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To the memory of Charles C. Conley 



Preface 

The theory of Hamiltonian systems is a vast subject which can be studied 
from many different viewpoints. This book develops the basic theory of 
Hamiltonian differential equations from a dynamical systems point of view. 
That is, the solutions of the differential equations are thought of as curves in a 
phase space and it is the geometry of these curves that is the important object 
of study. The analytic underpinnings of the subject are developed in detail. 
The last chapter on twist maps has a more geometric flavor. It was written by 
Glen R. Hall. The main example developed in the text is the classical N-body 
problem, i.e., the Hamiltonian system of differential equations which describe 
the motion of N point masses moving under the influence of their mutual 
gravitational attraction. Many of the general concepts are applied to this 
example. But this is not a book about the N-body problem for its own sake. 
The N-body problem is a subject in its own right which would require a 
sizable volume of its own. Very few of the special results which only apply to 
the N-body problem are given. 

This book is intended for a first course at the graduate level. It assumes a 
basic knowledge of linear algebra, advanced calculus, and differential equa­
tions, but does not assume the advanced topics such as Lebesgue integration, 
Banach spaces, or Lie algebras. Some theorems which require long technical 
proofs are stated without proof, but only on rare occasions. The first draft 
of the book was written in conjunction with a course which was attended 
by engineering graduate students. The interests and background of these 
students influenced what was included and excluded. 

This book was read by many individuals who made valuable suggestions 
and many corrections. The first draft was read and corrected by Ricardo 
Moena, Alan Segerman, Charles Walker, Zhangyong Wan, and Qui Dong 
Wang while they were students in a seminar on Hamiltonian systems. Gregg 

vii 



V111 Preface 

Buck, Konstantin Mischaikow, and Dieter Schmidt made several suggestions 
for improvements to early versions of the manuscript. Dieter Schmidt wrote 
the section on the linearization of the equation of the restricted problem at the 
five lib ration points. Robin Vandivier found copious grammatical errors by 
carefully reading the whole manuscript. Robin deserves a special thanks. We 
hope that these readers absolve us of any responsibility. 

The authors were supported by grants from the National Science Foun­
dation, Defense Advanced Research Projects Agency administered by the 
National Institute of Standards and Technology, the Taft Foundation, and 
the Sloan Foundation. Both authors were visitors at the Institute for Mathe­
matics and its Applications and the Institute for Dynamics. 
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CHAPTER I 

Hamiltonian Differential Equations 
and the N-Body Problem 

A. Background and Basic Definitions 

This chapter introduces the concept of a Hamiltonian system of ordinary 
differential equations, sets forth basic notation, reviews some basic facts 
about the solutions of differential equations, and gives several examples in 
detail. The primary example is the gravitational N-body problem, which is 
given a sizable introduction. 

1. Notation 

Chapters are given roman numerals, sections capital letters, and subsections 
arabic numerals. Thus, I.A.1 refers to this subsection. Within a chapter the 
beginning chapter numerals will be omitted; so within Chapter I this section 
will be denoted A.I. Theorems, lemmas, corollaries, etc., will be renumbered 
in each section; so a typical theorem reference might be Theorem II.C.2, the 
second theorem in Section C of Chapter II. Formulas and figures are de­
noted like theorems but numbered independent of theorems. Hence, Formula 
(II.C.2) is the second formula in Section C of Chapter II. Within chapters (or 
sections) the leading numerals (and letter) may be dropped when referring to 
formulas or theorems within that chapter (or section). 

IR will denote the field of real numbers, C the complex field, and IF either IR 
or C. IRn (cn or IFn) will denote the space of all n-dimensional column vectors, 
and, unless otherwise said, all vectors will be column vectors. However, vec­
tors will be written as row vectors within the body of the text for typographi­
cal reasons. 2(lFn, IFm) will denote the set of all linear transformation from IFn 

to IFm which will sometimes be identified with the set of all m x n matrices. A 
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matrix A is block diagonal ifit is of the form 

All 0 12 013 Olk 

021 A22 023 02k 

A= 0 31 032 A33 03k 

Ou Ou Ok3 Au 

where the Aii are square matrices, and the Oij are the rectangular zero ma­
trices. We will write A = diag(A ll , A 22 , •.• , Au). 

Functions will be real and smooth unless otherwise stated; smooth means 
C'X) or real analytic. If f(x) is a smooth function from an open set (!) in ~n into 
~m, then of/ax will denote the m x n Jacobian matrix 

ofl ofl 
oXl oXn 

of 
(1) 

ax 
ofm ofm 

OXl oXn 

If A is a matrix, then AT will denote its transpose, A -1 its inverse, and A -T the 
inverse transpose if these matrices exist. If f: ~n -+ ~l, then of/ax is a row 
vector; let Vf or VJ or fx denote the column vector afT/ax. When the deriva­
tive of f is thought of as a map from (!) into 2(~n, ~m), the space of linear 
operators from ~n ot ~m, the derivative will be denoted by Df. The variable t 
will denote a real scalar variable called time and' = didt. 

2. Hamiltonian Systems 

Newton's second law gives raise to systems of second-order differential 
equations in ~n and so to a system of first-order equations in ~2n, an even­
dimensional space. If the forces are derived from a potential function, the 
equations of motion of the mechanical system have many special properties, 
most of which follow from the fact that the equations of motion can be written 
as a Hamiltonian system. The Hamiltonian formalism is the natural mathe­
matical structure in which to develop the theory of conservative mechanical 
systems. 

A Hamiltonian system is a system of 2n ordinary differential equations of 
the form 

( 
oH 

qi = 0Pi (t, q, p), 
. oH( ) Pi = - ~ t, q, P , 

uqi 
i = 1, ... ,n). (2) 
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where H = H(t, q, p), called the Hamiltonian, is a smooth real-valued function 
defined for (t, q, p) E (!), where (!) is some open set in 1R1 X IRn x IRn. The vectors 
q = (q 1'''', qn) and P = (Pi'"'' Pn) are traditionally called the position and 
momentum vectors, respectively, and t is called time, since that is what these 
variables represent in the classical examples. The variables q and P are said to 
be conjugate variables; P is conjugate to q, etc. The concept of conjugate 
variable will grow in importance as the theory develops. The integer n is the 
number of degrees of freedom of the system. 

For the general discussion, introduce the 2n vector z and the 2n x 2n skew 
symmetric matrix J and the gradient by 

z = (;). 

oH 
OZ2n 

(3) 

where 0 is the n x n zero matrix, and I is the n x n identity matrix. The 2 x 2 
case is special, and so, sometimes J2 will be denoted by K. In this notation (2) 
becomes 

i = JVH(t, z). (4) 

One of the basic results from the general theory of ordinary differential 
equations is the existence and uniqueness theorem. This theorem states that 
for each (to, zo) E (!), there is a unique solution z = t/J(t, to, zo) of (4) defined for 
t near to which satisfies the initial condition t/J(to, to, zo) = zoo t/J is defined on 
an open neighborhood of the set {(t, to, z) E (!): t = to} into IRn. Moreover, 
this solution is maximal in the sense that there are L = L(to, zo) and t+ = 
t+(to, zo), possibly ± 00, such that t/J(t, to, zo) is defined for L < t < t+ and 

lim t/J(t, to, zo) = o(!), (5) 
t ..... t± 

where o(!) denotes the boundary of (!). That is, for any compact set :f{' c (!), 

there is an t: > 0 such that t/J(t, to, zo) E (!)\:f{' for L < t < L + t: and 
t+ - t: < t < t+ when Land t+ are finite-a similar statement holds when 
one or both of Land t+ are infinite. For example, if (!) = 1R1 ~ 1R2N, then 
either t+ = +00 and t/J(t, to, zo) is defined for all t > to, or t+ is finite and 
Iit/J(t, to, zo)11 --+ +00 as t --+ t+. The function t/J(t, to, zo) is smooth in all its 
displayed arguments, and so is cet) if the equations are Cet), and analytic 
if the equations are analytic. t/J(t, to, zo) is called the general solution. See 
Hartman (1964) or Hale (1972) for details of the theory of ordinary differential 
equations. 

