solution of (2), H(z(t)): constant. 
The basic question we will be concerned with here is what sort of geometrical 
or topological conditions must be imposed on an energy surface so that it 
contains a periodic solution. For definiteness we take the prescribed energy 
to be 1 and set M : H-1(1) in what follows. 

The first general result for (2) of the above type that we know of is due 
to Seifert [1] in 1948. Using geodesic ideas from geometry he proved 

THEOREM 3: Suppose 
smooth and satisfying 

n 
H ( p, q) = ~ a; j ( q) Pip j + V ( q) with a i j, V 

i ,J=1 
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(V 1) V = {q € RniV(q) < 1} is diffeomorphic to the closed unit ball in 

an 

and 

(K 1) the matrix (aij(q)) is uniformly positive definite in v. 
Then there is a T > 0, a pair of points Q1,Q2 € av, and a solution 
(p(t),q(t)) of (2) such that (p(O),q(O)) = (O,Q1), (p(t),q(t)) = (O,Q2), 
and q(t) lies in the interior of V for t € (O,T). 

Observing that H is even in p and reflecting p and q about 0 
and T as odd and even functions P(t), Q(t) respectively, it is easy to see 
that (P,Q) is a 2T periodic solution of (2). Note also that 
(P(t) ,Q(t)) € M for all t € R. 

The recent developments for (2) begin with work appearing in 1978 of 
Weinstein [2] and Rabinowitz [3]. In [2], Weinstein proved a generalization 
of Theorem 3 and used it to show if M bounds a compact convex neighborhood 
of 0 in R2n, then (2) possesses a periodic solution on M. His techniques 
are in the spirit of Seifert's. In [3], minimax methods from the calculus of 
variations were used to prove that if M bounds a compact starshaped 
neighborhood of 0 in R2n, then M contains a periodic solution of (2). 

Subsequent to [2] and [3], other sufficient conditions have been given 
on H under which (2) possesses a periodic orbit on M. See e.g. Rabinowitz 
[4], Weinstein [5], Gluck and Ziller [6], Hayashi [7], and Benci [8]. In 
particular in [5], Weinstein observed that the problems studied in [1-4] all 
possessed a common differential geometric feature, namely M was of contact 
type in R2n and H1(M) = 0. He conjectured that more generally any compact 
hypersurface in a symplectic manifold with H1(M) = 0 would contain a 
periodic trajectory. This conjecture was recently proved (September, 1986) by 
C. Viterbo [9] in the R2n setting without the H1 (M) condition. At a 
conference on Periodic Solutions of Hamiltonian Systems held in Il Ciocco, 
Italy in October of 1986, H. Hofer and E. Zehnder simplified Viterbo's 
argument and extended his work to obtain a surprising result [10]: 

THEOREM 4. Suppose M is a compact hypersurface in R2n (and in 
particular Hz f. 0 .£!!_ M). Then for any o > 0, there is an e: such that 
le:l < o and H-1(1 + e:) contains a periodic solution z of (2). Moreover, . e: 
~ Te: is the period of ze: = (pe:,qe:), then there exists a constant B 
independent of o such that 

0 < A(z ) e: 

T e: 
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REMARK 5. It is not difficult to show- see [10] -that if M is of 
contact type, a periodic solution of (2) on H-1(1 + d for small e: leads 
to a periodic solution of (2) on M. Hence Viterbo's result follows from 
Theorem 4. 

185 

By Theorem 4, there exists a sequence e:m + 0 as m + oo such that 
H-1(1 + e:ml contains a periodic solution Zm of (2) with 0 < A(zm) < a. 
This fact naturally suggests trying to find a periodic solution of (2) on M 
as a limit of the sequence (zm). This approach will succeed if the 
corresponding sequence of periods (Tml of (zml is bounded (at least along 
a subsequence). (Note that (Tm) cannot tend to 0 since Hz 1 0 on M.) 
To show that (Tm) is bounded, it suffices to prove that there is an a > 0 
such that TffilA(zml > a for then Tm ~ a-la via Theorem 4. Such bounds are 
in fact known for a class of Hamiltonians including those treated in [1-8]. 
See Benci-Rabinowitz [11] and a slight generalization in Benci-Hofer-
Rabinowitz [12]. E.g. in [12] it is shown that: 

PROPOSITION 6. If M bounds a compact neighborhood of 0 in R2n and 
p • HP > 0 if p t 0 on M, then there exists an a > 0 such that 
r-1A(z) > a for any T-periodic solution z of (2) on M. 

Recently we have obtained a slight generalization of Theorem 4 which 
shows that (2) has a richer structure of periodic solutions near M: 

THEOREM 7 [13]. Under the hypotheses of Theorem 4, either (i) there are 
uncountably many values of e: near 0 such that H-1(1 + e:l contains a 
periodic solution of (2) or (ii) there is a sequence e:m + 0 ~ m + oo such 
that H-1(1 + e:ml contains uncountably many distinct periodic solutions of 
(2). 

While providing more distinct solutions of (2) than Theorem 4, Theorem 7 
sheds no additional light on whether M itself contains a periodic solution 
of (2). Indeed this remains the major open question in this field. If such 
an M does not possess a periodic solution of (2), then Theorem 7 shows the 
structure of the set of periodic solutions of (2) near M must be exceedingly 
complicated. 

Also in [13], a variant of the proof of Theorem 7 shows that: 
THEOREM 8. Under the hypotheses of Theorem 7, if H is also even in 

p, the alternatives of Theorem 7 hold for a family of periodic solutions 
( p ,q) where p is odd about 0 and } and q even about 0 and 2, T 
being the period of (p,q). 

We wi 11 sketch the proofs of Theorems 4 and 7. Before doing so a few 
remarks about the state of the theory concerning the multiplicity of periodic 
solutions on M is in order. Here much less is known. The first major 
result in this direction is due to Ekeland and Lasry [14] who proved: 
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and 

where 

(10) 

PAUL H. RABINOWITZ 

THEOREM 9. If M bounds a compact convex neighborhood of 0 in R2n 

1<~</2, r 
Then (2) possesses at least n geometrically distinct periodic solutions 
on M. 

There have been some variants of Theorem 9. See e.g. Berestycki, Lasry, 
Mancini, Ruf [15], Hayashi [16], van Groesen [17], Girardi [18]. However, all 
of them require a piercing condition like (10). Whether such conditions are 
essential for a multiplicity result is not known. The basic difficulty is 
that all current proofs of Theorem 9 involve some sort of comparison argument 
for which (10) is required. 

In another interesting result, Ekeland [19] uses index arguments 
analogous to those encountered in the theory of closed geodesics to show that 
in a generic setting if M bounds a compact convex neighborhood of 0 in 
R2n, then M contains infinitely many distinct periodic solutions of (2). 
This is a puzzling result. A simple possible explanation of it is the 
following: By results from [2] or [3] mentioned above, we know M contains 
at least one periodic solution of (2). Suppose we further knew M always 
contains one such solution, z(t), of elliptic type. Then the Birkhoff-Lewis 
Theorem [20] suggests that generically, z( t) is the 1 imi t of subharmonic 
solutions of (2). Thus we are led to conjecture that the arguments that yield 
Theorems 4 and 7 always give an elliptic periodic solution of (2). 

One final multiplicity result that has been announced recently by Ekeland 
and Hofer [21] is: 

THEOREM 11. ..!!. M bounds a compact convex neighborhood of 0 ~ R2n 
with n > 2, it contains at least two geometrically distinct periodic 
solutions of (2). 

See also [22-23] for the case n > 3. Optimists conjecture that for a 
more general class of such surfaces, M contains at least n geometrically 
distinct periodic solutions of (2). 

Now we turn to a sketch of the proofs of Theorems 4 and 7. We begin with 
the former and show how small modifications lead to the latter. The proof 
consists of four main parts: 
(A) Equivalence to a new Hamiltonian system: Suppose that H and H belong 

to c1(R2n,R), H-1(a) = H-1(b) : s, a compact hypersurface with 
Hz # 0 f Hz on s. Then an easy calculus argument shows that any 
solution of 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



PRESCRIBED ENERGY PROBLEM 187 

(12) ~ = JHz(d 

on s is a reparametrization of a solution of (2) on S and conversely. 
In particular, the existence of a periodic solution of (12) on S yields 
a periodic solution of (2) on s. Thus if a new Hamiltonian, H, can be 
found for which the existence of a periodic solution can be established, 
we also get one for (2). 

(B) A variational formulation: Let ~· 2 (R,R2n) denote the Sobolev space of 
T-periodic functions on R with values in R2n which possesses square 
integrable derivatives of order k. We are interested in particular in 
E = wl/2,2(R,R2n). This space is perhaps simplest to describe in terms 
of Fourier series where if 

z = L a.e2llijt (and a· = a . e: c2n) , . z J J -J Je: 

the norm on E can be taken to be 

nzn 2 = L (1 + 2llljlllaj1 2 • 
je:Z 

Suppose that H e: c1(R2n,R) and grows at most polynomially in z. 
Consider the functional 

1 • -
(13) I(z) = f [p • q - H(z)]dt • 

0 

It is easy to verify that I e: cl(E,R) and any critical point of I is 
a classical solution of (12) (see e.g. [24, Chapter 6]). Thus, to find 
periodic solutions of (12), it suffices to find critical points of I 
on E. Of course, this is not a simple matter since the functional 
is highly indefinite and in fact is unbounded from above and below. 

(C) Construction of the new Hamiltonian: This is a key step. Hofer and 
Zehnder show for each o > 0, there is a choice of H > 0 such that any 
!-periodic solution z of (12) for which I(z) > 0 lies in 
H-1(1 - o,l + ol on a common energy level of H and H. We refer to 
[10] for the details. The proof is elementary but insightful and 
generalizes and extends the construction of Viterbo [9]. 
Note that step (C) together with (A) and (B) reduces the problem of 

finding solutions of prescribed energy of (2) to that of finding critical 
points of prescribed period of (13). Such a trick in a much simpler setting 
where M bounds a starshaped neighborhood of 0 was used to give a simple 
proof of the result of [3] mentioned earlier. See e.g. [24, Chapter 6]. 
(D) Finding a critical point of I: By using a direct minimax argument, 

Hofer and Zehnder now show I has a positive critical value. (Viterbo 
for his setting transformed to a dual variational problem, used a 
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188 PAUL H. RABINOWITZ 

Lyapunov-Schmidt type argument to reduce to a finite dimensional 
functional, and made a critical point analysis of this simplified 
problem.) One can interpret the argument of [10] as reproving a special 
case of an abstract critical point theorem of Benci and Rabinowitz - see 
e.g. [24, Theorem 5.29] - which could be used as an alternate existence 
tool. 
Combining (A)-(D) and observing that o is arbitrary yields Theorem 4. 
Next we will indicate the modifications that are required in the above 

argument to get Theorem 7. Step (A) remains the same and (B) changes only to 
the extent that we introduce an additional parameter A and study the 
functi anal 

1 
(14) IA(z) = J [p. q- AH(z)]dt 

0 

on E. Critical points of IA(.) are classical 1-periodic solutions of 

(15) ~ = AlHz(~) 
In (C), choosing H as earlier, we need only observe that the previous 
assertions hold for any A > 0 and 1-periodic solution zA of (15) for 
which IA(zA) > 0. Step (D) requires more restrictions relative to A• In 
particular using the argument of [10] or Theorem 5.29 of [24] it follows that 
for all A near 1, e.g. A e: [}, {J, IA has a positive critical value, 
cA. Moreover, we get a uniform positive 1 ower bound for these numbers, i.e. 
there exists an a> 0 such that cA) a for all A e: [{, f]· For each 
such A, let zA be a critical point of IA corresponding to cA. Now an 
additional step is required: 
( E l {ZA I A near 1} consists of geometrically di sti net trajectories. 

Assuming (E) for the moment, Theorem 7 follows: By (D), (E), and (B), 
for each A near 1, we get geometrically distinct 1-periodic solutions of 
(15). Then by (C) and (A) reparametrizations of these solutions, which of 
course are geometrically distinct, are solutions of (2) in H-1(1 - o,1 + o). 
Since there are uncountably many such distinct solutions and o is arbitrary, 
the theorem follows. 

It remains to indicate why (E) holds. This requires three steps: 
(i) For A e: [i. iJ, let j(A)-1 denote the minimal period of zA. 

Therefore j(A) e: N. The key fact required of j(A) is the existence of 
M > 0 such that j( Al ;;; M for all A e: [}. ~]· AsslJlle this for now together 
with: 
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and z ( t) 
)J 

are not geometrically distinct, 

Combining (i) and (ii) yields 

189 

(iii) If p =min(}, wh) and f.,u €: {crllcr- 11 < p}, then zf. and 
zl.l are geometrically distinct. Indeed if not, without loss of generality 
assume f.> l.l· Then by (i), (ii) and the choice of f. and u, 

(17) 1+ 2p =~>l=j().))j(~)+l)l+l r:-p r ~- -P u ~ J ( u J N 

which implies that (2M+ l)p > 1, contrary to the definition of P· 
To see why (i) and (ii) hold, note first that if {j(f.)if. €: [}, {J} were 

unbounded, along a sequence f.m of f.'s such that j(f.m) + m, we have 
f.m + ~ €: [~, {J. By (B), zf.m(t) c H-1(1- 6,1 + 6). Hence the functions 
zf. are unifonnly bounded in the Lm nonn. Thus (15) gives unifonn bounds m • 
for zf. in Loo. Consequently by the Argela-Ascoli Theorem and (15), zf. 

converg~s in cl to a !-periodic function w satisfying m 

Moreover by (D), If. (zf. ) >a> 0 so I (w) >a. On the other hand since m m A 
j(f.ml + oo, w ha: minimal period 0, i.e. w = constant. Therefore, 
recalling that H > 0, we have I (w) .;; 0, 

A Finally, to verify (ii), suppose that 
trajectory as zf. (t). Then there exists a 
zf.(t) zl.l(r(t)). Hence 

a contradiction. 
z (t) represents the same 
C~ function r( t) such that 

(19) if.= f.JHz(zl.l(r(t))) u1Hz(zl.l(r(t)))~ 

so 

(20) ~ = l 
)J 

or 

( 21) r( t) = l t + y 
)J 

Consequently 

(22) 

which implies that 

(23) l j(f.)-1 €: j(u)-1~ 
)J 

Similarly 

z (l (t + j().)-1) + y) 
)J 1.1 

(24) z (l t + y) = zf.(t) = z (l t + j(ul-1 + y) = 
)J )J )J 1.1 . 

z (l (t +..!!.. j(ul-1l + y) = z,(t +..!!.. j(ul-1l 
)J )J A A A 
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190 PAUL H. RABINOWITZ 

so 

(25) f j(u)-1 € j(h)-11 • 

Combining (23) and (25) yields (16) and completes the sketch of the proof of 
Theorem 7. 
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HOMOCLINIC AND HETEROCLINIC PHENOMENA IN SOME HAMILTONIAN SYSTEMS 

Carles Sim61 

ABSTRACT. Two examples of 2 degrees of freedom Hamiltonian Systems 
are studied. The first one is the family of truncations of the per-
iodic 3 equal particles Toda lattice. The second one is a harmonic 
oscillator plus the terms -xy2+~4, ~being a parameter, which in-
cludes a system numerically studied by Barbanis. In both cases one 
shows how homoclinic and heteroclinic o~bits give relevant informa-
tion. For the first system the following items are studied: integr-
ability, families of simple periodic orbits (using normal forms), 
splitting of the separatrices between hyperbolic orbits and periodic 
orbits ending on a homoclinic orbit to a saddle-center. For the se-
cond one, the characteristic curve of a family of symmetric triple 
periodic orbits is studied. It is shown that for values of the para-
meter a in a given range the characteristic curve spirals to a fini-
te curve obtained from the invariant manifolds of Lyapunov orbits 
for some range of values of the energy. The behavior of the charac-
teristic curve with respect to a is discussed. 

1. THE FIRST EXAMPLE. 
a) Statement of the problem. We consider the periodic 3 equal masses Toda 

lattice with Hamiltonian given by (24) 

1 3 2 H = 2 ~Pi + exp(Q1-Q2J + exp(Q2-Q3) + exp(Q3-Q1) 

After using the momentum first integral and some scaling the Hamiltonian is 
reduced to the form to be used through the paper 

H = }(pi+p~) + -ft[exp( -2 v'3q 1-2q2) + exp(2 v'3q 1-2q2) + exp(4q2) - 3] 

This system is known to be integrable (15). Taking positive energy, h>O, and 
performing a Poincare section of the flow through ~ 1 =0, the behavior, in the 
q2,p2 variables, is shown in Fig.1. Given a point on the (q2,p2) plane it de-
termines uniquely an orbit because q1=o and p1 can be recovered from the ener-
gy integral H=h (and p 1 ~o, say). 

We recall that a fixed point, P, of a conservative map of the plane, T, 
is said elliptic, hyperbolic or parabolic if the eigenvalues of DT(P) belong 
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194 CARLES SIMO 

to tz c: a:, lzl =1j,{tl}, R'l:!:lJ or {:t1}, respectively. Fixed points of the Poin-
care map are related to simple periodic orbits of the flow. Periodic points of 
period k of the Poincare map are related to the so called k-ple periodic orbits 
of the flow. 

The boundary of Fig.1 is a periodic orbit of H of parabolic type. There is 
also a full line of pardbolic fixed points. The remaining of Fig.1 contains two 
elliptic fixed points. The space around them, unti I the boundary or the line of 
parabolic points, is foliated by invariant curves corresponding to tori in the 
energy level. A nicer picture is obtained by identification of the boundary 
periodic orbit to one point, giving a two dimensional sphere (see Fig.2). 

As a useful fact we remark that H is invariant under rotation of angle 
2TT/3. 

Despite H is integrable the truncation of the power series expansion 
around the origin at order 3 gives the well known Henon-Heiles system (16,4,19) 
which is known to be non integrable (26). Consider in general, the nth order 
truncations 

H(n( }(pf+p~) + l4 Tn[exp(-2J3q 1-2q2)+exp(2J3q1-2q2)+exp(4q2)-3] , 

where Tn stands for the nth_order Taylor operator, n~2. Recent interest in that 
problem has lead to papers by Contopoulos-Polymilis (7) and Yoshida (25). We 
note that H(n) is still invariant under 2TI/3 rotation. 

Our objective is to understand the behavior for n~3 and small positive 
energy, as well as to study a simple family of periodic orbits when the energy 
increases. 

b) Integrability. It follows immediately, from the Hamilton equations ob-
tained from H(n)' that for any n~2 and small positive h there is a periodic or-
bit q1=p 1=o (the boundary of the allowed region in the Poincare section) pro-
jecting on a straight line on the (q1,q2) plane. To see what happens when the 
energy increases we need the 
Lemma 1.1. Let V(n)(O,q 2) the potential energy in H(n) restricted to the line 
q1=o. Then for n even V(n)(O,q2) is a convex function with minimum at q2=o. For 
n odd, n~3, V(n)(o,q 2) has exactly one minimum at q2=o and one maximum at q2 = 
q2,max = -An/2 with 

A = v n + (1._- 2(1lnn +(J_-l)-1ln(J2ii'(l+2v J) + o(l), n-+cO, n o v0 v0 o 
where v is the first positive solution of exp(v)=2ev (v ~0.231961). Then 

0 1 0 
V(n)(O,q 2,max) = }2€xp(An)(1-v0+0(1/n)) for n odd. Furthermore the point 
(O,q 2 ,0,0) is a saddle-center of H( ) for n odd with eigenvalues ,max n 112 
±i exp(-q2 rna )(l+o(1)), texp(-q2 )((1-v )/(3v0)) (l+o(1)), for n+cO. , x ,max o 
Proof: It is immediately seen that for all n~2 V(n)(O,q 2) has a minimum at the 
origin. First we remark that T (ez)>O for alI z~O and all m~O. For negative z m 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



HOMOCLINIC AND HETEROCLINIC PHENOMENA 195 

as we have T (e2 )=e2 -zm+lew/(m+l)!, we. (z ,0), we have Tm(e2 )>0 for even m. For 
m 2 2 n even one should prove a V(n)/oq2 1(o,q2)>0. But this amounts to prove positi-

veness forT ~(8exp(-2q 2 ) + 16exp(4q2)) which follows from the remark. 
n-i 2 2 

For n odd the same reasoning shows o V(n);aq2 l(o,q2)>0 for q2)0. Let 

z=-2q2. We wish to study the first derivative of f(z)=Tn(2e 2+e-22 -3) for z>O. 
1 z -2z 2 ( n-2 ) n-2 ( ) 1 Let g(z)=2f'(z)=Tn-l (e -e )=3z-3z /2+ ... + 2 +1 z I n-2 . -

(2n-l)zn-l/(n-1)l. Letting aside the case n=3, for which the uniqueness of the 
maximum is trivial, we check easily g(z)<O for z~n/2 by comparing in g each 
couple of consecutive terms, the first of odd degree and the second of even 
degree. The same technique proves g(2)>0. Hence it remains to show the unique-
ness of the zero of g in (2,n/2) and to compute an asymptotic expression for 
its value. 

To this end we introduce v=z/n 
press T 1(ez) as evn_vnnnA(v,n)/nt n-

(it is enough to consider O<v<1/2) and ex-
and Tn_ 1(e-2z) as e-2vn+vnnn2nB(v,n)/n!, 

where 
- vn (vn) 2 _ 2vn (2vn) 2 

A(v,n)-1+n+l + (n+1J(n+2) + and B(v,n)-1-n+1 + (n+1)(n+2J -
We recall that n! =(n/e)nC(n) with 5n<C(n)<v'2ifn exp(l/12n). The equation 
g(z)=O is written as evn(1-e-3vn)=(ve)n(2nB+A)/C or as ev=2veD(v,n), where 
D(v,n)=((B+2-nA)/(C(1-e-3vn))) 1/n. 

-3vn -6 One easily obtains the bounds e <e , 1<A<2 and B1<B<1, where 
2 4 

8 _ 1 + 3n + 5n 
Cn+T (n+1J ... (n+3) (n+1) ... (n+5) ' 

using the fact that the sum of the first 6 terms iri B decreases for v e (0,1/2). 
We skip the cases n=5,7,9,11, for which a numerical computation or an 

adhoc proof can be used. For instance, for n=7, g(z)=O can be written as 

( . 3 z3 z4 3( z)2 1 2( z)2 ) g1zJ=z:+40-4o=2 1 -2 +4z 1 -2 =g2(z · 

One has g1(2)>0=g2(2) and gi(z)<O, g2(z)>O for z>2. 
We claim that D1<D<D2 where 02 can be taken trivially equal to 1 and o1 

can be taken equal to 0. 775 if n"13. To prove the l-ower bound we should check 
E(n)/(n+1)>0. 775n {riF(n), where 

2 4 
E(n) = 1 + (n+23f(n+ 3) + (n+ 2 )~~. (n+5) and F(n) = /2fr exp(l/12n) . 

As E(n) (resp. F(n)) increases (resp. decreases) with n, it is enough to see 
Q(n)<E(13)/F(l3) for all n~13, where Q(x)=0.775x{:K(1+x). But Q'(x)= 
Q(x) • ( ln 0. 775+1/(2x)+1/(l+x)) and the second factor is decreasing. Hence it 
remains only to check numerically Q(13)<E(13)/F(13) and Q'(l3)/Q(13)<0, which 
turns out to be true. 

Therefore any solution of ev=2veD(v,n) should be in (v2,v1) where exp(vj) 
coincides with 2vjeDj, j=1,2. One has v1<0.331, v2>0.231 
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To prove uniqueness we write g(z)=O as G(v,n)=2veD(v,n)e-v=1. The only 
thing to check is G'(v,n)>O at the solution, where I denotes ojov. But 

1 1 B'+2-nA' 3 -3vn 1 G'(v,n)l ( )- =(lnD)'+--1> --~--+-- 1> G v,n -1 v n B+2-nA 1_e-3vn v1 

l B'+2-nA' + 2.021 
n B+2-nA 

We know that B, A, A' are positive in (v2,v1). We claim that even in the 
larger interval (0,1/3) the following is true: i) B'<O ii) B'>b=-2 : 
iii) B>a=1/3 

Then to have G'(v,n)>O for G(v,n)=1 it is enough to have b>-2.021na for 
n~13. Let us prove the claim. 

Introducing w=2v it follows B'<O for WE (0,1/2) because B' is an alternate 
series with decreasing terms in absolute value (a.s.d.t.a.v.) and the first 
term is negative.Splitting B' in the first 6 terms and the remainder we have 
B'/2=np(w)/((n+1) ... (n+6))+B. B turns out to be an a.s.d.t.a.v. if w € {0,2/3) 
with negative first term. Furthermore p(2/3)<0 for all positive nand p'(w)Jn= 

4 . 
Lj=O cj(w)nJ. For WE (0,2/3) one has c0 =360, c 1 ~102, c 2 ;~1011/20, cl-4/9 and 
c 4 ~11/6 showing p'(w)>O for nH and hence B'<O. 

To prove ii) we split B' as 
2 2 3 B' _ 2( n + 2wn 3w n ) + B 

- - n+1 (n+1)(n+2) - (n+1) ... (n+3) 
8 being positive for w £ (0,2/3). The minimum value of the first part is 
reached at 0 and therefore we can take b=-2. 

Finally iii) follows from B(v)>B(1/3)= t + t- 3 (~~ 1 ) + a.s.d.t.a.v. with 
positive initial term and then B(v)>1/3. Uniqueness follows because 
-2>-2.021 n/3 for n~3. 

To compute the asymptotic expression of q2 we remark that for large n 
-n ,max -3vn the term 2 A can be neglected in front of BinD, as well as e . Further-

more B=1/(1+2v)+0(1/n). Then D=((l/(1+2v)+O(l/n))/J2ffii) 1/n tends to 1 when n-.oo 
giving for v the value v2, equal to the value v0 in the statement. One step of 
differential correction produces z=vn=A . n 

The value of the potential at q2 is computed expressing again T(ez) as ,max 
the exponential minus the remainder. This gives 

1 vn 1 n+1 vn+1 nn+1 ( 1 
T2e - 24 2 1+2v (n+1)! 1 + O(n)) ' 

and using the equation which determines v we obtain ~vn(1-v+O(l/n)). 
The characteristic equations at (O,q2 ,0,0) are given by >.2+V q =0, ,max q1, 1 

A2+v =0. If we introduce r=T 2(exp(-2q2 )), s=T 2(exp(4q2 max)) one q2,q2 n- ,max n- , 
has V =r, V =(r+2s)/3. From r=evn(1+o(1)), s=-evn(1+o(1J)/(2v) the q1,q1 q2,q2 
eigenvalues follow. I 
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Numerically computed values of q2 , h , a and b (±a,±ib being the ,max max 
eigenvalues at the saddle-center) are given in Table 1. 

Those rectilinear solutions are used by H.Yoshida (25) that has obtained 
a Theorem (derived from Ziglin's one (26}) to study t{pi+p~}+[J=kVj(q 1 ,q 2 ) , 
where V. is a homogeneous polynomial of degree j (see also related work of 

J 
Churchill and Rod (5}). Analyzing the behavior for h\0 and h!~ Yoshida gives 
criteria ensuring non integrability. In particular 
Theorem 1.2.(Yoshida(25)).H(n) is non integrable unless n=2. 

197 

We remark that for n=4 the system obtained taking only into account v2 and 
v4 is integrable. The role of v3 is essential. The behavior close to integrable 
for h\0 and hi~ of H( 4) has been noticed in numerical simulations (7). 

c) Normal forms and simple periodic orbits. To study H(n} for small posi-
tive h we use a normal form technique. The goal is here to obtain from H{n) a 
system which is integrable but displays many of the characteristic features of 
H{n) (except, of course, all the homoclinic and heteroclinic tangles and its 
consequences). As the quadratic part of H{n) for n~2 is t{qi+pi+q~+p~) we are 
in an 1 to 1 resonance. Hence the Gustavson normal form should be used (13,21). 
We adopt the notation from (12). 

Let x.=(q.-ip.yJ2, y."(-iq.+p.)//2, j=1,2 new canonical variables. Then J J J J J J 
the normal form up to order 2m of an analytical 1 to 1 resonant Hamiltonian is 

l l 
G( 2ml = L g{l,k)x1vk k,l E {INU{0)) 2, x1=x 11x/. Ill =1 1+1 2, 

2< ll+ki<Zm, Ill= lkl 
where X.,Y ., j=1,2 denote the new variables. Of course the transformed Hamilto-
nian obfai~ed from the initial one, H, is G=G( 2m)+R( 2m), where the remainder 
contains terms of degree greater than 2m. G( 2m) is integrable, x1v1+x2v2 being 
an additional first integral. We go back to real canonical variables Q.,P., 
j=1,2 such that X.={Q.-iP.)/J2, Y .={-iQ.+P.)/JZ and obtain G( 2m)(Q,P) ~ho~e J J J J J J 
coefficients are real. 

We introduce new variables, denoted again by q,p supposing that no confu-
sion with the original ones arises, by Qj=Eqj, Pj=Epj' j=1,2. Hence 

(2m) _ 2 ( 4 2~ G - t G2 q,p) + E G4(q,p) + ... + E G2m(q,p) , 

where G2k is a homogeneous polynomial of degree 2k. Furthermore R( 2m)=O(E 2m+1). 
Taking E=Jh and scaling the timet to a new time s=f-2t we can divide G by £2 
and consider the level of energy equal to 1. Then E=O is exactly a harmonic 
oscillator. 

Following Braun (3) we perform the canonical change qj=J2"rj sin aj, 
PJ· = .[2r; cos a . and then, as a new change, either J J 
(*) R1 =r1 +r2, R2 =r2, b1 =a1, b2 =a2 -a1, or 
(**) R1 = r1+r2' R2 = r1' b1 = a2, b2 = a1-a2 
The change (*) is suitable in the full energy level G=1 except in a neighbor-
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hood of the periodic orbit q1=p1=o. In this case (**) is the right change to 
study the vicinity of the periodic orbit. 

With either (*) or (**) one obtains (3) that G( 2m) is independent of b1. 
Hence R1 is constant and equal to 1+0(£2). It can be skipped from G( 2m) which 
only depends on R2 and b2, i.e., it is a one dimensional Hamiltonian. Finally 
the change u= J2R; sin b2, v= .J2R2 cos b2 1 eads to a Hamil toni an in cartesian coo r-
d. K(2m)( ) 2 4K 2m-2 . 1nates: u,v =f K4+E 6+ ... +£ K2m. We remark that K2j 1s no longer a 
homogeneous polynomial of degree 2j in u,v but the highest degree is 2j. 
Proposition 1.3. Let m be such that K( 2m) is of the form u2(£ 2P1(v)+O(e 3)) + 
O(u3c2) + t 2m-2P2(v) with P1,P2 polynomials satisfying P1(0)f0, P2(0)=P2(0)=0, 
P2(0)f0. Then K( 2m) has a non parabolic fixed point at the origin. Further-
more there exists E0 such that for all E with \EI<£0 the Poincare map of the 
original system has a non parabolic fixed point close to the origin. 
Proof: At the origin one has K( 2m)=K( 2m)=O, K( 2m)=£2P (0)+0(£3), K( 2m)=O, 
{2m) 2m-2 u v uu 1 uv 
Kvv =2E P2(0) proving the first part. The second one follows from the Im-
plicit Function Theorem after a scaling u=E.2m-4uis done.• 

Now we describe the results of carrying out all the computations described 
above for the problem under consideration up to n=15. As starting Hamiltonian 
we take H( )' and we apply 1.3. to obtain the next result. 

n (2m) Theorem 1.4. Let 3,n,15. Then the smallest value of m such that for K(n) all 
the fixed points are non parabolic is given by m=E[(n+2+S 3)/2], where E[•] n, 
denotes the integer part and h. . the Kronecker index. In a 11 the cases there 

1 ,J 
are 8 fixed points. They correspond to periodic orbits of the original system 
of period going to 2rrwhen h~O. Two of them are elliptic and they already ap-
pear in K~~l For 2~j<m, K~~i) has a line of parabolic fixed points which is 
broken, giving rise to 3 elliptic fixed points and 3 hyperbolic ones, for j=m. 
The pattern is given in Fig.3, where the change (*) has been used for odd n and 
(**) for even n. After compactification of the boundary periodic orbit to one 
point we obtain Fig.4 . 

As an example of the final one dimensional Hamiltonian from which 1.4. 
shows up, we display K~i~l in Table 2. The columns give the exponents of f,u 
and v and the related coefficient, respectively. 

We remark that for the Toda Hamiltonian the line of parabolic points 
should be present at all orders of normalization. Hence, unless n=3, the quali-
tative behavior of H(n) differs from Toda's one at the first opportunity. 

We also remark that thanks to the symmetry it is clear that, generically, 
the number of fixed points should be equal to 2 plus a multiple of 6. 
Conjecture 1.5. For all n~3 the truncated Toda lattice has 8 simple periodic 
orbits, 5 of them elliptic and 3 hyperbolic, with period going to 2rr when h\0. 
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Proposition 1.6. Any other periodic orbit of H(n) has a period which is 0(£-2). 
Proof: The speed of the flow on the (u,v) plane is 0(£ 2) and hence the time re-
quired to return to an initial point far from the fixed points is O(E-2). Also 
the elliptic fixed points of the Poincare map have eigenvalues 1ti0(Es) with s 
at least equal to 2.Therefore the number of iterates to return to the initial 
point is also O(c-2).• 

d) Analysis of the separatrices (heteroclini~ connections). To study the 
behavior of the separatrices connecting the hyperbolic points for the one de-
gree of freedom Hamiltonian system K~~}) obtained from the normal form we per-
form a new scaling of variables. The line of parabolic fixed points correspon-
ding to the Toda lattice is broken in a more complicate pattern. The following 
result follows from the expressions of K~~l) using scaling. 

-(2m) ( Theorem 1.7. Let mas in 1.4. and K(n) the terms of lower degree in E which 
is equal to 2m-2) in K~~l)(frx,y), where r=m-2. Then in a strip near the sepa-
ratrices the Poincare map of H( ) is O(tm+1) close to the 2nem time map of 

(2m) n K( n) , at 1 east for 3~n~ 15 2 Furthermore 

K((2m)) =a x2(1-'L2) - Lb2. (3y-2y3)2j 
n n j l> 1 J ,n 

with b2. =0 if n<6j-2. The values of a , b2. are given in Table 3. J,n n J,n 
The role played by 3y-2y3 is certainly related to the symmetry of the pro-

blem. In Fig.5 we display the separatrices for K~~l) (using (*) for odd n, (**) 
for even n. 
Corollary 1.8. Let 3~n~15. Then the separatrix of the origin (on K~~))•O) is 
given by 

3y-2y3 ,J2[cosh 2 (6~ 2 u) + (2b4 /b2 )Sinh 2 (6~ 2 u)l- 112 
n ,n ,n ,n n ,n ~ 

where u denotes here the time for K~~l) 
Proof: The origin being hyperbolic one has b2,n>O. We skip the index n in a,b2, 
b4 and both indices in K. On K=O one has 

2 ( v2 _ 3 2 3 4 2 
1 _ d ax 1-2) - b2(3y-2y ) + b4(3y-2y ) and y'=-2ax(1-.y), ( -du) . 