In the special case when H is independent of t, so H: (!) --+ 1R1 where (!) 

is some open set in 1R2n, the differential equations (4) are autonomous and 
the Hamiltonian system is called conservative. In this case the identity 
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,p(t - to, 0, zo) = ,p(t, to, zo) holds, since both sides satisfy equation (4) and 
the same initial conditions. In this case usually the to dependence is dropped 
and only ,p(t, zo) is considered, where ,p(t, zo) is the solution of (4) satisfy­
ing ,p(0, zo) = zoo In this case the solutions are pictured as parameterized 
curves in (9 C 1R2n and the set (9 is called the phase space. By the existence and 
uniqueness theorem, there is a unique curve through each point in (9, and by 
the uniqueness theorem, two such solution curves cannot cross in (9. 

An integral for (4) is a smooth function F: (9 --+ 1R1 which is constant along 
the solutions of (4), i.e., F(,p(t, zo)) = F(zo) is constant. The classical con­
served quantities of energy, momentum, etc., are integrals. The level surfaces 
F- 1(c) C 1R2n, C a constant, are invariant sets, i.e., they are sets such that if a 
solution starts in the set, it remains in the set. In general, the level sets are 
manifolds of dimension 2n - 1, and so with an integral F, the solutions lie on 
the set F- 1(c), a space of one less dimension. If you were so lucky as to find 
2n - 1 independent integrals, F1 , ••• , F2n - 1 , then holding all these integrals 
fixed would define a curve in 1R2n, the solution curve. In the classical sense, the 
problem has been integrated. 

3. The Poisson Bracket 

Many of the special properties of Hamiltonian systems are formulated in 
terms of the Poisson bracket operator, so this operator plays a central role 
in the theory to be developed. Let H, F, and G be smooth functions from 
(9 c 1R1 X IRn x IRninto 1R1, and define the Poisson bracket ofF and Gby 

{F, G} = VFT ]VG = aFT oG _ aFT oG 
oq op op oq 

( 
n [OF oG of oG J) {F, G}(t, q, p) =.L -:1(t, p, q)-:1(t, q, p) - -:1(t, q, p)-:1(t, q, p) . 

• =1 uqi uPi uPi uqi 

(6) 

Clearly {F, G} is a smooth map from (9 to 1R1 as well and one can easily verify 
that { ., . } is skew symmetric and bilinear. A little calculation verifies Jacobi's 
identity: 

{F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0. (7) 

By a common abuse of notation, let F(t) = F(t, ,p(t, to, zo)) where ,p is the 
solution of (4) as above. By the chain rule, 

d of 
dt F(t) = Tt(t, ,p(t, to, zo)) + {F, H} (t, ,p(t, to, zo))· (8) 

Hence 

dH oH 
{[i-at· 



B. Examples of Hamiltonian Systems 

Theorem I. Let F, G, and H be as above and independent of time, t. Then 

(i) F is an integral for (4) if and only if {F, H} = O. 
(ii) H is an integral for (4). 

(iii) If F and G are integrals for (4), then so is {F, G} . 
(iv) {F, H} is the time rate of change of F along the solutions of (4). 

5 

PROOF. (i) follows directly from the definition of an integral, and (8). (ii) fol­
lows from (i) and the fact that the Poisson bracket is skew symmetric so 
{H, H} = O. (iii) follows from the Jacobi identity (7). (iv) follows from (8). _ 

In many of the examples given below, the Hamiltonian H is the total 
energy of a physical system, so in this case the theorem says that energy is a 
conserved quantity. 

In the conservative case when H is independent of t, a critical point of H as 
a function, i.e., a point where the gradient of H is zero, is an equilibrium 
(critical, rest, stationary) point of the system of differential equation (2) or (4), 
i.e., a constant solution. For the rest ofthis subsection, let H be independent of 
t. A equilibrium point' of system (4) is stable if for every e > 0, there is a <> > 0 
such that II' - </1(t, zo)11 < e for all t whenever II' - Zo II < <>. 

Theorem 2. If' is a local minimum or maximum of H, then, is stable. 

PROOF. This is a classical theorem of Lyapunov. Without loss of generality 
assume that, = 0 and H(O) = 0 and that 0 is a local minimum for H. Fix e > O. 
Since H(O) = 0 and 0 is a minimum for H, there is an '1 > 0 such that H(z) 
is positive for 0 < Ilzll ~ '1. Let x = minCe, '1) and M = min{H(z): Ilzll = x} . 
Since H(O) = 0 and H is continuous, there is a <> > 0 such that H(z) < M for 
Ilzll < <>. If Ilzoll < <>, then H(zo) = H(</1(t, zo)11 < M for all t. 11</1(t, zo)11 < x ~ e 
for all t because, if not, there would be a time t' when 1I</1(t', zo)1I = x, but then 
H(</1(t', zo» ~ M, which is a contradiction. -

B. Examples of Hamiltonian Systems 

1. The Harmonic Oscillator 

The harmonic oscillator is the second-order, linear, autonomous, ordinary 
differential equation 

(1) 

where w is a positive constant. It can be written as a system of two first-order 
equations by introducing the conjugate variable u = X/W and as a Hamil­
tonian system by letting H = (w/2)(x2 + y2) (energy in physical problems). 
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The equations become 
. oH 
x=wu= ­

OU ' 

. oH 
u = -wx = - ox' 

(2) 

The variable u is a scaled velocity, and so, the x, u plane is essentially the 
position-velocity plane, or the phase space of physics. The basic existence and 
uniquel).ess theorem of differential equations asserts that through each point 
(xo, uo) in the plane there is a unique solution which passes through this point 
at any particular epoch to. These solutions are given by the formula 

( X(t, to, xo, uo») = ( co~ w(t - to) sin w(t - to») (xo). (3) 
u(t, to, xo, uo) - sm w(t - to) cos w(t - to) Uo 

The solution curves are parameterized circles. The reason that one introduces 
the scaled velocity instead of using the velocity itself, as is usually done, is so 
that the solution curves become circles instead of ellipses. In dynamical sys­
tems the geometry of this family of curves in the plane is of prime importance. 

Since the system is time independent, it admits H as an integral by Theo­
rem A.I (or note iI = wxx + wuu = 0). Since a solution lies in the set where 
H = constant, which is a circle in the x, u plane, the integral alone gives the 
geometry of the solution curves in the plane. See Figure B.l. The origin is a 
local minimum for H, and so, the origin is stable. 

Introduce polar coordinates, r2 = x 2 + u2 , () = tan-1u/x, so that Equa­
tions (3) become 

f = 0, () = -w. (4) 

u 

x 

Figure 8.1. Phase portrait of the harmonic oscillator. 
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This shows again that the solutions lie on circles about the origin since f = 0, 
and that the circles are swept out with constant angular velocity. 

2. The Forced Nonlinear Oscillator 

Consider the system 

x + f(x) = g(t), (5) 

where x is a scalar, and f and 9 are smooth real-valued functions of a scalar 
variable. A mechanical system which gives rise to this equation is illustrated 
in Figure B.2(a). Here, x is the displacement of a particle of mass 1 that is 
connected to a nonlinear spring whose restoring force is - f(x) subject to an 
external force g(t). One assumes that these are the only forces acting and in 
particular that there are no velocity-dependent forces acting like a frictional 
force. An electrical system which gives rise to this equation is illustrated in 
Figure B.2(b). In this case, x represents the charge on a nonlinear capacitor in 
a series circuit which contains a linear inductor and an external electromotive 
force g(t). In this problem assume that there is no resistance in the circuit and 
so there are no terms in x. This equation is equivalent to the system 

where 

. oH 
x = y = oy' 

oH 
y = - f(x) + g(t) = - ox' 

H = ty2 + F(x) - xg(t), F(x) = f: f(s)ds. 