Introducing w=J2/(3y-2y3) one obtains ww'=6Va(b2w2+2b4)Jw2-J. after some mani-
pulation. If v=w2 one has v'=12Jab;J(v-1)(v+2b2;b4) with solution v= 
Cosh2(6[al>;ul + (2b4/b2)Sinh2(6Jab2u), from which the result follows. 
We wish to point out that in the general case (several b2 .) the differential 
equation for z=w-2 is z'=-12{az Fz h::::b2.(2z)j-l. • J vj ~1 J 

It follows easily from 1.7. that for K~~J) the elliptic points are 
(0,!/172) with eigenvalues !i6la (b2 +4b4 ) (which implies eigenvalues equal V n ,n ,n 
to exp(!2Tiifm6Ja (b2 +4b4 })(1+0(Em+1)) for the Poincare map). The hyperbolic n , n ,n 
ones are (0,0) and (O,t~) with eigenvales ±6 ~2 (and, therefore vunu? ,n 
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exp(t2Tffm6~ 2 )(1+0(Em+1)) for the Poincare map). n ,n 
When the remainder of the Poincare map is introduced it appears a hetero-

clinic (and, by chain connection, also homoclinic) tangle as displayed in Fig6. 
Concerning the splitting of the separatrices (see(11) and also (18)) we 

have, as a consequence of 1.8. the following result. 
Proposition 1.9. For 3sn~15 and m depending on n as in 1.4., given c>O the area 
between the loops of the heteroclinic tangle (or the distance between the left 
branches of the manifolds w(o,mn and w{o,o) at a given y, 0<y<.;372, or the 

angled at some symmetric heteroclinic point as in Fig.?) is bounded by 

N(c)exp(-(llm(Pole)J-c)/(6 ~2 Em), 
•rn~2 ,n 

for \£\<E0 (c), where N(c) is a constant depending only on c and Pole is given by 

-21 1n ((1+J-2b4 /b2 )/(-1+j-2b4 /b2 )). ,n ,n ,n ,n 
Proof: According to Theorem A in (11) the distance is bounded by 
N(c)exp(-21i(f-c)/ ln g), where g is the eigenvalue greater than 1 of the Poinca-
re map and f is the minimum distance from the poles of the separatrix of K~~)) 
to the real axis when the time is scaled in such a way that the eigenvalues, 
for the differential equation obtained from the Hamiltonian K~~l), are ±1. 
The only thing to do is to compute the poles, i.e., the zeros of v (see the 
proof of 1.8.). Let q=-2b4;b2. Introducing z=6~ 2 u as suitable independent 

1 n ,n 
variable to achieve eigenvalues ±1, we have z=2 ln (({cj+1)/({cj-1)), the required 
pole. If q~O then z=:ti arccot(Fq). For q e (0,1) (note that q~1 is not allowed) 

one has z = ±i!! + lln 1+v'9. • 
2 2 1-{cj 

We remark that for n=10,12,14 the poles of the separatrix have real part 
different from zero. Based on numerical computations carried out for a genera-
lization of the standard map (23) one should expect for the angled (see Fig.?) 
a behavior like 

Afzexp(- \Im(Pole)l) [cos ( Re(Pole) )+o(l)J forE going to zero and 
6Janb2,nfm 6Janb2,n£m 

suitable A and z. This would imply that the angle d changes sign an infinity of 
times when £~0 (for values of the type Ek=(C/(k+1/2)) 1/m with k positive integ-
er and C a suitable constant). Each time that d=O the manifolds w(o;/:372) and 
w{o,{312)have, generically, a cubic tangency. Pairs of new heteroclinic points 
appear or dissappear, alternatively, in a fundamental domain for such valuesEk. 
Conjecture 1.10. The behavior given by 1.7. is true for all n~3. An extension 
of 1.8. and 1.9. is possible using elliptic functions for n<28 and hyperellip-
tic ones if n~28. 

e) The trace for the rectilinear periodic orbits. As stated in b) it is 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



HOMOCLINIC AND HETEROCLINIC PHENOMENA 201 

immediately seen that for every n~2. q1=p 1=o is a (rectilinear) periodic orbit 
f~r H(n) whose differential equation is q2=p2, p2=-JV(n)/Jq2(o,q2). Furthermore 
p2/2+V(n)(o,q2)=h and the period depends only on h. Of course, for n odd the 
periodic orbits exist only for h<h =V( )(O,q2 ), with q2 defined in max n ,max ,max 
1.1. For h=hmax a homoclinic orbit to the saddle-center (O,q2,max'O,O) is 
found. This is the natural termination of the family of periodic orbits for n 
odd. Hence the period of the periodic orbit goes to infinity, if n is odd, for 
h/h . Conversely, for n even the period goes to zero 1~hen h/oo . max 

The norma 1 vari ati ona l equations are (L'lq 1 )' = L'lp1, (6p1 )' = 
-a2vtn)/dqi(o,q2(t))•L'lq 1. The character of those periodic orbits is obtained 
from the trace, Tr, of the monodromy matrix of the normal variational equa-
tions. Elliptic (resp. hyperbolic) orbits are found for 1Trl<2 (resp. 1Trl>2), 
while ITrl =2 gives parabolic orbits. From the comments following 1.8. one has 

2 m m+1 that for small h (and for, at least, 3~n~l5) Tr=2+144IT a b2 h +Oth ) for the 
hyperbolic orbits and Tr=2-144n2a (b2 +4b4 )hm+O(hm+l)nfo;nthe elliptic ones, n ,n ,n 
where m depends on n as stated in 1.4. For small positive energy the rectiline 
periodic orbits of H(n) are hyperbolic for n even and elliptic for n odd. 

We can ask about the behavior of those periodic orbits for n even and in-
creasing h. It has been proved by Yoshida (25) that if n=2k the value of Tr, 
when h-.. oo, tends to the limit 

_4_ cos 2 [Jl !t'( k---1 )--;;2:---+ --;;2~4:-ck (;-::;2-;-k ---=1"') ] - 2 . 
sin2_n_ 2k V' 2+4k 

2k 
For n=4 this gives the value 2 as it should be, because if in v( 4) we only keep 
the fourth degree terms (the dominant ones for h ... oa) the system is integrable. 
For big values of k one has the approximation 

lim Tr = 2 _ 96k(2k-1) iT/2k t1 +O(k· 4-k)). 
h- oo (2+4k)(k-1) tan(IT/2k) 

The results of a numerical computation for h up to 1016 and n=4,6, ... are 
shown in Fig.8. Table 4 presents extrema values of Tr and the related values of 
the energy. The following comments are in order: 
i) Except for n=4 the pattern is quite similar: There are 4 values (2 for n=4) 
of h for which the orbit becomes parabolic, the curve Tr versus h crossing 
twice Tr=2 and twice Tr=-2. 
ii) The extreme values of Tr, Tr and Tr . , show, roughly, a linear depen-max m1n 
dence with respect ton, with slopes 0.217 and 0.277, respectively. 
iii) The values of the logarithms of the energy at the extrema, lnh and max 
ln hmin, also show a linear dependence in n as dominant term in its behavior. 
iv) The quotient h . /h is slightly decreasing and it seems to converge to m1n max 
some finite number close to 8. 
v) Let qZ,max' q2,min<O and Pz=O be the values of the initial conditions for 
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those hmax' hmin· Then q2,max and q2,min are close (they differ by less than 
4% for n=100) and also close to the value given by the expression for q2 in ,max 
1.1. for the odd case. 

Now we pass to the case n odd. Fig. 9 shows some examp 1 es of Tr vs h from 
h=O to h=hmax· The successive extrema of Tr tend to some values ±g. The obser-
ved behavior is explained by the next result. 
Theorem 1.11. Consider a family of periodic orbits of a 2 degrees of freedom 
Hamiltonian ending on a homoclinic orbit to a saddle-center lying on the level 
hmax as the ones in the example. Let ±a, ±ib the eigenvalues at the saddle-
center. Let {hkj a monotone sequence of values of h for which Tr=2 (or any 
other value in (-g,g)) of the same type, i.e., with a given sign of dTr/dh. 
Then ~~}hmax-hk)/(hmax-hk+ 1 ) = exp(2f1'a/b). Furthermore let(~ ~) be the dif-

ferential of the Poincare map from s1 to s2 (see Fig.10) restricted to the 
variables normal to the orbit. Then the value of g is given by 
g = 1 im (A2+B2+c2+o2 +zF2 • 

q-0 
Proof: We can suppose the saddle-center located at the origin. Using a result 
of Moser (20) there is an analytical change of coordinates giving as transfor-
med Hamiltonian H=axy+b(u2+v2)/2+ ... where (x,y) and (u,v) are pairs of canon-
ical conjugate variables. Through the proof we shall skip the non dominant terms 
because we are only interested in the linear behavior. Let s1 (S2) be given by 
y=q (x=q). The map going from s1 to s2 has linear part (x,u,v)T-+(x,M(u,v)T)T 
where M = (~ ~) preserves are~. Furthermore, going from s2 to s1, the time 
needed is ln (q/x)(1+0(x))/a or, skipping additive constants -ln h(l+O(h))/a. 
Hence the passage from s2 to s1 in the (u,v) plane is a rotation Rd of angle 
d=-b ln h( l+O(hJ )/a. Then Tr(RdM)=(A+D) cos d + (B-C) sind+ o(l). The sealing is 
found because an increment of d in 2rr requires to divide h by exp(2f1'a/b). 
The maximum of Tr is given by Tr~=(A+D) 2 +(B-C) 2 =A 2 +B 2 +c 2 +o 2 +2. Changing q to q1 

·produces essentially the conjugation of M by a rotation (of angle ~ln {q/q1J) 
and hence A~+B~+ci+D~=A 2 +B 2 +c 2 +D 2 +o(1), showing the existence of the limit. 
The value g can be called the "Trace of the homoclinic orbit". We remark that 
g=2 requires M to be exactly a rotation, a highly exceptional case. 

ln a more general case, when the periodic orbit is not supposed to be on 
u=v=O as it happens in the case studied, the linear part of the map from s1 to 
s2 is (x,u,v)T_.(x,x(E,F)T+M(u,v)T)T with suitable constants E,F. The persis-
tence of x as first component of the image is due to conservation of the ener-
gy. The existence of the family of periodic orbits requires MRd{u,v)T+x{E,F)T= 
(u,v)T, which needs a careful analysis of higher order terms when Tr(MRd) is 
close to 2. Outside a neighborhood of Tr=2 the same scaling phenomenon is 
obtained. • 
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In our example the scaling factor exp{2TTa/b) depends on n. However, using 
1.1. one has lim exp{2ffa/b) = exp{2rr'O-v0 J/(3v )), where v0 is also given in 

n .... "" V' 0 
1.1. With the numerical value given for v0 the scaling factor goes to 735.76 
when n ... oo. 

The result given in 1.11. has been already stated in (19). A proof of the 
existence of infinite bifurcations and the geometric accumulation of the rela-
ted energies is also given in (14) for the Contopoulos potential. 

2. THE SECOND EXAMPLE. 
a) Statement of the problem. We consider a Hamiltonian introduced by Bar-

banis (1) (a modification of a classical Hamiltonian of Contopoulos and Mout-
soulas (6)) given by H=i(p~+p;+x 2 +y 2 )-xy 2 +}y 4 . We summarize some results con-
cerning this Hamiltonian: 
i) All the zero velocity curves (z.v.c.) given by p =p =0 are closed. They only X y 
exist for positive energy. 
ii} There is a symmetry with respect to the x axis. 
iii} There is only one fixed point, located at the origin, with double eigen-
values ti. 
iv) There is a family of symmetric periodic orbits with projection on (x,y) as 
the one given in Fig.11. As those orbits cut y=O three times with y>O (or with 
y<O} we call them triple periodic orbits. Each one of the symmetric triple per-
iodic orbits cuts y=O in a point as A with x=O. Then we recover the orbit from 
the values of the energy, h, and the x coordinate of the point A. The curve 
displaying x versus h for this family of periodic orbits is called, as usual, 
characteristic curve. Fig.12 shows, qualitatively, the characteristic curve 
obtained by Barbanis. 

Our objective will be to understand the origin of this curve. We remark 
that Devaney l8} and also Henrard (17) have found infinite spiral characteris-
tic curves going to one point which represents a homoc 1 i ni c orbit to a comp 1 ex-
saddle fixed point. However in our system there is not such point and, in the 
present example, the spiral is "finite". This means that it spirals inwards for 
some 8 revolutions and then it spirals outwards. Furthermore some bubbles ap-
pear in the inner part (the so called characteristic curves of irregular fami-
lies of periodic orbits (2), which seem to be not connected to the main family 
of triple periodic orbits). 

What we shall present here is the numerical evidence (in pictorial form) 
that similar characteristic curves of a closely related family of Hamiltonians 
can be explained using the invariant manifolds of a family of Lyapunov periodic 
orbits. The result of Barbanis appears to be the remnant of the behavior for 
close systems, for which an infinite spiral appears as characteristic curve. 
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b) A family of Hamiltonians. We consider instead the Hamiltonian family 
H=-21(p2+p2+x2+y2)-xy2+ay4, a<1/2. They have additional fixed points L+ at p =p xy -- - xy 
0, x=(2-4~)- 1 , y=±(2-4~)- 112 . They are of saddle-center type and go to infinity 
when a 11/2. Let h . t be the value of H at those points. For H=h>h . t the 

- Crl Crl 
component of the Hill region containing the origin opens and reaches infinity. 
This region is bounded by the z.v.c. (see also Fig.15). 

There is a critical value a= a*~ 0.4918863722 such that there exist a dou-
ble heteroclinic connection (see Fig.13). For this value of~ the bounded bran-
ches of the stable and unstable manifolds of the upper saddle-center L+ (which 
have the same projection on the (x,y) plane due to the symmetry} coincide with 
the unstable and stable ones, respectively, of the lower saddle-center L_. 

J.Font and M.Grau (9) looked for the characteristic curve of the family of 
symmetric triple periodic orbits for~=~*· The result, displayed in Fig.l4, 
shows that the characteristic curve consists of two spirals going to a (big) 
finite curve. Hence now we are faced to a new problem: Try to understand what 
happens for a=a*. 

c) The Lyapunov 
folds. For ~ 1/2 but 

family of periodic orbits and the related invariant mani-
close to 1/2 we look at h slightly greater than h "t• 

Crl 
There appear Lyapunov periodic orbits, P.O.±, (see, for instance, (20)) close 
to L± which project on the (x,y} plane on a curve with end points on the z.v.c. 
The orbits of this family, parameterized by the energy, are, at least locally, 
of hyperbolic type. They have stable and unstable manifolds W~~~-± with a 
strong symmetry (see Fig.l5). The manifolds are cylinders and the projections 
on (x,y), of both the stable and the unstable manifolds of the same periodic 
orbit, coincide. The left branches of Ws~~.± intersect y=O (with a suitable 
sign of y) in curves diffeomorphic to S~ (see Fig.16). Let us call them S~~~.t· 

Take a segment U ending on M in the line x=O of the Poincare section y=O 
(see Fig.l6). Following the flow downwards close to w~.O.- and returning to y=O 
close to s~.O.- we obtain, as image of the segment, a curve, TU, spiraling 
around s~.o.-· This is similar to the behavior in the Sitnikov problem (see 
(22)) and related problems.The points in unTU cut twice y=O with vertical ve-
locity, giving rise to symmetric triple periodic orbits (see Fig.17 a). Fig. 
17 b) displays the same behavior at a suitable section, Z, of P.O.- (for ins-
tance through some constant value of y). Let us call ~~~-- the local invariant 
manifolds of P.O.- on Z. The image of s~.O.- under forward flow is a fundamen-

tal domain on ~.O.- which contains a point M image of M and an arc of curve U, 
image of U, with one end point in H. The image of U under the (local) Poincare 
map T associated to Z produces an infinity of arcs U, n=1,2, ... , which accumu-

~ n 
late on sP.o.-· Take a fundamental domain of ~.O.- and two transversal arcs, 
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Al, A2, the one being the image of the other under T. The infinite arcs of the 
U between Al and A2 are mapped by the forward flow on TU. If Al is taken such n 
that it is mapped by the forward flow on U, then each one of the points Qn= 
A1nUn' n~n 1 , for some n1, represents a symmetric triple periodic orbit on that 
level of energy. 

A similar thing happens with the segment ending on N in the line x=O of 
the Poincare section through y=O. Furthermore the spiral TU cuts the segment 
ending on N giving rise to new periodic orbits that we shall not consider here. 
The related characteristic curves for ~=1/2 can be seen in (1). 

d) Evolution with h. For a=a* increasing h f:om hcrit on, the intersect-
ions of w~.O.+(h) with y=O giv~; set of curves sP.O.+(h) diffeomorphic to s1 
There is a range (h ,hf)' h =h 't' such that, for every one of those values of 

0 0 Crl 
h, the related s~.O.+(h) cuts x=O in two points giving a behavior like the one 
described in c). For h=h. let them be M.,N. (Fig.l8). Putting all of them to-

J J J . 
gether on the (h,x) plane (Fig.l9) we obtain an infinity of leaves of the cha-
racteristic curve of the symmetric triple periodic orbits (continuity of the 
leaves is ensured by transversality). An infinity of leaves (essentially verti-
cal) is also obtained to the left of h0 (see (10) for an analysis showing this 
fact). 

For h greater than hf, but close to it, Fig.20 shows the related behavior. 
Fig.20 a) and b) are the ones equivalent to Fig.17 a) and b), respectively. The 
infinite spiral obtained for hE (h0 ,hf) is now converted to a "finite" one, gi-
ving rise to a finite number of periodic orbits for any h>hf' as it happens for 
h<:h 0 . 

The standing problem is to see how the upper and lower leaves connect to 
produce the picture given in Fig.l4. 

e) Evolution with the parameter. Now we let ~change. A decrease (increa-
se) of~ simply pushes up (down) the set of intersections s~.O.+(h), but for 
values of a close to~* still some values h 0 (~). hf(~) are found. For h 0 (~) and 
~<:~* (resp. ~>~*) it is found that s~.O.+(h 0 (~)) has.a tangency with x=O leav-
ing S~.O.+(h 0 (~)) on the x~O region (resp. on the x~O region). For hf(~) it is 

found that s~.O.+(hf(~)) has a tangency with x=O leaving s~.O.+(hf(~)) on the 
X:!;O region. For he (h 0 (~),hf(~)) the curve s~.O.+(h) has two transversal inter-
sections with x=O. 

In any case the characteristic curves of the symmetric triple periodic or-
bits for~ close to~* look similar to the one found for a=a*. 

Further increase of~ let us reach a value~=~**~ 0.494644 for which 
h 0 (~**)=hf(~**). For a greater than a** none of the curves s~.O.+(h) cuts the 
x=O axis and the finite curve around which the spiral characteristic curves 
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accumulate has dissappeared. For!=!** it has shrinked to one point which is 
related to the tangency point of the x=O axis with Sup 0 +(h (!**)). This point 

• . 0 
represents a double heteroclinic connection between the Lyapunov orbits P.O.+ 
and P.O.-. 