(6) 

(7) 

Many named equations are of this form, for example: (i) the harmonic oscilla­
tor: x + w2x = 0, (ii) the pendulum equation (j + sin () = 0, (iii) the forced 
Duffing's equation x + x + IJ(X 3 = cos wt. 

In the case when the forcing term 9 is absent, 9 == 0, H is an integral, and 
the solutions lie in the level curves of H. Therefore, the phase portrait is easily 
obtained by plotting the level curves. In fact, these equations are integrable in 
the classical sense that they can be solved "up to a quadrature," i.e., they are 
completely solved after one integration (quadrature). Let h = H(xo, Yo). Solve 

(a) (b) 

Figure B.2. Physical examples. (a) Spring-mass system; (b) nonlinear LC circuit. 
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H = h for y and separate the variables to obtain 

y = ~: = ±J2h - 2F(x), 

Ix dT 

t - to = Xo ±J2h _ 2F(T)· 

(8) 

Thus, the solution is obtained by performing the integration (quadrature) in 
(8) and then taking the inverse of the function so obtained. In general this is 
quite difficult, but when f is linear, the integral in (8) is elementary, and when 
f is quadratic or cubic, then the integral in (8) is elliptic. 

3. The Elliptic Sine Function 

This example is an interesting, nontrivial classical example. In an effort to 
extend the table offunctions which were integrable, the elliptic functions were 
introduced in the nineteenth century. Usually the properties of these func­
tions are developed in advanced texts on complex analysis, but much of the 
basic properties follow from the elementary ideas in differential equations. 
Here one example will be presented. 

Let k be a constant 0 < k < 1 and sn(t, k) the solution of 

x + (1 + P)x - 2k2x3 = 0, x(O) = 0, x(O) = 1. (9) 

The function sn(t, k) is called the Jacobi elliptic sine function. Put y = x so the 
Hamiltonian or integral is 

2H = y2 + (1 + k2 )X2 - k2x 4 

and on the solution curve sn(t, k),2H = 1 so 

sIi2 = (1 - sn2 )(1 - P sn2 ). 

(10) 

(11) 

The phase portrait of (9) is the level line plot of H. First plot the graph of 
t(x) = 2h - (1 + k2 )X2 + k 2x 4 = (2h - 1) + (l - x 2 )(1 - k 2x 2 ) as shown in 
Figure B.3(a), and then take square roots by plotting y2 = t(x) to obtain the 
phase portrait of (9) as shown in Figure B.3(b). The solution curve of sn(t, k) 
lies in the connected component of 2H = 1 which contains x = 0, y = x = 1, 
i.e., the closed curve encircling the origin illustrated by the darker oval in 
Figure B.3(b). Since the solution sn(t, k) lies on a closed level line that does not 
contain an equilibrium point, it must be a periodic function. Both sn(t, k) and 
- sn( - t, k) satisfy (9), and, so, by the uniqueness theorem for ordinary differ­
ential equations, sn(t, k) = - sn( - t, k), i.e., sn is odd in t. 

The curve defined by sn goes through the points x = ± 1, y = 0 also. As t 
increases from zero, sn(t, k) increases from zero until it reaches its maximum 
value of 1 after some time, say a time x. (Classically, the constant x is denoted 
by K.) Since sn( ± x, k) = ± 1 and siJ.( ± x, k) = 0 and both sn(t + x, k) and 
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y 

(a) (b) 

Figure B.3. Portrait of the elliptic sine function. (a) t(x) vs x; (b) phase portrait. 

sn 

Figure B.4. Graph of sn(t, k) vs t. 

-sn(t - x, k) satisfy the equation in (9), by uniqueness of the solutions of 
differential equations it follows that sn(t + x, k) = - sn(t - x, k), or that sn is 
4x periodic and odd harmonic in t. Thus, the Fourier series expansion of sn 
only contains terms in sin(j2nt/4x), where j is an odd integer. 

It is clear that sn is increasing for - x < t < x. Equation (9) implies so > 0 
(so sn is convex) for -x < t < 0, and it also implies so < 0 (so sn is concave) 
for 0 < t < x. Thus, sn has the same basic symmetry properties as the sine 
function. It is also clear from the equations that sn(t, k) -+ sin t and x -+ n/2 as 
k -+ O. The graph of sn(t, k) is indicated in Figure B.4. 

The function x(k) is investigated in the problems. Classical handbooks 
contain tables of values of the sn function, and simple numerical integration 
methods can be used to compute values of sn on a small computer. Thus, one 
knows almost as much about sn(t, k) as about sin t; therefore, sn(t, k) should 
be added to your list of known or elementary functions. In the problems, you 
are asked to solve the pendulum equation with your new "elementary func-



10 I. Hamiltonian Differential Equations and the N-Body Problem 

tion." There are three other Jacobi elliptic functions which all satisfy equa­
tions similar to (9). They were introduced in order to extend the number of 
functions which can be integrated. In fact, with the four Jacobi elliptic func­
tions, all equations of the form (5) with g = 0 and f(x) a quadratic or cubic 
polynomial can be solved explicitly. See the classic text Modern Analysis by 
Whittaker and Watson (1958) for a complete discussion of the Jacobi elliptic 
functions. Many of the formulas will remind you of trigonometry. 

4. General Newtonian System 

The n-dimensional analog of (1) is 

Mi + VF(x) = g(t), (12) 

where x is an n vector, M is a nonsingular, symmetric n x n matrix, F is a 
smooth function defined on an open domain (9 in !Rn, V F is the gradient of F, 
and g is a smooth n-vector-valued function oft, for t in some open set in !R1. 
Let p = Mi, then (12) is equivalent to the Hamiltonian system 

. aH -1 
x = ap = M p, 

aH 
p = - ax = -VF(x) + g(t), (13) 

where the Hamiltonian is 

(14) 

If x represents the displacement of a particle, and M is a positive scalar 
(the mass) times the identity, then p is the linear momentum of the particle, 
tp T M- 1 P is the kinetic energy, and F is the potential energy. If g(t) == 0, then 
H is an integral and is "total energy." This terminology is used in reference to 
nonmechanical systems of the form (12) also. In order to write (13) as a Hamil­
tonian system, the correct choice of the variable conjugate to x is p = M i, the 
linear momentum, and not i, the velocity. 

In the special case when g == 0, a critical point of the potential is a critical 
point of H and hence is an equilibrium point of the Hamiltonian system of 
equations (13). In many physical examples, M is positive definite. In this case, 
if x' is a local minimum for the potential F, then (x', 0) is a local minimum for 
H and therefore is a stable equilibrium point by Theorem A.2. 

It is tempting to think that if x' is a critical point of F which is not a 
minimum of the potential, then the point (x', 0) is an unstable equilibrium 
point. Indeed, this is stated in Malkin (1952) and LaSalle and Lefschetz (1961) 
but the proofs given are not convincing. The problems at the end of Chapter 
II have some results along these lines. See Chapter IX for further discussion of 
stability questions. 
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5. A Pair of Harmonic Oscillators 

Consider a pair of harmonic oscillators 

x + w2x = 0, ji + p?y = 0, 

which as a system becomes the Hamiltonian system 

. oH 
x=wu=­

ou' 

. oH 
U= -wx=-­

ox' 

where the Hamiltonian is 

. oH 
y = J1-v = Tv' 

. oH 
v=-J1-Y=-oy' 

In polar coordinates the equations become 

r = 0, p = 0, 

{j = -w, 

and they admit the two integrals 

1= (!w)(x 2 + u2 ), 
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(15) 

(16) 

(17) 

(18) 

(19) 

In many physical problems these equations are only the first approximation, 
and the full system does not admit the two individual integrals (energies) but 
does admit the sum H. Think, for example, of a pea rolling around in a bowl; 
the linearized system at the minimum would be of the form (16). In this case, 
H-l(l) is an invariant set for the flow and topologically a 3-sphere. 