For!>~** a behavior similar to the one obtained by Barbanis (1) (see Fig. 
12) is found. This looks as the remnant of the previous infinite spirals. The 
spiral becomes "finite", the outer arcs being only slightly distorted, and some 
of the innest ones, too weak to resist perturbation , become a bubble or diss-
appear. Furthermore the irregular families of periodic orbits can be seen as 
connected with the regular ones through variation of the parameter ~· 

The standing problem is to obtain quantitative information on this pheno-
menon, specially for~ close to!**. 
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n -q2,max hmax b a 

3 1.000000 1.666667 E-1 1. 732051 E 0 1.000000 E 0 
5 1.136568 3.586468 E-1 2.795409 E 0 1.819461 E 0 
7 1.328456 6.490098 E-1 3.673161 E 0 2.651046 E 0 
9 1.542562 1.113666 E 0 4.644058 E 0 3.610452 E 0 

11 1.766625 1.861677 E 0 5.840712 E 0 4.782442 E 0 
21 2.927121 2.107867 E 1 1.867376 E 1 1. 713708 E 1 
31 4.098879 2.242300 E 2 6.027270 E 1 5.759759 E 1 
41 5.270401 2.354747 E 3 1.944940 E 2 1.898220 E 2 
51 6.440702 2.458134 E 4 6.268469 E 2 6.198345 E 2 
61 7.609835 2.555974 E 5 2.017945 E 3 2.013291 E 3 
71 8.777980 2.650049 E 6 6.489751 E 3 6.517192 E 3 
81 9.945305 2.741508 E 7 2.085409 E 4 2.104701 E 4 
91 11.111950 2.831158 E 8 6.696664 E 4 6.785324 E 4 

101 12.278022 2.919585 E 9 2.149202 E 5 2.184640 E 5 
121 14.608777 3.094453 Ell 2.210606 E 6 2.258074 E 6 
141 16.938076 3.268644 El3 2.270454 E 7 2.327504 E 7 
161 19.266253 3.443824 E15 2.329310 E 8 2.394360 E 8 
181 21.593541 3.621175 E17 2.387568 E 9 2.459541 E 9 
201 23.920108 3.801591 E19 2.445517 ElO 2. 523648 ElO 

Table 1 
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2 2 0 0.666666667 EO 10 2 0 -0.310951966 E 2 
4 0 -0.333333333 EO 0 2 -0.600000000 E-1 
2 2 -0.333333333 EO 4 0 0.185113700 E 3 

4 2 0 -0.155555556 E1 
4 0 0. 777777778 EO 
2 2 0. 777777778 EO 

2 2 0.633466107 E 2 
0 4 0.750000000 E-1 
6 0 -0.134839285 E 3 
4 2 -0.265012460 E 3 

6 2 0 0.372839506 E1 2 4 -0.875115226 E 2 
4 0 0. 711934156 EO 0 6 -0.133333333 E-1 
2 2 -0.186419753 E1 8 0 -0.123468393 E 2 
6 0 -0.257613169 E1 6 2 0.923254801 E 2 
4 2 -0.257613169 E1 4 4 0.157665666 E 3 
8 0 0.644032922 EO 2 6 0.529800137 E 2 
6 2 0.128806584 E1 0 8 -0.133333333 E-1 
4 4 0.644032922 EO 10 0 0.293559236 E 2 

8 2 0 -0.362277092 E1 
4 0 -0.258278464 E2 
2 2 -0.233676269 E1 
6 0 0.283305898 E2 
4 2 0.359355281 E2 
2 4 0.760493827 E1 
8 0 -0.771639232 E1 
6 2 -0.200418381 E2 
4 4 -0.169344993 E2 
2 6 -0.460905350 E1 

10 0 0.230452675 EO 
8 2 0.161316872 E1 

8 2 0.454617513 E 2 
6 4 -0.773812300 E 1 
4 6 -0.344318793 E 2 
2 8 -0.105820027 E 2 
0 10 0.592592593 E-2 

12 0 -0.533443492 E 1 
10 2 -0.160038603 E 2 
8 4 -0.160064529 E 2 
6 6 -0.534153368 E 1 
4 8 -0.796296296 E-2 
2 10 -0.444444444 E-2 
0 12 -0.987654321 E-3 

6 4 0.345679012 E1 
4 6 0.299588477 E1 
2 8 0.921810700 EO Table 2 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 
7 2 2 2 2 2 2 2 2 2 2 2 2 

an 6 3 3 3 3 3 3 3 3 3 3 3 3 

b2,n 
7 1 1 4 1 73 1 163 1 1447 1 319 3 

T8 3 T8 9 T8 270 40 1620 150 56700 840 68040 19600 

b 0 0 0 0 0 0 0 -1 1 -29 1 -31 1 
4,n 648 16200 28350 28350 97200 105840 

Table 3 

n h Tr hmin Tr . max max r.n n 
10 0.203 E 1 3.33 0.567 E 2 -6.68 
20 0.256 E 2 5.40 0.305 E 3 -9.00 
30 0.284 E 3 7.54 0.283 E 4 -11.66 
40 0.304 E 4 9.69 0.280 E 5 -14.39 
50 0. 321 E 5 11.86 0.284 E 6 -17.14 
60 0.336 E 6 14.02 0.290 E 7 -19.91 
70 0.351 E 7 16.19 0.298 E 8 -22.68 
80 0.365 E 8 18.36 0.305 E 9 -25.45 
90 0.378 E 9 20.53 0.313 E10 -28.22 

100 0.390 E10 22.70 0.323 Ell -30.99 

Table 4 
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Figure 7 

Figure 8. As abscisa it is taken log 10 (24h). 
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Figure 9. As abscisa it is taken --2b ln ((h - h)/h ). a max max 

Figure 10 Figure 11 Figure 12 
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Exponentially Small Splittings of Separatrices with 
applications to KAM Theory and Degenerate 

Bifurcations 

Philip Holmes, Jerrold Marsden, and Jurgen Scheurle 

Abstract 

Both upper and lower estimates are established for the separatrix splitting of rapidly 
forced systems with a homoc/inic orbit. The general theory is applied to the equation 

.. ( t ) cp + sin cp = 3 sin e 

for illustration. There are two types of results. First, fix rt > 0 and let 0 < e ~ 1 and 
0 ~ 3 ~ 30 where 30 is sufficiently small. If the separatrices split, they do so by an 
amount that is no more than 

where C = C(30) is a constant depending on 30 but is uniform in e and o . 
Second, if we replace o by eP o , p ~ 8, then we have the sharper estimate 

for positive constants C1 and C2 depending on 30 alone. In particular, in this second 
case, the Melnikov criterion correctly predicts exponentially small splitting and 
transversal intersection of the separatrices. After developing this theory we discuss some 
of its applications, concentrating on a 2:1 resonance that occurs in a KAM 
(Kolmogorov, Arnold, and Moser) situation and in the forced saddle node bifurcation 
described by 

.. 2 3 ( 
X + jlX + X + X = Of t) . 
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Introduction 

In Poincare's celebrated memoir [1890] on the 3-body problem, he introduced the 
mechanism of transversal intersection of separatrices which obstructs the integrability of the 
equations and the attendant convergence of series expansions for the solutions. This idea has been 
developed by Birkhoff and Smale using the horseshoe construction to describe the resulting chaotic 
dynamics. However, in the region of phase space studied by Poincare, it has never been proved 
(except in some generic sense that is not easy to interpret in specific cases) that the equations really 
are nonintegrable. In fact Poincare himself traced the difficulty to the presence of terms in the 
separatrix splitting which are exponentially small. A crucial component of the measure of the 
splitting is given by the following formula of Poincare [ 1890, page 223]: 

which is exponentially small (or beyond all orders) in ~· Poincare was well aware of the 
difficulties that this exponentially small behavior causes; on page 224 of his article, he comments 
that "En d'autres termes, si on regarde ~ comme un infiniment petit du premier ordre, la 

distance BB', sans etre nulle, est un infiniment petit d'ordre infini. C'est ainsi que la fonction 
e-1111 est un infiniment petit d'ordre infini sans etre nulle .... Dans I' example particulier que nous 
avons traite plus haut, la distance BB' est du meme ordre de grandeur que l'integral J, c'est a dire 

que exp( -7t I {2;')." 
In this paper we overcome some of the essential difficulties that are encountered in this 

type of problem, in KAM theory, and in chaotic motions occurring in the unfoldings of degenerate 
singularities. Based on numerical evidence and formal calculations, it is known that one should 
get exponentially fine splittings and exponentially long escape times for problems of this type. 
Some rigorous but rough upper bounds for this phenomena have been given by Nekhoroshev 
[1971,77] and Neishtadt [1984]; see also the discussion in Arnold [1978], p.395ff and 407, 
Chirikov [1979] and Simo and Fontich [1985]. The analyticity argument of Cushman [1978] and 
Kozlov [1984] (and reference therein) uses the Poincare-Melnikov method to prove that the 
separatrices do split for most parameter values. However, it is not easy to prove from these 
arguments that splittings really do occur for specific parameter values and what the sharp upper and 
lower estimates for the splitting distances are. The seriousness and significance of this difficulty 
was further emphasized by Sanders [1982]. 
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In KAM theory one also finds that the splitting of separatrices is governed by systems of 
the form considered here, and so would be formally beyond all orders if a power series in the 
perturbation parameter were developed. Indeed, a formal calculation based on the Melnikov 
method shows that the splitting of separatrices is probably of exponentially small order, a 
phenomenon discussed in Arnold's book (see especially page 397). Zehnder [1973] also shows 
that there are transverse homoclinic orbits for generic nonlinearities in KAM theory. In a similar 
fashion, the same type of behavior arises in the unfolding of degenerate singularities, such as the 
intemction of the Hopf and the pitchfork or transcritical bifurcation (see Guckenheimer and Holmes 
[1983] and Scheurle and Marsden [1984] for discussions of this bifurcation and for further 
references). See also the paper of Dangelmayr and Knobloch [1987] for the case of symmetry 
breaking bifurcations and the work of Golubitsky and Stuart [1986] for the application of 
unfolding techniques to the Taylor Couette problem, where it is expected that similar phenomena 
will occur. Since these splittings are exponentially small, standard methods for detecting them 
based on averaging, normal forms, or perturbation expansions using power series in E, will not 
succeed. This is also behind the fact that one has, in general, divergence of the Birkhoff series. 

In this paper, we give a new method that overcomes many of these difficulties. We give 
sharp upper bounds, with the constant in the exponential being the distance of the nearest pole in 
the complex t-plane of the unperturbed homoclinic orbit to the real axis. If a high enough power of 
E is present in front of the forcing term then there is a lower bound for the splitting, which is also 
exponentially small with the same exponential factor. In the latter case, the Melnikov integral is 
sufficient to predict the tmnsversality of, and to estimate the magnitude of the splitting. In general, 
however, it appears that one must go to higher orders to obtain a predictable criterion, in which 
case one has to revert to an intricate calculation, or else use the Cushman-Koslov analyticity 
argument, which only gives a generic result. 

Our approach is based on a convergent iteration scheme using the Liapunov-Perron 
method and a special extension of the scheme to the complex t plane that enables us to estimate the 
splitting distance. A naive extension will run into difficulties since the forcing term sin(t/E) is 
exponentially big for t in a complex strip. As mentioned above, these estimates relate the 
singularities in the complex plane and the factor in the exponential [the separatrix for the 
homoclinic orbit in the pendulum case has one component given by sech t, which has simple poles 
at t = ±i7t/2, and the corresponding exponential factor is exp(-7t/2E).] Because of this, one can 
conjecture a connection between the results here and the Painleve property. The work of Ziglin 
[1982], van Moerbeke [1983] and Bountis et.al.[1986] may be helpful in this regard. The key to 
our method is that the special iteration scheme preserves the exponentially small structure, with the 
same factor in the exponent at each stage, controls the possible accumulation in the pole behavior, 
and exhibits the cancellation of terms that move each of the stable and unstable manifolds (and the 
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hyperpolic fixed point) an amount that is algebraic in £, even though the difference between them 
is exponentially small. The key points of the proof are given here; a more detailed paper is in 
preparation. 

There have been other approaches to exponentially small phenomena based on asymptotic 
methods. For example, the works of Meyer [1976] on adiabatic variation, Meyer [1982] on wave 
reflection and quasiresonance, Segur and Kruskal [1987] on breathers in the <p4 model, and 

Kruskal and Segur [ 1987] on dendritic crystals, use this technique. While there seem to be some 
points in common with our approach, it appears that additional work would be needed to apply and 
justify the estimates that we obtain for separatrix splitting. 
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U Preliminaries 

We begin by recalling a few basic facts about the standard Poincare- Melnikov method. 
The phase portrait of the simple pendulum 

~+sincp = 0 (1.1) 

is as shown in Figure 1 in the (cp, v) plane, where v = dcp/dt. The homoclinic orbits shown there 
are explicitly given by the solutions 

~(t) = ± 2 tan - 1(sinh t) } . (1.2) 

v(t) = ± 2 sech(t) 

We observe for later use that sech t has poles in the complex t-plane at t = ± irc/2. 
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Figure 1. Phase portrait of the simple pendulum. 

If we modify (1) by including aT-periodic forcing, we get the equation 

~ + sin 4> = e f(t) , (1.3) 

for which the dynamics is conveniently described by the Poincare map P(to) : JR? ~ n:e defined 
by mapping initial conditions (q>0, v0) at time to to the solution after one period, at time to+ T. 
For small e, the hyperbolic fixed points for (1.1) get perturbed to fixed points for P(t0) (i.e., 
periodic orbits for (1.3)) and P(to) has stable and unstable manifolds at these fixed points which, 

in general, intersect. This leads one to define the splitting distance 

and the splitting angle 

d = max d(to) 
lo 

a = max a(to) 
'o 

where, for any to. d(to) and <X( to) are shown in Figure 2. 

(1.4) 

(1.5) 
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Figure 2. The splitting distance and angle. 

This splitting distance and angle are correlated with the thickness of the stochastic layer; 
the trajectories of some sample points are shown in Figure 3 for illustration. One should be 
cautious, however, that there is little analytic work on the precise relation between the splitting 
distance and angle and the thickness of the stochastic layer. However, the celebrated horseshoe 
construction of Poincare, Birkhoff, and Smale does establish that a transversal intersections (a*-
0) implies the existence of complicated orbits (and periodic orbits with arbitrarily high period) and 
thus warrants using the word "chaotic" to describe the dynamics. 
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Figure 3. Orbits of points under the Poincare map of (1.3) for f(t) = (0.1) sin t 
(plot courtesy of B. Bimir). 

219 

The splitting distance is typically measured by a Poincare-Melnikov function. For a 
planar Hamiltonian system 

. aH aK ) q =ap-+eap- ' 

. aH aK 
P =- dq -eaq-

(1.6) 

where K = K(q, p, t) is a perturbing T-periodic Hamiltonian, the Poincare- Melnikov function is 
the T-periodic function 

M(to) = f~ {H, K}(q(t), p(t), t + to) dt , (1.7) 

the splitting distance is proportional to 
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(1.8) 

and the angle is proportional to 

(1.9) 

This follows readily from an analysis of the first variation equation. See, for instance, Holmes 
and Marsden [1982] and Guckenheimer and Holmes [1983] for discussions and proofs. For 
example, for 

~ + sin lj> = E sin rot , (1.10) 

one finds 

M(to) = 21t sech ( 1t2ro) cos (roto) (1.11) 

by evaluating (1.7) using residues, noting the pole of sech t at i1t/2. Thus, 

d "' 21tE sech ( 1t2ro ) and a "' 21tCOE sech( 1t2<0 ) (1.12) 

~2 Exponentially Small Splittings 

To illustrate the main idea, first consider the rapidly forced pendulum 

~ + sin lj> = E sin(t/E) . (2.1) 

If one applies equation (1.12), one finds the splitting distance should be of the order 
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(2.2) 

(The constant 27t is not important -- it depends on the units of measure; for example, it may be 

convenient to use the unperturbed energy as a distance measure.) However, (2.2) is not easy to 
justify; for one thing, the errors in (1.8) are O(e2), while (2.2) is already smaller than any power 
of £. 

There are two main results for problems of this sort as follows: 

UPPER ESTIMATE Consider 

~ + sin cjl = 5 sin(t/£) . (2.3) 

For any 11 > 0 there is a 50 > 0 and a constant C = C(TJ, o0) such that, for all £ and o 
satisfying 0 < £ :5 1 and 0 < o :5 o0, we have 

splitting distance :5 Co ex~- ( ~ -11) ~ J (2.4) 

There is a similar estimate for the splitting angle. 

LOWER ESTIMATE AND SHARP UPPER ESTIMATE Consider 

~+sin cjl = el'o sin(t/e) . · (2.5) 

If p ~ 8, then there is a 50 > 0 and (absolute) constants C1 and C2 such that,for all £, o 
satisfying 0 < £ :5 1 and 0 < 0 :5 o0, we have 

(2.6) 

Observe that 7t/2, which appears in the exponent in both estimates, is the distance from 
the real axis to the closest pole of sech t; see Figure 4. 
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i1t/2 

t 

- i1t/2 

Figure 4. The exponent in the exponential estimate is the distance to the nearest pole of the 
homoclinic orbit in the complex t-plane. 

These estimates are special cases of estimates for a planar system 

u = g(u, £) + e"Bh( u, £, ~ ). (2.7) 

where one assumes: 

• g and h are entire in u and £; 

• h is of Sobolev class HI (for the splitting distance results) or H2 (for the splitting angle 
results) and T-periodic in the variable 9 = t/£; 

• u = g(u, e) has a homoclinic orbit ii(£, t) analytic in t on a strip in the complex 

t- plane, with width r. 

under additional assumptions on the fundamental solution of the first variation equation 
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which can be checked to hold in the pendulum example, there are analogues of the upper and lower 
estimates above for this general situation, with 1t/2 replaced by r. We shall give additional details 
in the subsequent sections. The proofs depend on detailed estimates of the terms in an iterative 
process in the complex strip that are used to define the invariant manifolds. It is important to 
extend these iterates to the complex strip in the proper way; as we have mentioned, sin(t/E) 
becomes very large for complex t and naively extended iteration procedures for the stable and 
unstable manifolds will lead to unbounded sequences of functions. 

~3 The Hypotheses and Set-Up. 

We recall some of the general theory and the ideas involved in the proofs from Holmes, 
Marsden and Scheurle [1988] for the convenience of the reader. We consider a differential 
equation of the following form 

. p ( t) u = g(u, e) + e 5 h u, e, £ (3.1) 

where pis a positive integer (one can think of the term eP as being part of h or as being divided 
between 5 and h as is appropriate), U = (x, y) E JR2, E > 0, g(u, E) : C2 X C ~ C2 is entire, 
h is entire in (u, e) and is 27t-periodic and Cl (or of Sobolev class Hl ) in its third arguement tIe. 
Both g and hare assumed to be real forreal values of their arguments. (The H1 assumption on h 
is needed below to get bounds on the splitting distance; for exponentially small bounds on the 
angle at a transversal intersection, we need to assume that h is of class H2 in tIE - see 
Remark 1 at the end of section 5.) 

Although it is not really needed, we shall introduce a symmetry condition for simplicity. 
(A more general case without this condition is discussed at the end of this paper.) Namely, we 
assume that the system (2.1) is reversible in the sense that there is a real linear reflection operator 
R: R2 ~ R2 i.e. a 2 x 2 matrix satisfying R2 =Identity, with.eigenvalues ±1, and satisfying the 
following conditions: 

g(Ru, E) =- Rg(u, E) and h(Ru, E, -t/E) =- Rh(u, E, t/E). (3.2) 

For instance, for the example given in the preceding section, we take 
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g(x, y) = (y,- sin x), h((x,y), £, t /e)= (0, sin (t /e)) and R(x, y) = (- x, y). 

Assume that the homogeneous equation il = g(u, E) has a homoclinic orbit r e which is 

asymptotic to a hyperbolic fixed point; we write the homoclinic orbit as u = ile(t). We shall assume 

that ile(t) has an analytic continuation in the complex t plane into a complex strip Se defined to 
be the set of complex numbers z such that I Im z I S re , where re is some positive real number. 