Consider the general solution through ro, Po, (}o, and <Po at epoch t = O. The 
solutions with ro = 0 and Po > 0 or Po = 0 and ro > 0 lie on circles and cor­
respond to periodic solutions of period 2rc/J1- and 2rc/w, respectively. These 
periodic solutions are special and are usually called the normal modes. 

The set where r = ro > 0 and P = Po > 0 is an invariant torus for (16) or 
(18). Angular coordinates on this torus are (} and <P, and the equations are 

{j = -w, (20) 

the standard linear equations on a torus. 
If w/J1- is rational, then w = pr and J1- = qr, where p and q are relatively 

prime integers. In this case the solution of(16) through (}o, <Po at epoch t = 0 is 
(}(t) = (}o - wt, <p(t) = <Po - J1-t, and so if T = 2rc/r, then (}(T) = (}o + p2rc and 
<p(T) = <Po + q2rc. That is, the solution is periodic with period T on the torus 
[see Figure B.5(a)] and this corresponds to periodic solutions of(16). 

If w/ J1- is irrational, then none of the solutions are periodic. In fact, the 
solutions of (20) are dense lines on the torus [see figure B.5(b) and Subsection 
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Figure B.5. Linear flow on the torus. 

6], and this corresponds to the fact that the solutions of(16) are quasiperiodic 
but not periodic. 

We can use polar coordinates to introduce coordinates on the sphere pro­
vided we are careful to observe the conventions of polar coordinates: (i) r ~ 0, 
(ii) e is defined modulo 2n, and (iii) r = 0 corresponds to a point. That is, if we 
start with the rectilinear strip r ~ 0, 0 ~ e ~ 2n [Figure B.6(a)], then identify 
the e = 0 and e = 2n edges to get a half-closed annulus [Figure B.6(b)], and 
finally if we identify the circle r = 0 with a point, then we have a plane [Figure 
B.6(c)]. 

Starting with the polar coordinates r, e, p, rP for R4 , we note that on the 
3-sphere, E = r2 + p2 = 1; so, we can discard p and have 0 ~ r ~ 1. We will 
use r, e, rP as coordinates on S3. Now r, e with 0 ~ r ~ 1 are just polar coordi­
nates for the closed unit disk. For each point of the open disk, there is a circle 
with coordinate rP (defined mod 2n), but when r = 1, p = 0; so, the circle 
collapses to a point over the boundary of the disk. The geometric model of S3 
is two solid cones with points on the boundary cones identified as shown in 
Figure B.7. Through each point in the open unit disk with coordinates r, e 
there is a line segment (the dashed line) perpendicular to the disk. The angular 
coordinate rP is measured on this segment; rP = 0 is the disk ,p = 1t is the upper 
boundary cone, ,p = - n is the boundary lower cone. Each point on the upper 
boundary cone with coordinates r, e, ,p = n is identified with the point on the 
lower boundary cone with coordinate r, e, rP = - n. From this model follows 
a series of interesting geometric facts. 

For 11., 0 < 11. < 1, the set where r = 11. is a 2-torus in the 3-sphere, and for 
IX = 0 or 1, the set r = 11. is a circle. Since r is an integral for the pair of oscilla­
tors, these tori and circles are invariant sets for the flow defined by the har­
monic oscillators. The two circles r = 0, 1 are periodic solutions, called the 
normal modes. The two circles are linked in S3, i.e., one ofthe circles intersects 
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Figure B.6. The polar coordinate conventions. 
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a disk bounded by the other circle in an algebraically nontrivial way. The 
circle where r = 1 is the boundary of the shaded disk in Figure B.8, and the 
circle r = 0 intersects this disk once. It turns out that the number of inter­
sections is independent of the bounding disk provided one counts the inter­
sections algebraically. 

Consider the special case when w = J1. = 1. In this case every solution is 
periodic, and so its orbit is a circle in the 3-sphere. Other than the two special 
circles, on each orbit as () increases by 2n, so does fjJ. Thus, each such orbit hits 
the open disk where fjJ = 0 (the shaded disk in Figure B.8) in one point. We 
can identify each such orbit with the unique point where it intersects the disk. 
One special orbit meets the disk at the center, and so we can identify it with 
the center. The other is the outer boundary circle which is a single orbit. When 
we identify this circle with a point, the closed disk with its outer circle identi­
fied with a point becomes a 2-sphere. Thus: 
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identify 

Figure B.7. A model of the 3-sphere, S3. 

Figure B.8. Orbit on the 3-sphere S3. 



B. Examples of Hamiltonian Systems 15 

Theorem 1. The 3-sphere, S3, is the union of circles. Any two of these circles are 
linked. The quotient space obtained by identifying a circle with a point is a 
2-sphere (The Hopf fibration of S3). 

Let D be the open disk if> = 0, the shaded disk in Figure B.8. The union of 
all the orbits which meet D is a product of a circle and a 2-disk, so each point 
not on the special circle r = 1 lies in an open set that is the product of a 2-disk 
and a circle. By reversing rand p in the discussion given above, the circle 
where r = 1 has a similar neighborhood. So locally the 3-sphere is the product 
of a disk and a circle, but the sphere is not the product of a two manifold and a 
circle. (The sphere has a trivial fundamental group, but such a product would 
not.) 

When OJ = P and J1. = q, p and q relatively prime integers, all solutions are 
periodic, and the 3-sphere is again a union of circles, but it is not locally a 
product near the special circles. The nonspecial circles are p-q torus knots. 
They link p times with one special circle and q times with the other. 

The linking statements follow by a slight extension of the ideas of the 
previous proposition. A p-q torus knot is a closed curve which wraps around 
the standard torus in R3 in the longitudinal direction p times and in the 
meridional direction q times. If p and q are different from 1, the knot is non­
trivial. The details are too lengthy for here, but Figure B.9 shows that the 3-2 
torus knot is the classical trefoil or clover-leaf knot. Figure B.9(a) is the stan­
dard model of a torus-a square with opposite sides identified. The line with 

(a) (b) 

(c) 

Figure B.9. Toral knot. (a) Orbit on torus; (b) unwinding the orbit; (c) orbit as trefoil. 
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slope 3/2 is shown warpping three times around one way and twice around 
the other. Think of folding the top half of the square back and around and 
then gluing the top edge to the bottom to form a cylinder. Add two extra 
segments of curves to connect the right and left ends of the curve to get Figure 
B.9(b). Smoothly deform Figure B.9(b) to Figure B.9(c), the standard presen­
tation of the trefoil. See Rolfsen (1976) for more information on knots. 

6. Linear Flow on the Torus 

In order to show that the solutions of (20) on the torus are dense when wi J1. is 
irrational, the following simple lemmas from number theory are needed. 

Lemma 2. Let b be any irrational number. Then for every e > 0, there exist 
integers q and p such that 

Iqb - pi < e. (21) 

PROOF. Case 1: 0 < b < 1. Let N ~ 2 be an integer and SN = 
{sb - r: 1 .::; s, r'::; N} . For each element of this set we have Isb - rl < N. 
Since b is irrational, there are N 2 distinct members in the set S; so at least one 
pair is at least 41N apart. [If not, the total length would be greater than 
(N2 - 1)41N > 2N.] Call this pair sb - rand s' b - r'. So 

0< I(s - s')b - (r - r')1 < ~ < _2_. (22) 
N Is-s'l 

Take N > 2/e, q = s - s', and p = r' - r to finish this case. The other cases 
follow from the above. If -1 < b < 0, then apply the above to -b; and if 
Ibl > 1, apply the above to lib. _ 

Lemma 3. Let b be any irrational number and ~ any real number. Then for every 
e > 0 there exist integers p and q such that 

Iqb - p - ~I < e. (23) 

PROOF. Let p' and q' be as given in Lemma 1, so 1/ = q' b - p' satisfies 
o < 11/1 < e. There is an integer m such that I m1/ - ~ I < e. The lemma follows 
by taking q = mq' and p = mp'. _ 

Theorem 4. Let wlJ1. be irrational. Then the solution curves defined by Equations 
(20) are dense on the torus. 

PROOF. Measure the angles in revolutions instead of radians so that the angles 
o and <p are defined modulo 1 instead of 2n. The solution of Equations (20) 
through 0 = <p = 0 at t = 0 is O(t) = wt, <p(t) = J1.t. Let e > 0 and ~ be given. 
Then 0 == ~ and <p == 0 mod 1 is an arbitrary point on the circle <p == 0 mod 1 
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on the torus. Let b = w//l and P, q be as given in Lemma 2. Let t = q/ /l, so 
O(t) = bq, t/J(t) = q. Thus, 10(t) - P - ~I < e, but since P is an integer, this 
means that O(t) is within e of~; and so, the solution through the origin is dense 
on the circle t/J == 0 mod 1. The remainder ofthe prooffollows by translation . 

• 

7. The Kirchhoff Problem 

Mechanical problems are not the only way Hamiltonian systems arise. 
Kirchhoff (1897) derived the equations of motion of N vortices of an incom­
pressible fluid moving in the plane under their mutual interaction. Let '1i be 
the position vector of the ith vortex whose circulation is Xi; then the equations 
of motion are 

where 

j = 1, ... ,N,K = ( 0 1), 
-1 0 

U = L XiXj log l117i - 17j ll. 
l ,,;;i< j ,,;;N 

(24) 

(25) 

If we set 17i = (q;, Pi), P = (Pl,···,PN)' and q = (ql, . ··,qN), the equations 
become 

. oU . oU 
q = op' P = - oq· (26) 

Sometimes these equations can be treated like the N-body problem to be 
introduced in the Section C. We shall develope some of the more basic facts 
about these equations in the problems. 

c. The N-Body Problem 

1. The Equations 

The beginning of science as we know it today started with Newton's formula­
tions of the three laws of motion, the universal law of gravity, and his solution 
of the two-body problem. With a few simple principles and some mathe­
matics, he could explain the three empirical laws of Kepler on the motion of 
Mars and the other planets. For the planets, the sun and the planet can be 
considered as a 2-body problem in the first approximation. Newton turned 
his attention to the motion of the moon which required three bodies: the sun, 
Earth, and moon, in the first approximation. Unable to solve the 3-body 
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problem, he wrote that the theory of the moon gave him headaches. The 
3-body problem thus became the most celebrated problem in mathematics. 

Consider N point masses moving in a Newtonian reference system, [R3, 

with the only forces acting on them being their mutual gravitational attrac­
tion. Let the ith particle have position vector qi and mass mi > 0; then ap­
plying Newton's second law and law of gravity yields the equations of motion 

m.ij . = I' Gmimhj - qJ = au 
I I j=I Ilqi _ qj ll3 aq/ (1) 

where 

u = L Gmimj (2) 
I :S i<j:sN Ilqi - qjll 

In the above, G is the universal gravitational constant, G = 6.6732 X 10-11 

m3/s2 kg, U is the self-potential or the negative of the potential, and the 
prime on the summation sign indicates that you do not divide by zero; and 
so, the term when i =j is omitted. Let q = (qI,q2, . .. ,qN)E [R3N and M = 

diag(mI' mI, mI, .. . , mN, mN, mN); so, equations (1) are of the form 

au 
Mij - aq = O. (3) 

As in the above, define P = (PI' . . . ,PN) E [R3N by P = M q so Pi = miqi is the 
momentum of the ith particle. The equations of motion become 

. Pi aR 
q. = - = -

I mi api' 
(4) 

where the Hamiltonian is 

(5) 

Here again the correct conjugate of position q is momentum p. 

2. The Classical Integrals 

The N-body problem is a system of 6N first-order equations; so, a complete 
solution would require 6N -1 time-independent integrals plus one time-depen­
dent integral. It is now fairly clear that for N > 2, there are not that many 
global integrals. However, there are 10 integrals for the system. 

Let L = PI + ... + PN be total linear momentum. From (4) it follows that 
L= 0 since each term in the sum appears twice with opposite sign. This gives 
C = 0, where C = L miqi is the center of mass of the system since C = L. So 
the total linear momentum is constant, and the center of mass of the system 
moves with uniform rectilinear motion. Integrating the center of mass equa­
tion gives C = Lt + Co, where L and Co are constants of integration. Land 
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Co are functions of the initial conditions; so are integrals of the motion. Thus, 
we have six constants of motion or integrals, namely, the three components of 
L and the three components of Co . 

Let A = Lt qi x Pi be the total angular momentum ofthe system. Then 

dA n 

dt = ~ (4i X Pi + qi x Pi) 

_ f x + f ~f Gmimjqi x (% - qJ - 0 
-L...q. m·q· L...L... -

1 I I I 1 1 IIqi _ qj ll3 . 

The first sum above is zero because qi x qi = O. In the second sum use 
qi x (qj - qJ = qi X % and then observe that each term in the remaining sum 
appears twice with opposite sign. Thus, the three components of angular 
momentum are constants of the motion or integrals also. Remembering that 
energy, H, is also an integral we have the classical 10 integrals of the N-body 
problem. 

3. The Kepler Problem 

A special case of the 2-body problem is when one body is assumed to be fixed 
at the origin-say, for example, it is so massive, like the sun, that to the first 
approximation it does not move. In this case the equations describe the mo­
tion ofthe other body and have the form 

.. M 
q = - IIql13' (6) 

where q E 1R3 is the position vector of the other body and J1. is the constant Gm 
where G is the universal gravitational constant and m is the mass of the body 
fixed at the origin. In this case, by defining P = 4, this equation becomes 
Hamiltonian with Hamiltonian 

H= IIpI1 2 -~ 
2 Ilqll· 

(7) 

As before A = q x P, angular momentum is constant along the solutions; 
and so, the three components of A are integrals. If A = 0, then 

d ( q) (q x 4) x q A x q 
dt M = IIql13 = ifqif3 = O. (8) 

The first equality above is a vector identity. So, if angular momentum is zero, 
the motion is collinear. Letting the line of motion be one of the coordinate 
axes makes the problem a one degree of freedom problem and so solvable 
by formulas (B.4). In this case the integrals are elementary and one obtains 
simple formulas (see the Problem Section). 
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If A#- 0, then both q and p = q are orthogonal to A; and so, the motion 
takes place in the plane orthogonal to A. In this case take one coordinate axis, 
say the last, to point along A; so, the motion is in a coordinate plane. The 
equations of motion in this coordinate plane have the same form as (6), but 
now q E 1R2. In the planar problem only the component of angular momen­
tum perpendicular to the plane is nonzero; so the problem is reduced to a 
two degree of freedom with one integral. Such a problem is solvable "up to 
quadrature." It turns out that the problem is solvable (well, almost) in terms 
of elementary functions. There are many ways to solve the Kepler problem. 
One way is outlined in the Problem Section at the end of this chapter, and 
another will be given in Chapter 4 once transformation theory for Hamil­
tonian systems is discussed. 