Typically, ile(t) will be an analytic function in t, and will be analytic in a strip, with re smaller than 

the smallest distance of the poles to the real axis. We assume that the initial condition of the 

homoclinic orbit satisfies Rile(O) = ile(O), so that R ile(-t) = ile(t). In the example, the homoclinic 

orbit is given by 

( <p(t), ~(t)) = 2(tan-l(sinh t), sech t) 

where ~ = dcp I dt, so this assumption is clear. 
As indicated in section 2, there are two cases to consider. In the first, we choose p = 0 

and re = ('IC/2) -11 for a fixed 11 > 0 and in the second, we choose re = (7t /2)- e (and later we 

will require p ~ 8). 
The first variation equation 

(3.3) 

has exponential dichotomies corresponding to t in JR.+ and R- (see for example, Hartman 

[1982], Ch. 13). That is, the plane splits into two subbundles 

(3.4) 

that are invariant under the evolution of the flrst variation equation, such that the components cp1 

and cpz of the fundamental solution matrix cp(t, 't), which are defined by restriction of cp to "'-t,e and 
Yt.e respectively, satisfy the inequalities: 
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I I -a('t-l) I I cp1(t, t)~ ~ K e ~ (if t ~ t) (3.5a) 

(if t ~ t) (3.5b) 

fort, t satisfying - oo < t, t ~ 0, and where ~ e Xc.e, and 11 e Y't,e . For simplicity of 
notation, we have suppressed the possible £ dependence of cp, cp1, and <1'2· Similarly, 

lcp 1 (t,t)~l ~Kea('t-l)l~l 

I cp2(t, t)TII ~ K e a( I- 't) l11l 

(if t ~ t) 

(if t ~ t) 

(3.6a) 

(3.6b) 

for t, t satisfying 0 ~ t, t < oo, and where ~ e Xc,e and 11 e Y 't,£ . In these equations a and K 

are positive constants. The constant a is related to the eigenvalues of the linearization of the 

equation at the hyperbolic fixed point. We choose the dichotomies amongst all possible ones by the 
requirement that at t = 0, the bundles satisfy 

Xo,e is the eigenspace of R corresponding to the eigenvalue -1 
Y o,e is the eigenspace of R corresponding to the eigenvalue 1 

In the example, we take the bundles to be the tangential space to the homoclinic orbit and the 
normal direction at the point t = 0 swept out by the flow of the first variation equation. The first 
variation solution is explicitly found in this case to be as follows 

q>1(t, t)~ = -21 [{cosh t + sech t- t sech t tanh t} \jf- {sinh t + t sech t}u] ( sech t ) 
- sech t tanh t 

(3.7a) 

1 ( sinh t + t sech t ) cp2(t, t)TI = -2 [ {sech t tanh t}\jf- {sech t}u] h h h h 
cos t+sec t-tsec ttan t 

(3.7b) 

where v has components ('If, u) in the original coordinate system and where ~and 11 are the 
projections of v onto the spaces Xc,e and Y't,e respectively. 
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§4 The Iteration Method. 

We shall locate the stable and unstable manifolds of the perturbed equation using a special 
Liapunov-Perron type iteration scheme that is coupled with a Fourier expansion and a certain 
extension to the complex t-plane. It will be important to keep track of the estimates during the 
iteration process itself. We write the perturbed stable and unstable manifold of the hyperbolic fixed 
point as follows: 

(4.1) 

where t ;::: to in the + case, and t ~ to in the - case. Dropping the ± and writing s = t - to , we get an 
equation forv, regarded as a function of s, to,£ and B by substituting (3.1) into (2.1); the stable 
and unstable manifolds will later be picked out by looking for bounded solutions of the resulting 
fixed point problem. We first compute (suppressing the £ and B dependence for the moment): 

v - A(s)v = F(v, s, (s + to)/£) (4.2) 

where 

A(s) = Du g(iiis), £) (4.3) 
and 

1 P ( s+ to) a [ g(u/s) + B v, £)- g( iiE(s), £)- A(s) B v] + £ h iiE(s) + B v, £, -£-

(4.4) 
Here the eP is grouped with h, but we also could group appropriate powers' with B; this freedom 

is important later. We look for solutions of (4.2) that are uniformly bounded in the ±cases by 
reformulating it as a fixed point problem for the following integral equation 

±{ s+t0 ) v= K v s --
' ' £ 

(4.5) 

where K± are the linear operators (again with the £ dependence supressed) that are given by 
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s .. 

(K+ f)(s) = J cp1(s, o) f1(o) do- J cp2(s, o) f2(o) do for all s;;:: 0 (4.6a) 
0 s 

s s 

(K-f)(s)= J cp1(s,o)f1(o)do+ J <p2(s,o)f2(o)do forall s~O (4.6b) 
0 -oo 

Here the projections of f onto the dichotomy subspaces (2.4) are denoted f1 and f2 . With K± 
thought of as operating on the space of bounded continuous (vector valued) functions on JR±, one 
gets a contraction mapping for sufficiently small Bo and a unique fixed point that can be solved for 

iteratively (see, for example, Hartman [1982], Chapter 12, part III). The stable and unstable 
manifolds are determined by the fixed points, which we denote by v+(s, to) and v-(s, to). where 
we again suppress the dependence on e and B. We start the iteration scheme in each case with the 

zero solution and then defme inductively 

(n+ 1) ± ± ( (n) ± s: to ) v (s, t0) = K F v (s, t0), s, "' (4.7) 

so that (n)v ± (s, to) converges to v ± (s, to) as n -+ oo • 

~5 Estimates for the Splitting Distance 

The next step is to estimate the splitting distance between the stable and unstable 
manifolds. To do this we estimate the following quantity: 

where u ± (s + t 0, to. e, B)= u"e(s) + 5 v ± (s, to. e, B) are the stable and unstable manifolds of 

the perturbed equation. The splitting distance is defined to be the maximum of D.(t0, e, B) over 
one 21tE period in to· We extend each of the solutions of the iteration scheme (4.7) to strips in the 

complex t plane. We do this in a way that makes the iterates uniformly bounded in the appropriate 
(e dependent) half slrips 

s+ = { z E c I I Im z I ~ r£ andRe z;;:: 0} 
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S- = { z e C I I 1m z I ~ r£ and Re z ~ 0} 

and the vertical segment 

so = { z e C I I Im z I ~ r£ and Re z = 0}. 

Thus, a uniform exponential estimate on the distance between the iterates 

(n) I (n) + (n) - 1 A(t0, e, 15) = 15 v (0, t0, e,l5)- v (0, t0, e, 15) (5.2) 

produces the corresponding result for the limiting solution as n -+ oo • 

Let a = (s + t0) I e and consider the following iteration scheme for an (e and 15 
dependent) function w(s, a): 

where we start with w = 0, and define L± as follows. For any vector valued function 

we set 

where we define 

.. 
~ ik9 ± f(s, a)= .i..J fk(s) e , where S E S and a E R, 

k=-

L±f= L a: (s) eik9• 
k=-

s 

a6Cs) = J <p 1 (s,o-) f0 1 ( o-)do- - J <p2(s,o-) f0,2( o-) do-
o • s 

s s 

IIQ(s) = l 'Pt(s,o-) fo,l(o-)do- + J <p2(s,o-) fo,l(o-) do-
o 

(5.3) 

(5.4) 

(5.5a) 

(5.5b) 
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s 

a;(s) J q> 1(s,cr) eik(o-s)/£ fk, 1(cr)dcr- J q>2(s,cr) eik(o-s)/£ fk,2(cr)dcr (5.6a) 
s 

and 

s s 

a_;(s) J q>l (s,cr) eik(o-s)/£ fk,l (cr)dcr + J q>2(s,cr) eik(o-s)/£ fk,2(cr)dcr (5.6b) 

±ir£ 

Here the projections of the fk on the dichotomy subspaces (2.4) are denoted fk,l and fk,2• and in 
(5.6) we choose "+" if k > 0 and "-" if k < 0. 

One now introduces the function spaces x± of fs with the Sobolev Hl norm in the 
variable 9 and the sup norm over s± in the variable s. Also, let X0 be the space of fs 
endowed with the H1 norm in 9 and the sup norm with weight exp[(rE -lsi)/ E] in s over 

S0. We make the assumption that the fundamental solution q>(t, 't) of the linear equation (3.3) has 
an analytic continuation into the complex strip Se in both t and 't such that the estimates (35) 
and (3.6) hold with t and 't on the right hand sides replaced by Ret and Re 't. This is verified 

in our example using the representation (3. 7). 

Fact 1 Define the ( E and 3 dependent) maps 

G± : w(s, 9) ~ L± F(w(s, 9), s, 9) (5.7) 

where F and L± are defined in (4.4) and (5.4). Then for each E and 3, o± is a bounded map 

(maps bounded sets to bounded sets) of x± to itself. 

This is proved using Sobolev type estimates; in fact it is useful to break the argument into 
the two steps of consideration of the maps w 1-+ F(w, s, 9), to wpich a standard composition (or 
n lemma) argument can be applied and a study of the operators L± using explicit Fourier series 
methods. In general, the bound on the image set depends on E; it could grow as E ~ 0. To 
prevent this one needs to balance the growth of the norm of L± and the accumulation of poles in 
w with the powers of E in front of h. It is at this stage that some powers of E in front of h are 
needed to get uniformity in E; this is required for the lower and upper estimates that have the exact 
distance to the pole in the exponent, and not a smaller one. 
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Fact 2 With the assumptions as above, let B± be a bounded subset in X±. Then there 
exist constants C1 and C2 depending only on the bounds of the set B± such that for any pair of 
functions w+ and w- in B±, we have 

(5.8) 

where II • no is the norm on the space xo. 

This is proved by an analysis of the formulas explicitly representing the maps G+ and G-. 
For example, to estimate the difference of the terms coming from the first terms of (5.6 a, b), we 
use a Lipschitz property of the composition map w 1-+ F(w, s, E, 8) and this contributes to the 

first term on the right hand side of (5.8). To estimate the second terms in (5.6a,b), for k > 0, one 
uses Cauchy's theorem to shift the path of integration in complex cr-plane along the real axis from 
s to oo to a path up the imaginary axis to the point i r£ and then along the line lm cr = r£ to oo. 

Because of the way the extensions to the complex plane have been chosen and the bounds obtained 
in Fact 1, the integral along the line lm cr = r£ contributes to the second term on the right hand 

side (5.8). After subtraction with the corresponding terms in (5.6b), the other terms contribute to 
the first term on the right side of (5.8). 

In the preceding argument, the case k = 0 requires special attention. These terms would 
contribute algebraic, not exponentially small terms, were it not for a crucial cancellation. As above, 
one first reduces to the case s = 0 by noting that the difference of the terms contributes to the first 
term on the right hand side of (5.8). Then we are left to estimate the difference between the terms 

0 

~ 1 = t <p2(0, cr)f0,2(cr)dcr and ~ 2 = - J <p2(0, cr)f0,2(cr)dcr (5.9) 

But one checks that we have the symmetry ~ 1 = R ~ 2 = ~ 2 • and so these terms cancel. (See the 

remark below regarding this symmetry assumption). 
Now assume that there are bounded neighborhoods B± in X± of 0 which are 

. independent of E and a and which are mapped into themselves by the E and a dependent 
mappings G± and so our iterates remain in B± for all n. This requires an estimate on the poles 
that occur in the mapping G± and the balance between this behaviour and the factors of E in front of 
the nonlinear inhomogeneous term h. By choosing a0 sufficiently small, we can arrange that C1 

in Fact 2 is less than 1/2. By the contraction mapping principle, the iterates (n)w± converge to 
w± in x±. For real s, w± are related to the stable and unstable manifolds in the following sense: 
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Fact 3 For each real t0 , there are ~ with It - t~ of order o such that for all real t, 

We prove the required estimates as follows. Making the inductive assumption that II w+ 
- w- 110 is bounded by 2C2, the estimate (5.8) shows that the next iterate obeys the same 
inequality. Passing to the limit, using Fact 3 and rescaling back to the originai variables then 
gives the desired result that the splitting is bounded above by 2 Cz o exp(- r£ I E). To get a lower 

bound, one needs to show that the higher iterates are of lower order than the first iterate. The first 
term in the iteration is the same as one would get from the Melnikov method, which, in the 
example can be evaluated explicitly. To estimate the higher order terms requires one to show that 
the power of E in front of h can be used to control the growing norm of the operators L + and L-
as E ~ 0, and still produce an overall power that increases with each iteration. This is how the 
condition p ~ 8 arises in the example; in that case, we divide Es into E3 to go with h and e5 to 
go with o. These specific powers are chosen to (i) balance the growth in the norm of L± as E ~ 

0 and (ii) to ensurethat the difference between the first and the higher iterates will be small 
compared to the first iterate. Notice that this analysis is not based on an asymptotic series 
argument, but rather on a comparison between the first term in the iteration scheme and the 
subsequent iterates. 

Remark 1 From the reversibility assumption, it follows that ~(0, £, o) = 0 for all £ and o. 
Therefore, the separatrices obviously intersect in this case. However, the proof of the 
transversality of the intersection requires additional estimates for 

which measures the angle of intersection of the separatrices. Estimates for this again come in two 
cases, namely upper and lower estimates. These estimates are of the same exponentially small form 
as those for the splitting distance, with an additional factor of 1/ E. Estimates for the to derivatives 
of the iterates in (5.2) can be obtained by the same techniques as for the iterates themselves using 
the space H2 instead of H1 in the above setting. In the example, again the assumption that p ~ 8 
implies that the separatrices do have a transversal intersection with an exponentially small angle of 
intersection. • 

Remark 2 If we consider a one parameter unfolding 
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(5.10) 

which agrees with the problem (3.1) for A.= 0, then under a certain non-degeneracy condition 
with respect to the parameter A., a slight modification of our method yields the following result 
without the reversibility assumption. For sufficiently small Bo , all to e R, and all E and B 
satisfying 0 < E ~ I and 0 ~ B ~ B0 , there exists a value of A. given by an expression of the 
form 

such that for this A.-value, (5.10) has a unique solution which is B0-close to ut(t- to) {that is , the 
difference in the sup norm is ~ Const · o0) for all t e R. In fact, one can find sucessive 
approximations An of this A.-value such that in ( 4.7) 

(n)v+(O, t 0) = (nlv-(0, t 0) 

holds for all n. Thus it follows that v+(O, to) = v-(0, to). and the desired solution is given by 

u(s + to, to· E, B) = uE(s) + Bv-{s, lo· E, B) for all s ~ 0 

- + u(s + t0, t0, E, B) = ue(s) + Bv (s, t0, E, B) for all s ~ 0 (5.12) 

Here J..o(E, 0) = 0, and we have the estimate 

(5.13) 

Moreover, near A. = 0, there are no other A.-values such that (4.10) has a solution which is o0-

close to ut(t- to) for some t0• Thus, if we replace B by E for example, then there is an 
exponentially thin wedge-like zone in (E, A.) - space such that the local stable and unstable 
manifolds of the perturbed hyperbolic fixed point intersect if and only if (E, A.) is contained in this 
zone. Also, the splitting distance is bounded above by C E exp(-rJE) for such values of E and 
A.. This zone of (E, A.) - values corresponds to the Arnold tongues of perturbed periodic solutions 
(cf. Scheurle [1986]). 
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Our techniques also show that .1(to. £, 5) in (5.1) is bounded above by Coexp(-r£/£) 
as £ ~ 0 whenever the stable and the unstable manifolds of the perturbed hyperbolic fixed point of 

(3.1) intersect in a solution which is 50-close to uE(t- to) with some to= t~(£, o) for all small 

£.Besides reversible problems, where t~(£, 5) = 0 for all £,Hamiltonian systems also have this 

property (cf. Arnold [1965]). We point out, however, that the equation that we have considered as 
an example is locally, but not globally Hamiltonian. Our theory requires a homoclinic orbit, so we 
have chosen the phase space to be the cylinder. • 

~6 A 2:1 Resonance and KAM Theory 

In KAM theory, arguments based on numerical evidence and formal calculations lead to 
the conjecture that one has exponentially fine splittings and exponentially long escape times. 
Some rigorous but rough upper bounds for this phenomena have been given by Nekhoroshev 
[1971, 77] and Neishtadt [1984]; see also the discussion in Arnold [1978, pp. 395ff and 407], 
Chirikov [1979], and Simo and Fontich [1985]. The analyticity argument of Cushman [1978] and 
Koslov [1984] (and reference therein) uses the Poincare-Melnikpv method to prove that the 
separatrices do split for most parameter values. However, it is not easy to prove from these 
arguments that splittings really do occur for specific parameter values and what the sharp upper and 
lower estimates for the splitting distances are. The seriousness and significance of this difficulty 
was emphasized by Sanders [1982]. 

Exponentially fine phenomena appear to be prevalent in a number of situations beyond 
those discussed here and in the next section. For example: 

1 The action appears to change by an exponentially small amount in adiabatic theory (see, for 
example, Lenard [1959], Meyer [1976], and Berry [1985]- see also Marsden, Montgomery 
and Ratiu [1988]). We expect that our techniques will be relevant for these problems. 

2 The existence of breathers in the cp4 model involves exponentially small phenomena (see 
Segur and Kruskal [1987]). 

3 The growth of dendritic crystals also involves exponentially small phenomena (see Kruskal 
and Segur [1987]). 

4 Various problems in critical phenomena in water waves also seem to involve these issues; cf. 
Hunter and Scheurle [1987]. 

5 Exponentially small phenomena are known to occur in the study of relaxation oscillations; cf., 
Eckhaus [1982] 
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6 Finally, it has been suspected for some time that these problems also arise in the unfolding of 
degenerate singularities; see for example, Takens [1974). We shall illustrate the basic ideas in 
§7. 

Here we consider a simple illustration of why these problems come up in KAM theory. 
Consider the dynamics of two coupled oscillators with Hamiltonian, written in action angle 
variables, of the form 

Ji(O, I,~. J, £) = F(l) + J + £K(O, I,~). (6.1) 

We have taken the second oscillator to be a harmonic oscillator and the coupling independent of J 
purely for simplicity. If we set H =constant, (3.1) determines J. We can also let ~ = t be the 
new time, so (3.1) becomes equivalent to a forced one degree of freedom system with Hamiltonian 

H(O, I, t, £) = F(l) + £K(O, I, t) . (6.2) 

For example, choose K(O, I,~) = I sin20 cos~ and F(l) =I- 12/2. Then one sees that the 
circle I=: 1/4 resonates with the forcing in a 2:1 resonance. To study it, we make the change of 
variables 

(6.3) 

to get 

\jf = {;(2p)+£ [!cos 2'1' +cos 2('1' + t)- tcos t] , 

(6.4) 

p = f;[- ~sin 2'1' + sin 2('1' + t)] + £ U sin 2 'If + sin 2('1' + t)] 

Now one removes the t-dependence at order -{; by the averaging transformation 

"' = 'II' ' p = p'- ~ cos 2('1" + t) (6.5) 

Dropping the primes, the new system becomes Hamiltonian with 
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H = -!£F('If, p) + eG('If, p, t) , (6.6) 
where 

and 

G('lf, p, t, £) = l [2 cos 2'1jf + 3 cos 2('1jf + t)- 4 cost]+ 0(£112) • 

Rescaling time to 't = -{; t , (6.6) transforms to 

H = F('lf, p) + -fEa( 'If, p, ..Je) (6.7) 

which has our form of a rapidly forced perturabation of the Hamiltonian F, which has homoclinic 
orbits with 

1 p = ± _,. sech (412-c) 
2-v2 

(6.8) 

The situation is shown in Figure 5, represented in (I, 9) coordinates, viewed as polar 

coordinates. With the addition of -{; G('lf, p, t I-{;), one develops stochastic layers around the 
homoclinic orbits shown in figure 5. 
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£=0 

averaged to order £112 and truncated 
(viewed in a rotating frame) 

FigureS 

A formal Melnikov calculation suggests the splitting distance is of order 

--sech --1t ( 1t ) 
256{£ g..J2£ ' 

which is exponentially small. Our upper estimate shows that 

splitting s c{£ exp (- ( 8 ~ -11) .Je) 

(6.9) 

(6.10) 

with a similar estimate for the splitting angle. Note that (6.10) is compatible with (6.9), although 
(6.9) suggests a sharper result. Our lower estimates do not apply to (6.7) since the same power of 
£ appears as an amplitude coefficient in front of G and also as the denominator of t I -{;. Our 
analysis of the estimates suggests that it may be very difficult to rigorously establish an estimate 
above and below by an expression like (6.9). However, one can show the following: Consider 
the same system with an additional term: 

2 
H = I - ~ + J + £ I sin29 cos ~ + e2H2 (6.11) 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXPONENTIALLY SMALL SPLITTINGS 237 

We choose H2 such that after averaging, terms of lower order in e cancel, leaving only higher 
order terms in e and our lower bound now does apply. The algebra involved to get H2 is a little 

involved, so we illustrate the result with a simpler explicit example. Consider 

.. ( t) q, + sin cp = e sin ; . (6.12) 

Again, the upper bound Cee-<7112- 11)/E is valid, but an optimal upper and lower estimate are not 

known. However, we can modify (6.12) a bit to 

.. (t) 2(t ) cp +sin q, = e sin ; + e h ;· £, cp , (6.13) 

where 

4 7 
h( ) . e . . 2 e . 3 

t, £, <p = e cos <p sm t + T sm <p sm t - 3 cos <p sm t (6.14) 

so that ( 6.13) satisfies 

(6.15) 

This is done by choosing K so that after averaging, the system has the form required for both our 
upper and lower estimates. 

Thus, while we cannot prove the upper and lower estimates for (6.12), there is a nearby 
system (6.13) for which they are valid. We conclude that while the upper estimates are fairly 
robust, the lower estimates appear to be very delicate and in fact one can perturb a given system 
slightly to get a splitting distance (and angle) much smaller than one might have expected-- see 
the extra power of £12 in (6.14). Even more extreme, one can sometimes add a term which 

completely cancels all the higher order terms and the perturbed system becomes completely 
integrable! For instance, a trivial ~xample of this sort is the completely integrable system 

. 2 ( t) x=y-£ sin £ 

} (6.16) 

y = sin x + e cos ( ~) 
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which is simply a complicated way of writing the pendulum equation. This general behavior 
appears to be rather common and shows that an asymptotic estimate good enough to give lower 
bounds independent of (or robust with respect to) all higher order terms is not possible. 

§7 Exponentially Small Splittings in a Bifurcation· Problem 

We consider the problem of a Hamiltonian saddle node bifurcation 

.. 2 
x+~x+x = 0 (7.1) 

with the addition of higher order terms and forcing: 

x + ~x + x2 + h.o.t. = ~f(t) . (7.2) 

The phase portrait of (7 .1) is shown in Figure 6. 

J.1=0 1.1>0 

Figure 6 
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The system (7.1) is Hamiltonian with 

Let us first consider the system without higher order terms: 

To study it, we rescale to blow up the singularity: 

x(t) = A.~( t) 

where A. = Ill I and t = t ...[): . We get 

Figure 7 

ll < 0 ' 

ll > 0 . 

----- upper estimate valid if 
6~11!1 512 

lower estimate valid if 
SSIIlP' 

239 

(7.3) 

(7.4) 

(7.5) 

(7.6a) 

(7.6b) 
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Our exponentially small estimates apply to (7.6a and b). We will get upper and lower 
estimates in algebraic sectors of the B-ll plane, as in Figure 7. The power p depends on the 
nature of f. 

Now we consider 

With B = 0, there are equilibria at 

where 

.. 2 3 1: () 
X + J.I.X + X + X = uf t . 

ll x = 0,- r, or - -r 

x=o 

r = 1 +VT=4il 
2 

(7.7) 

} (7.8a) 

(7.8b) 

which is approximately 1 when J.l."' 0. The phase portrait of equation (7 .7) with B = 0 and J.l. = 
- ~ is shown in Figure 8. As J.1. passes through 0, the small lobe in Figure 8 undergoes the 

same bifurcation as in Figure 5, with the large lobe changing only slightly. 

Figure 8 
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Again we rescale by (7 .5) to give 

ll < 0 ' (7.9a) 

ll > 0 . (7.9b) 

Notice that for o = 0, the phase portrait is !.!-dependent. The homoclinic orbit surrounding the 
small lobe for ll < 0 is given explicitly in terms of ~ by 

(7.10) 

which is !.!-dependent. An interesting technicality is that without the cubic term, we get !.!-
independent double poles at 't = ± i1t +log 2 -log 3 in the compleJt 't-plane, while (7.10) has a 
pair of simple poles that splits these double poles to the pairs of simple poles at 

(7.11) 

where again A.= Ill I . (There is no particular significance to the real part, such as log 2- log 3 in 
the case of no cubic term, since this can always be gotten rid of by a shift in the base point ~(0).) 

If a quartic term x4 is added, these pairs of simple poles will split into quartets of branch 
points and so on. Thus, while the analysis of higher order terms has this interesting !.!-
dependence, it seems that the basic exponential part of the estimates, 

(7 .12) 

remains intact. b 
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Discussion and Conclusions We have given conditions under which one can obtain 
transversal intersection and both upper and lower estililates for the angle of intersection and for the 
splitting distance of separatrices in a rapidly forced system with a homoclinic orbit; the bounds 
obta~ned are exponentially small in the frequency parameter. Our main example is_ the rapidly 
forced pendulum equation, which is related to the pendulum suspended from a very stiff elastic 
rod. This example is a nonautonomous conservative system with a homoclinic orbit. With the 
addition of damping, exponentially small splitting and intersections of the separatrices typically 
occur only in an exponentially small wedge in parameter space (see Remark 2 above). 
Exponentially small splittings also occur in the unfolding of degenerate singularities and in KAM 
theory as was discussed in the last two sections. In future work we shall be applying these ideas to 
other problems, including sharp exponential estimates for adiabatic invariants of the sort that occur 
in Berry's phase. t 
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THE THREE POINT VORTEX PROBLEM: 

COMMUTATIVE AND NON-COMMUTATIVE INTEGRABILITY 

Malcolm Adams and Tudor Ratiu 

ABSfRACT. The relationship between the usual concept of complete integrability 
(commutative integrability) and generic zero dimensional reduced phase space (non-
commutative integrability) is investigated in the context of dual pairs introduced by 
Weinstein [1983]. The abstract theorem is illustrated by the example of the three point 
vortex mvtion. 

I. INTRODUCTION 

If S is a symplectic 2n-manifold and I 1, ... , In: S -t R is a set of smooth functions 

which are in involution, i.e., {f;, li} = 0 for all i, j = 1, ... , n, and independent, i.e., the 

covectors dl 1(x), .... dln(x) are linearly independent in r;s for almost all xES, then 

I 1, ...• In is called a completely integrable family of functions. If G is a Lie group acting on S 

in a Hamiltonian manner with momentum map J : S -t g•, g being the Lie algebra of G and g• 

its dual, and if the reduced phase spaces S.._:=S. 1(Jl)IG.._, G.._= {JlE g•IAd;Jl=Jl}, are zero 

dimensional for almost all Jl E g", the momentum map J is called noncommutatively integrable. If 

F is the ring of real valued functions generated by the components of J, then F is called non-

commutatively integrable if J is non-commutatively integrable. The reason for this terminology is 

the following. Assume that the Hamiltonian vector fields X1, •... , X1• for I 1, ... , In a completely 

integrable family of functions are complete, i.e., their flows cp,~ •... , cp,:' exist for all times 

t 1 •...• tn E R. lnen Rn acts on S by (t 1, ••• , tn)·x = (cp,~ o · • • o cp,:')(x) and the order in 

which the flows are applied does not matter by involutivity. This action is Hamiltonian and has 

momentum map J =I 1 x · · · x In : S -t Rn. By generic independence of the differentials, the 

reduced manifolds S .._, Jl E Rn, exist for almost all Jl and their dimension is zero. Thus complete 
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246. MALCOLM ADAMS AND TUDOR RATIU 

integrability is just non-commutative integrability for an R ft -momentum map and is therefore also 

called commutative integrability. Mishchenko and Fomenko [1978b] have shown that under certain 

hypotheses on i non-commutative integrability implies commutative integrability, see also 

Guillemin and Sternberg [1983a,b). 

The purpose of this paper is to generalize this result in the context of dual pairs introduced by 

Weinstein [1983] and to illustrate the theory with the classical example of the three point vortex 

motion. Section 2 reviews the N -point vortex motion and its four integrals from the point of view of 

symplectic geometry and momentum maps. It also shows, for the case N = 3, that a certain 

combination of these four non-commuting integrals give a family of three commuting generically 

independent integrals, thus showing that the three point vortex motion is completely integrable; this 

recalls classical work as reviewed in e.g., Aref and Pomphrey [ 1982]. Section 3 analyzes the Poisson 

manifold which appears naturally as the reduction of the phase space of the three point vortex 

problem by the special Euclidean group in two dimensions. Section 4 discussess the dual pairs of 

Weinstein and proves a theorem about the pull-backs of integrable families of functions on Poisson 

manifolds. As a corollary it is shown that if the dual pair is i +-- S ~ S IG, then non-commutative 

integrability implies commutative integrability if g" admits an integrable system; this reproduces the 

result of Mishchenko and Fomenko [1978b). Section 5 returns to the three point vortex problem, 

applies the theory of section ft, and deduces the classical commuting integrals. 

2. THE N -POINT VORTEX PROBLEM 

The motion of N point vortices for an ideal inviscid incompressible fluid in the plane is given 

by the cq uations 

dyi t ~r 2 
-=-~ ·(X·-X·)Ir-· dl 21t i•l I I J I} 

i#j 

(2.1) 

where rS = (x; -xi )2 + {y; - Yi )2 and f 1, ... , r N arc N non-zero constanL~. the circulations given 

by the corresponding point vortices; see Chorin and Marsden [1979]. Kirchhoff [1883] noted that 

(2.1) can be written in the form 

(2.2) 

where 
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COMMUTATIVE AND NON-COMMUTATIVE INTEGRABILITY 247 

(2.3) 

which is a Hamiltonian system relative to the symplectic form 

n = }:r;dx; "dy;. (2.4) 
i=l 

To determine the constants of the motion of this system, note that the special Euclidean group 

SE (2) ={(A, a) 1 A e SO (2) = st, a e R 2 } with multiplication 

(A, a)(B, b)= (AB, Ab +a), (2.5) 

identity (I, 0) and inverse (A, af1 =(A-t, -A-1a) acts on R 2 by 

(A, a)·z = Az +a. (2.6) 

The Lie algebra of S£(2) is se(2) = {(~. u) 1~ E R, u E R 2} with bracket 

(2.7) 

The action (2.6) is Hamiltonian relative to the symplectic form rd.x "dy, with momentum map 

given by 

(2.8) 

where we identify se(2)• with R 3 via the usual dot-product on R 3. This momentum map is not 

equivariant. The se (2)* -valued one-co-cycle of SE (2) is given by (see Abraham and Marsden 

[1978], §4.2) 

cr(A, a) :=J((A, a)·(x, y)) -Ad~A,af'(J(x,y)) = r(-llall 212, a 2, -a 1), (2.9) 

and the R -valued 2-cocycle of se (2) is given by 

l:((~. u), (11. v)) := f([(~. u), (11, v)])- {f(~. u), 1(11, v)} 

(2.10) 

where f (~. u) : R 2 ~ R is the function given by (x, y) ~ J (x, y )·(~. u). 

Now let S£ (2) act diagonally on (R 2t so that the momentum map J : R '1N ~ R 3 relative 

to the symplectic form (2.4) is given by 

(2.11) 

Since the Hamiltonian (2.3) is invariant under the SE (2)-action, J is a conserved quantity and thus 
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248 MALCOLM ADAMS AND TUDOR RATIU 

the three components of J all Poisson commute with II . Let us denote as in Aref and Pomphrey 

[1982] 

N 

Q = Lf;X; (2.12) 
i=l 

N 

P = LriYi (2.13) 
i=l 

N 

L 2 = Lf;(x/ + Y;2) (2.14) 
i=l 

so that the Poisson bracket relation between these integrals are 

{H, Q} ={II, P} ={II, L 2 } = 0 

N 

{Q. P} = Lr;. {Q. L2 } = 2P. {P. L2 } = -2Q, 
i:.l 

which in tum imply 

Consequently the three integrals II, L 2, Q2 + P 2 arc in involution. Since the gradients of these 

three functions are easily shown to be generically independent, it follows that for N = 3, the system of 

three point vortices is completely integrable. 

The argument below will show that this system is also non-commutatively integrable. To 

begin with, note that the phase space of the three point vortex problem is not R 6 but S = R 6 \ !112 

v !113 v !123, where ll;i = {(z1, z2, z3) 1 Z; = zi}; this is because the self-interaction terms (which 

would give infinite energy) in the Hamiltonian (2.3) have been eliminated. Since the isotropy groups 

of the S£ (2)-action (2.6) on R 2 are 

S£(2)0 =S0(2), S£(2),={(1,0), (-1,2z)}, for uO, 

this action is not free. However, the diagonal SE (2)-action on S is free. Properness of this action is 

easily verified so that S !SE (2) is a smooth three dimensional Poisson manifold. The symplectic 

leaves, which are the reduced manifolds S 11, arc generically two-dimensional, so that the Hamiltonian 

(2.3) induces on them a real valued function. The resulting system is integrable having one degree of 

freedom. Thus the action given by the product of SE (2) with the flow of II on S yields a non-

commutatively integrable family given by II, Q, P, L 2• This approach to integrability of the 

three point vortex problem is symplectically more natural, whereas the combination Q 2 + P 2 making 

this problem commutatively integrable appears as an accident. We shall show in section 5 that this is 

not the case and that one is led naturally to such a combination. 
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COMMUTATIVE AND NON-COMMUTATIVE INTEGRABILITY 249 

3. THE REDUCED MANIFOLD S !SE (2) 

In this section we will describe the Poisson geometry of the quotient manifold S ISE (2) 

explicitly. Let us identify R 2 with (!:'by the usual map (x,y) ~x +iy =z so that the S£(2)-

action on (!:' is 

for a E R, a, z E (!:'. The map 

where Q = {(u,O)iuE (f}u {(O,v)jvE (f}u {(w,w)lwE (f},isontoandequivariant 

relative to the S£(2)-action on S and the diagonal S 1-action on (!:' x (!:' \Q. Now follow this map 

by the family of Hopf fibrations 

(u,v)E (fx (!:' \Q ~(2uil, lvl 2 -iui 2)E R 3 

giving the S£.(2)-invariant surjective map c!>:S ~T= R 3 \({(0,0,c)lc E R} u {(a,O,O)i 

a 2: 0}) 

(3.1) 

whose fibers arc the SE (2)-orbits on S. Thus S /SE (2) and T are diffeomorphic. 

The Poisson structure { · ,· }' of T induced by <I> is determined by the relation 

f {F, II}'= {f F, f II} (3.2) 

for any smooth functions F, II : T ~ R, where {·,·}denotes the canonical Poisson bracket on S. 

Here is a sketch of the key steps in the computations. Denote by a E T c R 3 the variable of F and 

II . Then if zi =xi + iy1, i = 1, 2, 3, we have 

so that the chain rule and the relations 

- (y3- Y02- (x3- x2)2 + (yl- y3)(y1- Y0 

- (x 3 - x 1 )(x 1 - x 2) + (y 2 - Y 1 )(y J - Y 1) - (x 1 - x 2)(x 3 - x 1) = 2a 1 - II a II 2 
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250 MALCOLM ADAMS AND TUDOR RATIU 

yield the expression 

=8a·(VF xVI/)(a)-411aii(VF xV/1)1. (3.3) 

Thus the matrix of the Poisson bracket is 

0 

(3.4) 

The zero dimensional leaves are given by the points where all (2x2)-minors of (3.4) vanish, which is 

easily seen to imply a= 0. The Casimir function generating the center of the Poisson bracket { ·, · }' 

is given by 

C (a) = II a II - a /2 

so that the two-dimensional leaves are the level sets of c. i.e., {a E r I c (a)= c. c ~ 0}, or 

[a~-~r ai ai 
+--+--=1, 

4c 2 4c 2 2 
16£._ 

9 
--

3 3 

(3.5) 

(3.6) 

which are ellipsoids of revolution about the a 1-axis centered at (2c /3, 0, 0). If c > 0 and 

(a 1, a 2, a 3) is on the ellipsoid, then -2c/3 ~ a 1 ~ 2c and the inequality a 1 + 2c > 0 always holds. If 

c < 0 and (a~o a2, a 3) is on the ellipsoid, then 2c ~ a 1 ~ -2c/3 so that the inequality a 1 + 2c > 0 

never holds. Thus the two-dimensional symplectic leaves are given by (3.6) for c > 0 only. Out of 
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COMMUTATIVE AND NON-COMMUTATIVE INTEGRABILITY 251 

these ellipsoids three points arc missing: the intersection with the a 3-axis and with the positive a 1-

axis, i.e., the points (0, 0, ±c) and (2c, 0, 0). 

Let us summarize the results of this section in the following. 

PROPOSfriON. The map c)l: S ~ T given by (3.1). where T is R 3 minus the a 3-axis and the 

positive a 1-axis, is a surjective submersion whose fibers are the SE (2)-orbits on S and so S !SE (2) 

is Poisson isomorphic to T with bracket (33). The Casimir functions of this Poisson bracket are 

generated by ( 3 5 ). The symplectic leaves are ellipsoids of revolution about the a 1-axis in R 3 minus 

the points (0, 0, ±c), (2c, 0, 0), centered at (2c /3, 0, 0) and having semiaxes equal to 4c /3, 

2c t...f3. 2c t..J3 for all c > 0. 

4. DUAL PAIRS AND INTEGRABILITY 

We begin with the concept of integrability on Poisson manifolds. Let P be a Poisson 

manifold, dim P == 2n +k, where 2n is the dimension of the maximal (generic) symplectic leaf. 

DEFINITION A ring of functions F on P is said to be integrable, if F is generated as a 

ring by n + k functions and all functions in F Poisson commute. 

Next, Jet us recall the definition and a few key facts about dual pairs as introduced by 

Weinstein [1983]. 

DEFINITION. Let (S, Q) be a symplectic manifold, P~o P 2 Poisson manifolds, and 

1; : S ~ P;, i == I, 2 Poisson maps. If for almost all x E S, (ker T,J 1) 0 = ker TJ 2, the diagram 
It h 

P 1 +- S ~ P 2 is called a dual pair; here T.J; : TxS ~ TJ.(xfi• i = 1, 2, denotes the derivative 

(tangent map) of 1; and (ker Tx11)0 - {v E TxS iO(x)(v,ker Tx1 1):0} is the Q-orthogonal 

complement of ker Tx1 1 in TxS. The dual pair is called full, if J It J 2 are surjective submersions. 