4. The Restriced 3-Body Problem 

A special case of the 3-body problem comes about as a limiting case when one 
lets one of the masses tend to zero. A careful derivation of this problem will be 
given in Chapter 3 after transformation theory is developed. In the traditional 
derivation of the restricted 3-body problem, one is asked to consider the 
motion of an infinitesimally small particle moving in the plane under the 
influence of the gravitational attraction of two finite particles which revolve 
around each other in a circular orbit with uniform velocity. Although this 
description is picturesque, it is hard to see the relationship this problem has to 
the full 3-body problem. For now we shall simply give the Hamiltonian. Let 
the two finite particles, called the primaries, have mass J1. > 0 and 1 - J1. > O. 
Let x E 1R2 be the coordinate of the infinitesimal particle in a uniformly 
rotating coordinate system and y E 1R2 the momentum conjugate to x. The 
rotating coordinate system is so chosen that the particle of mass J1. is always 
at (1 - J1., 0) and the particle of mass 1 - J1. is at (- J1., 0). See Figure c.l. 

The Hamiltonian governing the motion of the third (infinitesimal) particle 
in these coordinates is 

(9) 

where x, y E 1R2 are conjugate, K is J2 , and V is the self-potential 

J1. 1 - J1. 
V = dl + ----;r;:' (10) 

and di is the distance from the infinitesimal body to the ith primary or 

df = (Xl - 1 + J1.f + x~, di = (Xl + J1.)2 + x~. (11) 

The equations of motion are 
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Figure C.1. The rotating coordinates for the restricted problem. 

oH 
x= - =y+Kx, oy 

oH oH 
Y = - ax = Kx + ax· 
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(12) 

The term xTKy in the Hamiltonian H is due to the fact that the coordinate 
system is not a Newtonian system, but a rotating coordinate system. It gives 
rise to the so called Coriolis forces in the equations of motion (12). The line 
joining the masses is known as the line of syzygy. 

The proper definition of the restricted 3-body problem is the system of 
differential equations (12) defined by the Hamiltonian in (9). It is a two degree 
offreedom problem that seems simple but has defied integration. It has given 
rise to an extensive body of research. We shall return to this problem often in 
the subsequent chapters. 

D. Simple Solutions 

The N -body problem for N > 2 has resisted all attempts to be solved; indeed 
it is generally believed that the problem cannot be integrated in the classical 
sense. Over the years many special types of solutions have been found by 
using various mathematical techniques. In this section we shall find some 
solutions by the time honored method of guess and test. The simplest type of 
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solution one might look for are equilibrium or rest solutions. From (C.l) or 
(C.3) an equilibrium solution would have to satisfy 

au =0 
aqi ' 

fori = 1, ... ,N. (1) 

However, U is homogeneous of degree - 1; and so, by Euler's theorem on 
homogeneous polynomials 

au 
Lqi~ = -U. 

uqi 
(2) 

Since U is the sum of positive terms, it is positive, but (1) would make the 
right-hand side of (2) zero, which is a contradiction. Thus, there are no equi­
librium solutions ofthe N-body problem. 

1. Central Configurations 

To seek collinear solutions of (C.1), try q;(t) = ¢>(t)ai, where the a;'s are con­
stant vectors and ¢>(t) is a scalar-valued function. Substituting into (C.l) and 
rearranging, yields 

1¢>13rl~miai = I' Gmimj(aj -3ai ) 
j=l IIaj - adl 

(3) 

Since the right-hand side is constant, the left hand side must be also; therefore, 
(3) has a solution if there is a scalar function ¢>(t), a constant A, and constant 
vectors ai such that 

(4) 

i = 1, ... ,N. (5) 

Equation (4) is a simple ordinary differential equation (the one-dimensional 
Kepler problem!); and so has many solutions. For example, one solution is 
at2/3, where a3 = 9A/2. This is a solution which goes from zero to infinity as t 
goes from zero to infinity. The complete analysis of (4) is left to the problems. 
Equation (5) is a nontrivial system of nonlinear algebraic equations. The com­
plete solution is known only for N = 2, 3, but there are many special solutions 
known. 

Now consider the planar N-body problem, so all the vectors lie in jR2 . 

Identify jR2 with the complex plane C by considering the qi' Pi' etc., as com­
plex numbers. Seek a homographic solution of (C.1) by letting qi(t) = ¢>(t)ai, 
where the a;'s are constant complex numbers and ¢>(t) is a time-dependent 
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complex-valued function. Geometrically, multiplication by a complex num­
ber is a rotation followed by a dilation or expansion, i.e., a homography. 
Thus, we seek a solution such that the configuration of the particles are al­
ways homographically equivalent to a fixed configuration. Substituting this 
guess into (C.l) and rearranging gives the same Equation (3), and the same 
argument gives Equations (4), which are now the two-dimensional Kepler 
problem, and Equation (5). That is, if you have a solution of (5) where the a/s 
are planar, then there is a solution of the N-body problem of the form qi = 
f!J(t)a i , where f!J(t) is any solution of the planar Kepler problem, e.g., circular, 
elliptic, etc. 

A geometric configuration of the N particles given by constant vectors 
a l, ... , aN which satisfy (5) for some A. is called a central corifiguration (or c.c. 
for short). In the special case when the a/s are coplanar, a central configura­
tion is also called a relative equilibrium because, as we shall see, they become 
equilibrium solutions in a rotating coordinate system. Central configurations 
are important in the study of the total collapse of the system because it can be 
shown that the limiting configuration of a system as it tends to a total collapse 
is a central configuration. 

Note that any uniform scaling of a c.c. is also a c.c. In order to measure the 
size of the system, we define the moment of inertia of the system as 

1 N 
1 = "2 if; m;llqill2. (6) 

Then (5) can be rewritten as 

(7) 

where q = (ql, . .. ,qN) and a = (al, .. . ,aN). The constant A. can be considered 
as a Lagrange multiplier; and so, a central configuration is a critical point 
of the self-potential U restricted to a constant moment of inertia manifold, 
1 = Io = constant. Fixing 10 fixes the scale. 

Let a be a central configuration. U is homogeneous of degree -1, and 1 is 
homogeneous of degree 2. By taking the dot product of the vector a with the 
equation in (7) and applying Euler's theorem on homogeneous polynomials 
we find that - U + 2A.I = 0 or 

(8) 

Summing (5) on i gives L miai = 0, so the center of mass is at the origin. If A 
is an orthogonal matrix, either 3 x 3 in general or 2 x 2 in the planar case, 
then clearly Aa = (Aal, . .. ,AaN) is a c.c. also with the same A.. 1ft #- 0, then 
(tal, ta2 , ... , taN) is a c.c. also with A. replaced by A./ t 3. Thus, any configuration 
similar to a c.c. is a c.c. When counting c.c., one only counts similarity classes. 
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2. The Lagrangian Equilateral Triangle Solutions 

Consider the c.c. formula (5) for the planar 3-body problem. Then we seek six 
unknowns, two components each for a1, a2' a3. If we hold the center of mass 
at the origin, we can eliminate two variables; if we fix the moment of inertia, I, 
we can reduce the dimension by one; and if we identify two configurations 
which differ by a rotation only, we can reduce the dimension by one again. 
Thus, in theory you can reduce the problem by four dimensions, so that you 
have a problem of finding critical points of a function on a two-dimensional 
manifold. This reduction is difficult in general, but there is a trick that works 
well for the planar 3-body problem. 

Let Pij = Ilqi - qjll denote the distance between the ith and jth particles. 
Once the center of mass is fixed at the origin and two configurations are 
identified which are rotationally equivalent, then the three variables P12' P23' 
P31 are local coordinates near a noncollinear configuration. That is, by speci­
fying the angle between a fixed line and say ql - q2' the location of the center 
of mass, and the three variables P12' P23' P31' then the configuration of the 
masses is uniquely specified. The function U is already written in terms of 
these variables since 

U = G(mlm2 + m2 m3 + m3 ml) . 
P12 P23 P31 

(9) 

Let M be the total mass, i.e., M = L mi' and assume the center of mass is at 
the origin; then 

= 2MI - 2 L mlqi' LmjqJ + 2MI 
i 

=4MI. 