The following proposition is due to Weinstein [1983]. 

Jl 11 
PROPOSITION. Let P 1 +- (S, Q) ~ P 2 be a full dual pair. Denote by Cas (P; ), i = 1, 2, the 

space of Casimir functions on P; and by <I>; the space of functions on S constant on the fibers of 1;. 

Let dim P; = 2n; + k;. i = l, 2, where 2n; is the dimension of the maximal (generic) leaf of P;. 

Then the following hold: 

(i) <I>1n<I>2=Cas(P 1)ol1 = Cas(Pz)o1 2, i.e.,thespacesofCasimirfunctionson P 1 and 

P 2 are in bijective corre.\pondence with <1>1 n <1>2• 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



252 MALCOLM ADAMS AND TUDOR RATILJ 

(ii) For p 1 E P 1 each connected component of J 11 (p 1) mapr under J 2 into the same symplectic 

leaf of P 2 and vice versa. 

PROOF. (i) If H E <1>1 n <1>2, then II = h; o 1;, i = 1, 2, for some h; : P; -) R. If Y is tangent to 

the fibers of J 2, i.e., Y is a section of k£r TJ 2, then 

Q(XH, Y) = (dl/, Y) = 0, (4.1) 

which says that XH E (k£r TJ z}0 ker TJ 1 by the dual pair hypothesis. J 1 being a Poisson map 

we get 

0=TJ 1 oX11 =TJ 1 oX~ .• ,,=X~'. ol 1, (4.2) 

where Xh1, denotes the Hamiltonian vector field on P 1 defined by h 1• Since J 1 is surjective, it 

follows that Xh1, = 0, i.e., hI E Cas(P ,). We have shown that <1>1 n <1>2 s;;; Cas (PI) 0 J I• 

Conversely, if h 1 E Cas (P 1), then II = h 1 o ./ 1 E <fl1 satisfies TJ 1 o X11 = 0 by (3.1), i.e., 

XH is a section of ker 11 1 = (ker TJ z}11 and so for any section Y of ker 112 we have 

(dl/, Y) = 0 by (3.1). This says that II is constant on the fibers of J 2, i.e., II E <1>1 n <1>2 and we 

proved that Cas (P 1) o J 1 ~ <1>1 n <1>2• An identical argument proves the equality 

Cas (P 2) o J 2 = <1>1 n <1>2• 

(ii) Let N be a connected component of ./ 1 1 (p 1 ). We shall prove that the connected set 

J 2(N) is a Poisson submanifold of P 2 which is symplectic. Since the symplectic leaves of P 2 arc 

the maximal connected manifolds characterized by this property, it follows that J 2(N) is contained 

in a symplectic leaf. 

The following argument shows that J 2 1 N has constant rank. For n E N, ker ('fn J 2 1 Tn N) = 

kerT.J 2nTnN = kerTnJ 2nkerTnJ 1, since T.N=1"n(J 2 1 (p 1)) = k£r'I~J 1 • Bythedualpair 

hypothesis, it follows then that ker(T.J 2 1 T.N) = k£r T.J 2 n (ker T.J 2)0 , i.e., the dimension of 

the kernel of T.J 2 1 T.N equals the fiber dimension of the vector subbundle ker 112 n (ker TJ 2)0 

and so it is constant. Thus J 2 JN has constant rank. Since J 2 : S -) P 2 is a submersion, it is an 

open map and hence J 2(N) is a submanifold of P 2 whose tangent bundle is T J z(1N ), by the rank 

theorem (sec e.g., Abraham, Marsden, Ratiu [ 1983], theorem 3.5.18). 

Since }2 isPoisson,for h:P2-)R, neN,wehave Xh2(.12(n)) = Tnl2(Xh.J,(n)) E 

Tnl 2(TnN) = T 1 ~n><J 2 (N)), where Xh2 denotes the Hamiltonian vector field on P 2 defined by h. 

Therefore J 2(N) is a Poisson submanifold of P 2. In order to show it is symplectic, let v E 

T1,(.><J2(N)), sothat v=T.J 2(w) for weTnNcT.S. Since S issymplectic, w=Xf·(n) for 

some F :S -)R so that v =T.J2(XF(n)) = X/. 1,(n), i.e., any tangent vector to J 2(N) is 

Hamiltonian in P 2 and therefore the Poisson manifold J 2(N) has only one symplectic leaf, i.e., it is 
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itself symplectic. Thus J 2(N) is entirely contained in a symplectic leaf of P 2. 

Conversely, let L c P 2 be a symplectic leaf, p 2 E L, s E J i.1 (p2J, and p 1 = J 1(s ). Let N 

be the connected component of J } 1 (p 1) containing s. Then J 2(N) is contained in a symplectic 

leaf of P 2 by what we just proved and p 2 = J 2(s) E J 2(N) so that L ;;2 1 2(N). • 

Proposition 1 (ii) gives a correspondence between the symplectic leaves of P 1 and P 2 which 

is bijective locally and glob<Uly if 1 1 and 1 2 have connected fibers. 

PROPOSITION 2. Let Pi be Poisson manifolds dim Pi = 2ni + ki, where 2ni is the dimension of 
}I )a 

the generic symplectic leaf, j = 1, 2. Let pI ~ (S. n) --+ p 2 be a full dual pair. Then k I = kz = k 

and dimS =dim P 1 +dim P 2 =2(n 1 +n2+k). 

PROOF. Recall that the generic symplectic leaf is a level set of the Casimir functions. So let 

F 1, ... , F., e Cas (P 1) be such that F 1 x · · · x F., : P 1 --+ R•· has a regular value x for which 

(F 1 x · · · x F.,r1(x) is a generic symplectic leaf in P 1• By Proposition l(i), F; o 1 1 = G; o 12 for 

some Gi E Cas(P 2), i = 1. ... ,k 1. Since both 1 1 and 1 2 are surjective submersions, xis also a 

regular value of G 1 x · · · x c.,. which means that (G 1 x · · · x G.,f1(x) contains a generic 

symplectic leaf of P 2. This says that 2n 2 + k2 - k 1 ~ 2n 2, whence k2 ~ k 1• Reversing the roles of 

P 1 and P 2 we get the opposite inequality k 1 ~k 2 and hence k 1 =k2• If there are not enough 

global Casimirs, the argument above must be done locally, using Weinstein's Splitting Theorem 

[ 1983]. 

Finally, since J 1 and 1 2 are submersions, we have dim S =dim P 1 + dim (ker TJ 1) 

dim P 1 + dim (ker 1'1 2J0 dim P 1 + dim S - dim (ker T 1 2J dim P 1 + dim P 2 

2(n 1 + n 2 + k). • 

J1 J1 
PROPOSITION 3. Let pI ~ (S. n) --+ p 2 be a dual pair and F :pI --+ R' G : p 2--+ R be smooth 

fwu:tion.~. Then {F o 1 1, G o J 2} = 0 on S. 

PROOF. If s E S and v E ker T.J 1o then 

which shows that XF •1 ,(s) E (ker T,J J0 = ker T.J 2. Likewise X a ·l.(s) E (ker T.J 2J0 and hence 

{F o] 1,G ol2}(s) = !l(s)(XF.,,(s),Xa.J,(s)) =0. • 
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The main result of this paper is contained in the following. 

J, '· 
THEOREM. Let P 1 ~ (S, 0) -+ P 2 be a full dual pair and F; be a completely inlegrable ring of 

functions on P;, i = 1, 2. Let F be tJ~.e ring of functions on S generated by J; F 1 u J; F 2• Then 

F is completely integrable on S. 

PROOF. By proposition 3, all functions in F Poisson commute. Let us show that F contains 

n 1 + n 2 + k generically independent functions, where dim P; = 2n; + k;, 2n; being the dimension of 

the generic symplectic leaf of P; and k 1 = k 2 = k (sec proposition 2). Let f 1 •••• ./A,+l be n 1 + k 

generically independent functions in F 1 and let g 1, ••• ,gA, be n 2 functions in F 2 which arc 

generically independent on the generic symplectic leaves of P 2• Since J 1 and J 2 arc surjective 

submersions, there is an open dense set A c S such that for all s E A , 

{ d(/ 1 o J 1)(s ), ... , d(/A,+k o J 1(s)} and { d(g 2 oJ z)(s ), ... , d(gA, o J z)(s)} arc linearly independent. 

Let V be the module of one-forms on A generated over the ring of functions on S by 

d(/ 1 o J 1), ••• ,d(/A,+t o J 1) and similarly let W be the module of one-forms on A generated over 

the ring of functions on S by d(g 1 o J z), ... , d(gA, o J 2). Then the associations s ...._. V (s ), 

s ....... w (s) define smooth subbundles of T. A = T. s I A • where v (,\' ), w (s) denote the vector 

spaces obtained by evaluating each element of V and W, respectively at s E A. By openness of 

non-intersection, the set B = { s e A 1 V (s) n W (s) = { 0}} is open in A and hence in S . Let us 

show that B is also dense. If not, there would exist an open subset U of A and a one-form a on 

U such that a e V n W, a* 0. This says, however, that a = d(/ o J 1) = d(g o J 2) on U, for 

some d(/ o J 1) e V and d(g o J 2) e W. Therefore d(/ o J 1 - g o J 2) = 0 in U and so adjusting g 

by adding a constant, it follows that f o J 1 = g o J 2 on U. In other words, f o J 1 = g o J 2 is a 

function on U which is constant on the fibers of J 1 and J 2 and hence by proposition I (i), this 

function is a pull-back of a Casimir function on an open subset of P 2• Since J 2 is a surjective 

submersion, this would imply that g 11 2(U) is a Casimir function on the open subset J 2(U) of P 2 ; 

this is impossible, by the definition of W and A , thereby showing that B is dense in A and hence 

also in S. • 

COROLLARY I. Let (S, Cl) be a symplectic manifold on which G acts in a 1/amilton manner with 

momentum map J : S -+ g·. Suppose that 7t: S -+ S IG and J : S -+ g· are surjective 
II J 

submersions. Then S IG ~ (S ,n)-+ g" is a full dual pair. If a G -invarianl 1/amiltonian system on 

S is non-commutatively integrable and if there is an integrable system on g•, then the original 

Hamiltonian system is commutatively integrable. 
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PROOF. The first statement is a direct corollary of the reduction lemma; see Abraham and Marsden 

[1978], §4.3. The second statement is a direct consequence of the theorem. • 

COROLLARY 2. In the hypothesis of Corollary 1, assume that the generic leaves of S IG are two-

dimensional and that there is a completely integrable family of functions on g•. Then any G-

invariant Hamiltonian system on S is commutatively integrable. 

The second statement in Corollary I was first proved by Mishchenko and Fomenko [1978b]. 

Integrable systems on duals of Lie algebras appear for example from Euler equations or various 

involution theorems; if g is semisimple, such integrable families always exist. See Adler [1979], 

Kostant [1979], Mishchcnko and Fomenko [1978a], Ratiu [1980], and Symes [1980] for a sample of 

such systems. 

5. THE THREE POINT-VORTEX PROBLEM IN TERMS OF DUAL PAIRS 

Recall from (2.11) that the momentum map of the SE (2)-action on S is given by 

and that J is not equivariant. From (2.9) and (2.10) it follows that if we denote by r = r 1 + r 2 + r 3, 

the group one-cocycle o : SE (2) -+ se (2)" = R 3 defined by J is given by 

(5.2) 

and the real-valued 2-cocycle l:: se (2) x se (2) -+ R by 

(5.3) 

for A., J.1. e R 2, q,, ~.11 e R. General theory says that J is equivariant relative to the Poisson bracket 

on se(2)* induced by the central extension of se(2) by l: (see Abraham and Marsden [1978], 

§4.2), j.e., relative to the bracket 

{f,h}(a,A.>=(<a.A.).[ oc!\)· oc!\)])-l:[ o(:f:A.)' o(!\)] 
= '-~[~ j[_- ~ iJh] + A.z[ ~ j}!_- ~ j[_] 

iJa iJA.z iJa iJA.z iJa iJA.1 iJa iJA.1 

_ r[ j[_ j}!_ _ j[_ iJh J 
iJA.z iJA.1 iJA.1 iJA.z . (5.4) 
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It is easily seen that the Casimir functionals arc arbitrary functions of 

(5.5) 

so that the generic symplectic leaves are the circular paraboloids 

ra + II A 11 212 = constant. (5.6) 

Since the rank of the Poisson structure (5.4) is always two, there arc no zero dimensional leaves. It is 

straightforward to check that the rank of (5.1) is 3 so that J is an open map. Let V be its open range 

endowed with the Poisson structure (5.4). We have proved the following. 

• J 
PROPOSITION 4. T f- S ---+ V is a full dual pair, where ¢is given by (3.1), J by (5.1), T L~ 

endowed with the Poisson bracket (3.3) and V with the Poisson bracket (5.4 ). 

Let us now return to the three point vortex problem. The Hamiltonian II given by (2.3) is 

SE (:!)-invariant and the leaves of T arc alltwo-dimo.::nsional. To find an integrable system on V it 

suffices to take a function f : V ---+ R 3 since the leaves of V arc all two dimensional. Let us choose 

f (a, A)= a. (5.6) 

Thus f and the Casimir k given by (5.5) form an integrable family on V. By Corollary 2 in section 

3, the Hamiltonian system given by II is commutativcly integrable. Its commuting generically 

independent integrals arc given by II, f o J, k o J by the Theorem of section 3. Since 

(f o J)(x, y, z) =-(r1 1Jxll 2 + r 2 11Y II+ r 3 11zll 2)12 = -L 212, and 

it follows that II, L 2, Q2 + P 2 arc three generh.:ally independent commuting integrals, thus 

recovering the classical result. 
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ON A THEOREM OF ZIGLIN IN HAMILTONIAN DYNAMICS 

David L. Rod1 

ABSTRACT. This paper uses a theorem of Ziglin to demonstrate the 
non-integrability of a wide class of classical Hamiltonian systems 
with two degrees of freedom. The potential, when restricted to an 
axis, is a polynomial in one variable of degree 3 or 4. Certain 
geometric hypotheses and the genera] theory of elliptic functions 
allow us to bypass the detailed calculations of previous papers and 
obtain results on Hamiltonian systems involving many arbitrary 
parameters. An example of a Hamiltonian system is given whose flow 
is non-integrable at each energy h > 0, but for which the flow has 
a second independent real analytic (but not entire) integral at 
each h < 0. 

INTRODUCTION. We work with the complex symplectic manifold (.Z,w) where 
.Z = [ 4 = {(zl,z2,w1,w2)} and the symplectic form w = dz1 ~ dw1 + dz2 ~ dw2. 
Let { , } be the Poisson bracket induced by w, and for a holomorphic 
Hamiltonian H: .Z ~ [, let XH be the associated vectorfield. The image of a 

maximally continued non-equilibrium integral curve ~ = ~(t) with energy h E [ 

of XH is a Riemann surfacer c .Zh = H- 1({h}). The linearized equations 

along ~(t) induce a linear differential equation on the (reduced) normal 
bundle N = (T(.Zh)lr)/T(r) of r called the (reduced) normal variational 

equation (NVE). Continuing a fixed fundamental system of solutions to NVE 
around inverses of loops based at x0 e r gives the monodromy group of NVE as 
the image M of the representation p: n1(r,x0 ) ~ St(2,[) (direct 
continuation results in an antihomomorphism). A e M is nonresonant if no 
eigenvalue is a root of unity. We now give a version of a result of Ziglin 
[16], as for·mulated by Ito [9), that is appropriate for the applications of 
this paper. 
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260 DAVID L. ROD 

ZIGI.IN' S THEOREM. Assume there is a meromorphic function F defined in some 

neighborhood U c ! off, functionall.v independent of H, and satisfying 

{F,H} = 0 in U. Assume the monodromy group M contains a nonresonant element. 

A. Then for any B e M the commutator (A,B) B- 1 A- 1 BA satisfies (A,B) = I 
( ident:ity) or (A, B) = A2 , with only (A,D) = I possible if B does not admit ±i 
as eigenvalues. In particular, XII bas no meromorphic integral irJdependent of 

II if there is a B e M such that I f. (A, B) f. A2 • 

In Ziglin [16) and Ito [9) the components of ~(t) were elliptic 
functions, and f, therefore, had the topological structure of a punctured 
torus. This made the monodromy group M sufficiently computable for certain 
applications, but explicit calculations with these elliptic functions were 
still required to verify the nonresonance hypothesis. In the present paper 
such calculations are replaced by a simple geometric criterion which 
establishes the nonresonance (see also Ito [10) and Rod [13]). Then Ziglin's 
Theorem, with ~(t) still elliptic, can be easily applied to a number of 
Hamiltonian systems having many parameters. A particular system with 
par·ameters (the Henon-Heiles family) was first studied by Ito in [9), and this 
example was redone using more geometric methods in Ito's second paper [10]. 
In Section 2 we obtain these results as a corollary to Theorem 2. 

In Section l a consequence of Moser's generalization of Liapunov's 
Theorem [ ll) is used to show how the eigenvalues of the linearized Poincare 
map about a family of periodic orbits (parameterized by energy) change as 
these orbits limit into homoclinic/heteroclinic orbits. This will give us a 
set of energies at which the nonresonance hypothesis is satisfied. In Ito 
[10) the checking of this hypothesis is a consequence of an application of 
Siegel's general version of Liapunov's Theorem [15, Section 16) with results 
similar to the present paper. Sections 2 and.3 detail our applications to 
classical (kinetic plus potential energy) Hamiltonians with two degrees of 
freedom in the case that the potential, when restricted to an axis, is a 
polynomial in one variable of respective degree 3 or 4. These results are 
unaffected by adding an arbitrary term K to the Hamiltonian (see ( l.l)) 
provided this term vanishes to order two when restricted to this axis. 

In Remark l(b) of Section 2 an example is given of a real analytic 
Hamiltonian whose flow at each energy h > 0 has a Smale horseshoe embedded 
in it, hence is not completely integrable at these energies, whereas at each 
h < 0 the flow has a second independent real analytic (but not entire) 
integral. This example illustrates the nature of the integrals that occur in 
the statement of Ziglin's Theorem. 

For the basic facts about elliptic functions that we require in Sections 
2 and 3, see [14). 
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l. EIGENVALUE CHANGE AND HOMOCLINIC/HETEROCLINIC ORBITS 
In this section we establish notation and collect some basic facts 

r·equir·ed in Sections 2 and 3. The proof of Theorem l depends heavily on a 
number of results in (5] which follow from Moser's generalization of 
Liapunov's Theorem [ll] as formulated in the two degree of freedom case by 
Conley in (7]. 