Thus, if the center of mass is fixed at the origin, then 

I = 4~ ~ ~ mimjPiJ· (10) 

So, I can be written in terms of the mutual distances also. Holding I fixed 
is the same as holding J = t(m12pr2 + m23P~3 + m31P~d fixed. Thus, the 
conditions for U to have a critical point on the set J = constant in these 
coordinates is 

m·m· 
-G~ + Amimjpij = 0 

Pij 
(i, j) = (1, 2), (2, 3), (3, 1), (11) 

which clearly has as its only solution P12 = P23 = P31 = (G/A)-1 /3. This solu­
tion is an equilateral triangle, and A is a scale parameter. These solutions are 
attributed to Lagrange. 
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Theorem 1. For any values of the masses, there is one and only one noncollinear 
central configuration for the 3-body problem, namely, the three particles are at 
the vertices of an equilateral triangle. 

It is trivial to see in these coordinates that the equilateral triangle c.c. 
is a nondegenerate minimum of the self-potential U. The above argument 
would also show that for any values of the masses there is one and only one 
noncoplanar c.c. for the 4-body problem, namely, the regular tetrahedron 
configuration. 

3. The Euler-Moulton Collinear Solutions 

Consider the collinear N -body problem, so q = (q 1, ... ,qN) E IRN. Set S' = 
{q : I(q) = I}, an ellipsoid or topological sphere, of dimension N - 1 in IRN; set 
G = {C(q) = L mjqj = O}, a plane of dimension N - 1 in IRN; and S = S' n G, 
a sphere of dimension N - 2 in the plane G. See Figure D.l where N = 3, S' is 
a 2-sphere, G is a plane, and S is a great circle. Let A;j = {q: qj = qJ and A' = 
U A;j; so, U is defined and smooth on IRN \ A'. A' is a union of planes through 
the origin and, so, intersects S in spheres of dimension N - 3, denoted by A-

Let dIJ be the restriction of U to S\ A, and so, a critical point of dIJ is 
a central configuration. Note that, S\ A has N! connected components. This 
is because a component of S\ A corresponds to a particular ordering of the 
q/s. That is, to each connected component there is an ordering qj, < qj2 < 
.. . < qjN' where(i1, i2 ,··· ,iN)is a permutation of 1, 2, . . . , N. There are N! such 
permutations. Since dIJ --+ 00 as q --+ A, the function dIJ has at least one mini­
mum per connected component. Thus, there are at least N! critical points. 

Figure D.l. The spaces S' and S for N = 3. 
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Let a be a critical point of<¥!; so that a satisfies (5) and A. = U(a)/2I(a). The 
derivative of <¥! at a in the direction v = (Vi"'" vN ) E T"S is 

Gm.m{v. - v·) 
D<¥!(a)(v) = - L l'a/_1 a;l , + A.L miaivi, (12) 

and the second derivative is 

2 " Gmimj ,,, 
D <¥!(a)(v, w) = 2L., laj _ a;l3 [(Wj - Wi)(Vj - Vi)] + II.L., miwivi' (13) 

From the above, D2<¥!(a)(v, v) > 0 when v # 0; so, the Hessian is positive defi­
nite at a critical point and each such critical point is a minimum of <¥!. Thus, 
there can only be one critical point of <¥! on each connected component, or 
there are N! critical points. 

In counting the critical points above, we have not removed the symmetry 
from the problem. The only one-dimensional orthogonal transformation is a 
reflection in the origin. Thus, we have counted a c.c. and its reflection; we have 
counted each c.c. twice. Thus, we have 

Theorem 2 (Euler-Moulton). There are exactly N!j2 collinear central configu­
rations in the N-body problem, one for each ordering of the masses on the line. 

These c.c. are minimum of <¥! only on the line. It can be shown that they are 
saddle points in the planar problem. 

4. Equilibria for the Restricted 3-Body Problem 

The full 3-body problem has no equilibrium points, but as we have seen there 
are solutions of the planar problem where the particles move on uniformly 
rotating solutions. In particular, there are the solutions where the particles 
move along the equilateral triangular solutions of Lagrange, and there are 
the collinear solutions of Euler. These solutions would be rest solutions in a 
rotating coordinates system. Since the restricted 3-body problem is a limiting 
case in rotating coordinates, we expect to see vestiges of these solutions as 
equilibria. 

From (C.ll) an equilibrium solution for the restricted problem would 
satisfy 

0= y + Kx, 

which implies 

oU 
0= Kx + ox' 

oU oV 
O=x+ - = -

ox ox' 

where V is the amended potential 

(14) 

(15) 
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(16) 

Thus, an equilibrium solution is a critical point of the amended potential. 
First, seek solutions that do not lie on the line joining the primaries. As in the 
discussion of the Lagrange point, use the distances d1 , d2 given in (C.U) as 
coordinates. From (C.11) we obtain the identity 

xi + x~ = J1df + (1 - J1)di - J1(l - J1); (17) 

so, V can be written in terms of the distances d1 and d2 • The equation oV/ox = 
o becomes in these variables 

(18) 

which clearly has the only solution d1 = d2 = 1. This solution lies at the ver­
tex of an equilateral triangle whose base is the line segment joining the two 
primaries. Since there are two orientations, there are two such equilibria solu­
tions; one in the lower half-plane denoted by 2 4 , and one in the upper half­
plane denoted by 2 5 • These are attributed to Lagrange also. 

Lagrange thought that these solutions had no astronomical significance, 
but in the twentieth century about 15 asteroids, the Trojans, were found at the 
24 position and about 15 asteroids, the Greeks, were found at the 25 position 
in the sun Jupiter system. That is, one group of asteroids, the sun, and Jupiter 
form an equilateral triangle, approximately, and so does the other group with 
the sun and Jupiter. 

Now consider equilibria along the line of the primaries where X 2 = O. In 
this case the amended potential is a function of X 2 which we shall denote by x 
for the present and has the form 

V = ~ x2 + J1 + (1 - J1) . 
2 - (x - 1 + J1) - (x + J1) 

(19) 

In the above, one takes the signs so that each term in the above is positive. 
There are three cases: (i) x < - J1 where the signs are - and -; (ii) - J1 < x < 
1 - J1 where the signs are - and +; and (iii) 1 - J1 < x where the signs are + 
and +. Clearly V -+ 00 as x -+ ± 00, as x -+ - J1, or as x -+ 1 - J1. So V has at 
least one critical point on each of these three intervals. Also 

d 2 V J1 (1 - J1) 
dx 2 = 1 ± (x - 1 + J1)3 ± (x + J1)3' 

(20) 

where the signs are again taken so that each term is positive; so, V is a convex 
function. Therefore, V has precisely one critical point in each of these inter­
vals, or three critical points. A sketch of the graph of V is given in Figure D.2. 
These three collinear equilibria are attributed to Euler also and are denoted 
by 2 1 , 2 2 , 23 as shown in Figure D.3. In classical celestial mechanics litera­
ture, these equilibrium points are called libration points; hence, the use of the 
symbol 2. 
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Figure 0.2. The amended potential. 
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Figure 0.3. The five equilibria ofthe restricted problem. 

E. Further Reading 

This chapter, and the book in general, assumes some knowledge of basic 
differential equations as found, for example, in the introductory texts: Brauer 
and Nohel (1969), Hurewicz (1958), or Sanchez (1968). They are all readable, 
short introductions to the geometric theory of differential equations and 
anyone of them should give sufficient background. References to special 
advanced topics will be given as needed. 
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Pollard (1966) gives a elean and complete description of the solution to the 
2-body problem, an introduction to Hamiltonian equations, and a brief treat­
ment of the restricted problem. This short book is an ideal starting point for 
the study of Hamiltonian systems and celestial mechanics. A more elementary 
and classical introduction is found in Moulton (1914). 