Consider on (R1 ,w0 ) the real analytic Hamiltonian 

( 1.1) 

wher·e the function K is entire and vanishes to order two on the Xz = Yz = 0 

plane, and w0 = dx 1 A dy1 + dx 2 A dyz is the standard symplectic. We assume 
W(x 1 ,x 2 ) is also entire and that W(x 1 ,0) is a polynomial of degree 3 or 4 in 
x, with 

( l. 2) W(O,O) = 0 , (6W/6x 2 )(x,,O): 0. 

When deg W(x 1 ,0) = 4, we require the symmetry condition 

( l. 3) 

The function W(x 1 ,0) will possess at least one critical point 

* p = (x 1 ,0) such that 

( 1.4) 

(Such a point will be a hyperbolic critical point of W: IR2 --+ IR since 
(62W/6x,6xz)(p) = 0 by (1.2).) 

The above assumptions on W imply that the graphs of W(x 1 ,0) for the two 
cases deg W(x 1 ,0) = 3 or 4 are as in Figure l. The variant of Figure l(a) 
obtained by flipping this graph about the vertical axis can be converted back 
to Figure l(a) by the linear symplectic transformation (x,,x2 ,y1 ,y2 )--+ 

(-x,,xz,-y,,yz) which preserves the above assumptio~s. The points labelled 
with p's and q's are critical points of W(x 1 ,0), with the p's being 
hyperbolic critical points as in (1.4). The symmetry (1.3) implies q is the 
origin in Figure l(b) and p is the origin in Figure l(c). 
generality we can assume q is the origin in Figure l(a). 

Without loss of 
By (1.2) we then 

see that in all cases the potential W(x 1 ,x2 ) lacks constant and linear terms 
in x,, Xz. 
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(a) 

J deg W(x 1 ,0) 3 
W(q) = 0 l W(p). = h* > 0 

DAVIDL. ROD 

(b) 

J deg W(x 1 ,0) = 4 
W(q) = 0 l W(p,) = W(pz) = h* > 0 

Figure 1 

.q2 

(c) 

J deg W(x 1 ,0) = 4 
W(p) = 0 l W(q,) = W(q2 ) < 0 

For Figures l(a) and (b) let 0 < h < h*, and in Figure l(c) take h > 0. 
Then ( l. 2) implies that there are periodic solutions 

with energy h to the Hamil toni an vectorfield XH associated to ( 1. I). 

Since (a 2W/ax 1ax 2 )(x1 ,0) e 0 by (1,2), the linearized equations about ~h(t) 

decouple and take the form 

( 1. 6) 
J (a) q1 + (a2W/ax 12 )(wh(t),O)q1 0 

l (b) qz + (a2 W/ax2 2 )(wh(t),O)q2 0 

Let A(h) e St(2,R) be the linearized Poincare map along wh given by 

integrating the first order system equivalent to (l.6b). We can think of 
A(h) as a linear symplectic map of the (x2 ,y2 )-plane based at the origin of 
R~, and identify (1.6b) as the (reduced) normal variational equation (NVE) of 
lhe Introduction. 

* Note that the orbits wh limit as h t h to an orbit homoclinic to the 

critical point p in Figure l(a), and in (b) to a pair of heteroclinic orbits 
connecting Pl and p2 , whereas in Figure l(c) the wh limit as h ~ 0 to a 

pair of orbits homoclinic to p. In all cases the period of wh tends to "" as 

h goes to its limiting value. 

THEOREM l. Assume conditions (1.1)-(1.4) as SUJII11Jarized in Figure 1. Then the 
linearized Poincar6 map A(h) associated to (l.6b) is nonresonant except 
possibly on a set of measure zero of the energies h in the above intervals. 
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ON A THEOREM OF ZIGLIN IN HAMILTONIAN DYNAMICS 263 

PI!OOF. Theorems 2.1 and 2.4-?.8 of [5) show that trace A(h) is a non-constBDt 
r·eal analytic function of h in the above energy intervals when the critical 
points labelled by p' s in Figure 1 are hyperbolic. The result then follows 
ft·om this analyticity and the symplectic character of A(h). (The connection 
to classical Sturmian oscillation theory is given in [5, Appendix B).) 

Q.E.D. 

2. APPLICATIONS: deg W(x 1 ,0) = 3 

Consider the potential 

(2.1) 2 
2:!:i+j:!:3 

where the~ .. are real constants with ~ 30 # 0. Assume that (1.2) and (1.4) 
l.J 

hold for this potential (see Figure l(a)), hence ~II = ~21 = 0. Since the 
functions in (1.1) are entire, the Hamiltonian system can be complexified by 
replacing the variables (xa,x2,Yt.Y2) E R~ by (za,z2,wa,w2) e [~ and letting 

* . the time t e [. Then at real energies 0 < h < h the f~rst component wh(t) 

of the non-equilibrium solution ( 1. 5) is an elliptic function with two 
independent (over the reals) periods w.(h), j = 1,2, and one pole 

J 

tm = tm(h) of order two which can be assumed to be interior to its period 

parallelogram (use curvilinear sides if necessary). We con take Wt(h) real 
cOl-responding to the periodicity of wh ( t) in real time. The meromorphic 

function wh(t) has a local expansion about the pole. given by 

(2.2) 

here h.o.t. denotes higher order terms. This orbit satisfies the following 
equation along the (complex) x1-axis: 

(2.3) 

Putting (2.2) into (2.3) implies that the coefficient a # 0 is given by 

where ~30 # 0 by assumption. 
Now (1.6b) becomes 

(2.5) 

Purchased from American Mathematical Society for the exclusive use of Kenneth Meyer (myknr)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



264 DAVID L. ROD 

In a neighborhood of tm the equation (2.5) takes the following form (on 

setting 7 = 7t2(7Jo)- 1 ): 

(2.6) •• -2 
q2 + [-47(t- tm) + h.o.t.)q2 = 0. 

THEOREM 2. Let the potential (2.1) satisfy the condit:ions (1.2) and (1.4) as 
sUDUJiarized in Figure l(a), and set 7 = 712 (7 30 )- 1 • Then the H8111iltonian 
sysle.m (1.1) with poleJJtial (2.1) has no second integral F that is meramorphic 
in a neighborhood in [ 4 of the image r(h) of !Ph(t) and functionally 

independent of the H8111i.ltonian H in this neighborhood at energies h e (O,h*) 
rvhen ( 1 + 167) "/: (odd integer) 2, except possibly on a set of measure zero of 

energies h in this interval. 

PROOF. Some of the excluded energies correspond to those in Theorem 1; the 
other excluded energies will be specified below. For all other energies the 
linearized Poincare map A(h) calculated along nh(t) for t e R is 

nonresonant. Let B(h) be the corr·esponding matrix obtained by analytic 
continuation along the other side of the period parallelogram of nh(t) of a 

fundamental matrix solution 1-(t,h) of (2.5) with 1-(0,h) = I (the 2x2 identity 
matrix) from t = 0 to t = w2(h). Then the commutator C(h) = (A(h),B(h)) 
can be inter·preted as the result of analytic continuation in the complex 
t-plane of 1'(t,h) counterclockwise around the period parallelogram of nh(t) 

starting and ending at t = 0. 

The eigenvalues of C(h) can then be calculated by analytic continuation, 
of 1-(t,h) in a positive sense around the regular singular point tm(h) of 

(2.5) as 

(2.7) A . = exp(2nip.) 
J J 

j 1,2, 

where the p. are the roots of the indicia! equation 
J 

(2.8) p(p-1) - 47 = 0 

of (2.6) (see [1, pp. 230-232]). (The expression (2.7) for the eigenvalues 
holds even when (p 1-p2) =integer.) Note that although the pole t.(h) 

depends on h, the eigenvalues A. are independent of h. 
J 

If we further 

exclude those energies for which C(h) = A2(h) (recall from Theorem 1 that the 
eigenvalues of A(h) change with h), we see that the solutions p to (2.8) 
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force A. i' lin (2.7) when (l + 16-.,) I (odd integer) 2 , hence C(h) i' I, and 
J 

t.he result follows from Ziglin's Theorem. 
Q.E.D. 

REMARK l. (a) If F is entire or meromorphic on all of[~, then one does not 
need to exclude any energies in the interval (O,h*) in Theorem 2. For 
example, the complexification of entire real analytic F on ~~ can be 
considered in this manner. 

(b) As the following example shows, the flow of a Hamiltonian system can 
be integrable with independent real analytic (but not entire) integrals at 
some energies, but non-integrable at other energies. Let 

(2.9) 

Then it is known [6, Theorem 3.1] that at each energy h > 0 the flow of XH 

admits a Smale horseshoe map and hence has no second real analytic integral 
independent of H (see [12, pp. 188-189] for the details on this conclusion). 
We now construct such an integral at each energy h < 0. Let 
W(x1,x2 ) = [(l/3)x13 - x1x2 2 ] be the potential, and let R be that region in 
the (x1,x2 )-plane, containing the negative x1-axis, with W(x1,x2) < 0. Given 
a solution ~(t) = Cx1(t), x2(t), Yl(t), Y2(t)) with energy h < 0 whose 
(x 1,x 2 )-plane projection lies in R, we have Yi = Yl(t,J) real analytic in t 
and the initial conditions J e ~~. For a given Jo there is a unique time to 
such that ydto,Jo) 0 as follows from the values of -vw in R. Since 
(dyi/dt) -caw;ax1) t- 0 in R, we have for J near Jo a unique analytic 
t = t(J) such that Yl(t(J),J) E 0. We define the integral F in a 
neighborhood of Jo by F(J) = xdt(J) ,J), and note that when h = 0 we have 
F(J) ~ 0 and t(J) ~ = as J ~ (x1°,0,y1°,0) where x1° < 0. F has a 
real analytic extension to all initial conditions J with H(J) < 0 on 
invoking the symmetry of W under rotations of th": (x1,x2 )-plane through 
angles (2n/3) and (4n/3) to pick up the other regions where W(x1,x2) < 0. 
The integral F has a continuous (but not real analytic) extension to the 
flow at energy h = 0. To demonstrate the independence of F from H when 

- % 1 h < 0, let A(e.) - (e.,O,O, [h - W(e.,O)] ) be a curve in ~ with E. < 0. Then 
(H 0 A)(e.) = h and (F 0 A)(e.) =e. imply that vH is perpendicular to (dA/de.) 
whereas VF is not perpendicular to (dA/de.). Thus VH and VF are independent 
vectors along A(e.). The above arguments can be adapted to the flow in the 
unbounded components of H- 1({h}) of many other Hamiltonians H. 

We now apply Theorem 2 to the 2-parameter family of Henon-Heiles 
Hamiltonians of the form (1.1) with potential 
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(2.10) 

where a ~ 0 and b are real. The case a l and b = -1 was originally 
investigated in [8]. 

COROLLARY 1. For eac.h fixed value of a ~ 0 and b in (2.10) we hllve the 

* coJJclusioJJs of Theorem 2 and Remark l(a) at enerl{ies 0 < h < h (where 
h* = h*(a,b) is specified in the proof below) provided (b/a) ~ 0, l/2, l/6, 
3/4, 1. 

PROOF. (l) Assume (b/a) < (l/2). Then the critical point p = (-a- 1 ,0) 
satisfies (Q2W/Qx, 2)(p) = -1 and (Q2W/Qx22 )(p) = l- 2(b/a) ffitd hence is a 
hyperbolic critical point for (2.10) with positive energy h* = (6a2 )- 1 • Then 
7 = 71z(7lo)- 1 = (3b/a) and one need only check cases on the condition 
(1 + 16Y) ~ (odd integer) 2 • 

(2) Assume (b/a) > (1/2). As (b/a) passes (l/2) two gradient lines 
x2 = ±1-1X1 of (2.10) with ll = [2- (a/b)]% bifurcate off the x1-axis. The 
restriction W(x1,,.,x1) has critical points at x1 = -(2b)- 1 and x1 = 0. It 
is easily checked that p = -(2b)- 1 · (1,1-1) is a hyperbolic critical point of 
(2.10) with positive energy h* = [1- a/(3b)]•(8b2 )- 1 for 0 < (a/b) < 2. The 
transformation T: (x,,x2 ) ~ (~,.~2), given by 

J ~~ (1 + 1-1 2 )-% (x, - llXz) 

l ~2 (1 + 1-12 )-% (llXl + X2) 

rotates the x1-axis to the line ~ 2 = llXl. A direct calculation for the 
transformed potential (W 0 T) (x,,x2) yields 7 = 3(a-b)/(2b). Again, one need 
only check cases on the condition (1 + 16Y) ~ (odd integer) 2. 

Q.E.D. 

REMARK 2. (a) Ito's method in (9] also shows that (b/a) = (3/4) is a 
non-integrable case. He directly computes that trace A(h) varies with h. We 
cannot obtain this case since the critical point p in (1) above is not 
hyperbolic at this parameter ratio. The cases (b/a) = 0, l/6, and 1 are known 
to be integrable, whereas (b/a) = (l/2) is anomalous with computer evidence 
suggesting non-integrability (2]. 

(b) By Theorem 2 one can easily generalize the above corollary to include 
arbitrary coefficients in the quadratic terms of (2.10) provided conditions 
(1.2) and (1.4) are satisfied (see [2]). The non-integrability of (2.10) with 
a = l and b = -1 at energies h > (1/6) (except possibly at a discrete set of 
such energies) was shown in [6] (see also [4]). 
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3. APPLICATIONS: deg W(x 1,0) 4 

Consider the potential 

(3.1) \ i j W(x1,xz) = L 15 •• x1 xz 
~i+j~4 1 J 

where the 6 .. are real constants with o~o F 0. Assume that (1.2)-(1.4) lJ 
hold for this potential (see Figures l(b) and (c)), hence 
6 11 = 621 = 612 = OJl = 61J = 0 and ozo F 0. The following discussion is 
given at energies 0 < h < h* for the case that the graph of W(x1,0) is given 
by Figure l(b). A completely analogous discussion with identical conclusions 
holds for the energy range h > 0 in the case of Figure l(c). Thus at 
energies 0 < h < h* w.r.t. Figure l(b) we see that the Hamiltonian system 
(1.1) with potential (3.1), complexified as in Section 2, admits 
non-equilibrium solutions (1.5) with nh(t) an elliptic function. nh will have 

two independent periods w.(h) , j = 1,2, and two poles, each of order one, 
J 

which can be assumed to be interior to its period parallelogram. We can take 
w1 (h) real corresponding to the periodicity of wh(t) in real time. The 

meromorphic function nh(t) has a local expansion about one of these poles 

tm = tm(h) given by 

(3.2) 

Reasoning as in Section 2 the orbit nh(t) satisfies the analogue of (2.3) from 

which we compute that b F 0 satisfies 

(3.3) 

where 6~ 0 F 0 by assumption. Note that the two solutions for b correspond 
to the two poles and reflect the fact that the sum of the residues of an 
elliptic function in its period parallelogram must be zero. 

The analogue of (2.5) is 

Then (3.4) has a regular singular point at each of the two poles and takes the 
following form in a neighborhood of such a pole (on setting 
15 = -26zz b2 ozz(o~o)- 1 ): 

(3.5) 112 + [-o(t- t 00 )- 2 + h.o.t.]llz 0. 
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Recall from Section l that our linearized Poincare map along nh(t) could 

be considered as a linear map of the (x2,Y2)-plane based at the origin of IR~. 

We therefore take nh(O) 0. The symmetry (1.3) (see Figures l(b) and (c)) 

then implies that nh (t + w,(h)/2) = nh(-t) = -nh(t) for t e IR, and hence for 

t e [. Thus the coefficients in (3.4) have basic real period w1 (h)/2. 

THEOREM 3. Let the potential (3.1) satisfy the conditions (1.2)-(1.4) as 
summarized in Figures l(b) nnd (c) and nssume K in (l.l) satisfies 

K(xl,x2,YI,Y2) = K(-xl,x2,-YI,Y2). Seto = 622(64o)- 1 • Then the Hamiltonian 
system (1.1) with potential (3.1) has no second integral F that is meromorpbic 
in a neighborhood in [ 4 of the image r(h) ofl\(t) and functionally 

irJCieperJdent of the Hamiltonian If in each of the appropriate enertf.Y intenrals 
for Figures l(b) and (c) (as specified above) provided (1 + 46) f. (odd 
integer) 2, except possibly on a set of measure zero of energies h in the 
respective intervals. 

PHOOF. We use the notation in the proof of Theorem 2 except that A(h) is now 
the analytic continuation of the fundamental matrix solution 'l'(t,h) of (3.4) 
along the real time axis from t = 0 to t = w1 (h)/2. As before, B(h) is the 
analytic continuation of 'l'(t,h) along the other side of the period 
parallelogram of nh(t) from t = 0 to t = w2(h). Then the commutator 

C(h) = (A(h),B(h)) can be interpreted as the result of analytic continuation 
in the complex t-plane of 'I'( t, h) counter-clockwise around one-half of the 
period parallelogram of nh(t) starling and ending at t = 0. 

The Hamil toni an H of ( 1.1) is invariant under the Z2-action 
(x,,x2,YltY2)-+ (-x,,x2,-y,,y2), and similarly for the complexified 
Hamiltonian. Ziglin in [16, Sections 1.5 and 4] has given the analogue of his 
theorem for the reduced Hamiltoniw1 system H obtained through reduction by 
such a symplectic symmetry. He has shown that if II is integrable then so is 
H. Applying Ziglin's Theorem to H is equivalent to showing that the 
commutator C(h) calculated above does not equal I or A2(h). Now the 
eigenvalues of C(h) can be calculated by analytic continuation of 'l'(t,h) in a 
positive sense around one of the b~o regular singular points of (3.4). These 
eigenvalues are independent of h 

the roots of the indicia} equation 

(3.6) p(p-l) - 6 = 0 

and are given by (2.7) where the p. are now 
J 

of (3.5). Excluding the same types of energies as were excluded in the proof 
of Theorem 2 (one can check from [5] that the eigenvalues of this new A(h) 
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dmuge as specified in Theor·em l), the r·esul t follows ft·om Zigl in's Theorem 1n 
the same manner as in the proof of Theorem 2. 

Q.E.D. 

We illustrate Theor·em 3 with an example previously discussed in [3], [4, 
Section 8(b)], and [5, Section 6(c)]. The potential 

(3.7) 

has gradient lines x2 = ±x 1 • Along the line x2 = x, there are two 

* hyperbolic critical points p± = ±(l, l) at energy h = (l/2), and hence we 

have Figure l(b) along this line. Let T be a rotation of the (x,,x2)-plane 
through an angle (1f/4) and call the new coordinates (x, ,x2) again. Then 

(3.8) 

satisfies (1.2)-(1.4), and 5 = 5 22 (5~ 0 )- 1 = -2 implies (l + 45) = -7 -F (odd 
integer) 2. Hence the system (1.1) with potential (3.7), and K symmetric as in 
Theor·em 3, is non-integrable in the sense of Theorem 3 (recall Remark l(a) in 
Section 2) at energies 0 < h < (l/2). For non-integrabi'lity results at 
euergies h > (l/2), see [3]. 
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