At the same or higher level of difficulty are the following: Abraham and 
Marsden (1978), an austere development of symplectic geometry which omits 
most of the details in its later chapters; Arnold (1983), an intuitive book which 
introduces many topics but lacks proofs at times; and Siegel and Moser 
(1971), a clearly written book with complete proofs. Of the three, Siegal and 
Moser is the book to read. 

Problems 

1. Let x, y, z be the usual coordinates in 1R 3 , r = xi + yj + zk, X = x, y = y, Z = i , 
R = r = Xi + Yj + Zk. 
8. Compute the three components of angular momentum mr x R. 
b. Compute the Poisson brakcet of any two of the components of angular 

momentum and show that it is plus/minus the third component of angular 
momentum. 

c. Show that if a system admits two components of angular momentum as 
integrals, then the system admits all three components of angular momentum 
as integrals. 

2. A Lie algebra .91 is a vector space with a product *: .91 x .91-> .91 which satisfies 
a * b = -b * a (anticommutative), a * (b + c) = a * b + a *C (distributive), (aa) * b = 
a(a * b) (scalar associative), a * (b * c) + b * (c * a) + c * (a * b) = 0 (Jacobi's iden­
tity), where a, b, c E .91 and a E IR or C. 
8. Show that vectors in 1R3 form a Lie algebra where the product * is the cross 

product. 
b. Show that smooth functions on an open set in 1R2• form a Lie algebra, where 

f * g = {j, g}, the Poisson bracket. 
c. Show that the set of all n x n matrices, gl(n, IR), is a Lie algebra, where 

A * B = AB - BA, the Lie product. 

3. The pendulum equation is ij + sin 8 = o. 
8. Show that 21 = te2 + (1 - cos 8) = te2 + 2 sin2 (8/2) is an integral. 
b. Sketch the phase portrait. 
c. Make the substitution y = sin(8/2) to get y2 = (1 - y2)(1 - y2). Show that 

when 0 < 1 < 1, y = k, sn(t, k) solves this equation when k2 = I. Solve the 
pendulum equation in terms ofthe known function sn. 

4. Using the definitions introduced in the section on Jacobi sine function: 
8. Show 
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b. In the integral above make the substitution 't' = sin u to get 

c. Use the binomial series to expand the denominator in the above integrand in a 
series in k2 sin2 u. Use Wallis' formula, 

- sin 2. u du = , 
21"/2 1· 3·5 .. · (2n - 1) 
n 0 2·4-6-"(2n) 

to integrate term by term to get 

n { (1)2 (1' 3)2 } u ="2 1 + "2 k2 + 2. 4 k4 + . .. . 

5. Continue the notation of the previous problem. 
a. Show that u(k) -+ n/2 as k -+ 0, and u(k) -+ 00 as k -+ 1. 
b. Show u(k) is increasing in k. 
c. Skecth a plot of u vs k. 

6. Show that the Kirchhoff problem can have equilibrium solutions. Discuss central 
configurations for the Kirchhoff problem. Find all central configurations for the 
Kirchhoff problem with three vortices. 

7. Draw the complete phase portrait of the collinear Kepler problem. Using the 
formulas (1.B.8), solve the collinear Kepler problem. 

8. Use the notation of Subsection 1.e.3, the Kepler problem, so A = q x p. 
a. Use the identity in (I.C.8) to show that Jld(q/llqID = P x A. Integrate this to get 

Jl(e + q/llqll} = p x A, where e is a vector constant of integration. The vector e 
is a vector of integrals for the Kepler problem. 

b. Show that if A = 0, then e = -q/liqll or e points along the collinear motion. 
c. Show that e' A = 0, so e lies in the plane of motion and there is a relation 

among the integrals A and e. Henceforth, let the motion be in the plane. 
d. Dottheexpressionforewithqtogete·q + Ilqll = IIAI12/Jl. 
e. Show that if e = 0, then the motion is circular, and the motion is with uniform 

speed. 
f. Let e =1= 0, and let (r, 0) be the position of the particle in polar coordinates. Let 

e = e(cos OJ, sin OJ); so, e = Ilell, and OJ is the argument of e. Let f = 0 - OJ; so,f 
is the angle of the particle measured from e. Show that e' q = er cos f and so 
r = (1IAI1 2/Jl)/(1 + e cos/). This is the equation of a conic section in polar co­
ordinates with one focus at the origin. e is the eccentricity of the orbit, 0 < e < 1 
is an ellipse; e = 1 is a parabola;, and e > 1 is a hyperbola. e points to the point 
of closest approach of the particle to the origin (the perihelion if the sun is at the 
origin or the perigee if the earth is at the origin). The angle f is called the true 
anomaly and OJ the argument of the perigee. 

9. Let 

K = ( 0 1). 
-1 0 ' 

so, 
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(
COS t sin t) 

exp(Kt) =. . 
-sm t cos t 

Find a circular solution of the two-dimensional Kepler problem of the form 
q = exp(Kt)a, where a is a constant vector. 

10. Let H: 1R2 • -+ IR be a globally defined conservative Hamiltonian, and assume that 
H(z) -+ 00 as IlzlI-+ 00. Show that all solutionsofi = JVH(z) are bounded. 

11. Let L = L(q, s, t) be a smooth real valued function of q E IRm, s E IRm and t E IR. The 
system of differential equations for q(t) given by 

~e~}=q(t) -~~ = 0 

is called Euler's equation. It is often written 

~G~)- ~~ =0 

for short. If L = Q(q, q) - P(q) where q is the generalized coordinates of a me­
chanical system, Q is the kinetic energy, and P is the potential energy, then L 
is called the Lagrangian of the system, and the equations are called Lagrange's 
equations. 

a. Show that if o2Ljos2 is nonsingular, then Euler's equation is a second-order 
differential equation in q. If Q(q, q) = qTMq, where M is a nonsingular, sym­
metric matrix, show that Lagrange's equations are Newton's equations. 

b. Again assume that o2Ljos2 is nonsingular. Show that the change of variables, 
known as the Legendre transformation, given by (q, s) = (q, q) -+ (q, p) where 
p = oLjos transforms Euler's equations to the Hamiltonian system q = Hp, 
P = -Hq where H = pTs - L(q, s, t). Hence, if o2Ljos2 is nonsingular, then a 
Lagrangian system can be transformed to a Hamiltonian system. 

12. If a particle is constrained to move on a surface in 1R3 without friction, then the 
force of constraint acts normal to the surface. If there are no external forces, then 
the particle is said to be a free particle on the surface and the only force acting on 
the particle is the force of constraint. In the free case, the acceleration is normal to 
the surface. In differential geometry a curve on a surface which minimizes distance 
(at least locally) is called a geodesic of the surface, and it can be shown that geode­
sics are characterized by the fact that their acceleration is normal to the surface. 
Thus, a free particle moves on a geodesic. 
a. Consider a free particle on the 2-sphere S2 = {x E 1R3: IIxll = I} so it moves to 

satisfy an equation of the form x = lx, where 1 is the scalar of proportional­
ity. Show that 1 = -llxI12, x T X = 0, and 1 is constant along a solution (i.e., 
dA.jdt = 0). 

b. Show that if the initial velocity is nonzero, then the solutions are great circles. 
c. Show that the set of unit tangent vectors to S2, called the unit tangent bundle 

of S2 and denoted by TI S2, is an invariant set and is given by {(x, y) E 1R3 x 
1R3: Ilxll = 1, Ilyll = 1, x T Y = O}. 

d. Show that the unit tangent bundle of the two sphere is the same as SO(3, IR), the 
special orthogonal group. SO(3, IR) is the set of all 3 x 3 orthogonal matrices 
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with determinant equal + 1, or the set of all 3 x 3 rotation matrices. Hint: 
Think of the orthonormal frame consisting of the unit tangent, normal, and 
binormal vectors. 

13. If the metric on a surface is given in local coordinates, x = (xl, x2 ), by ds2 = 
IL=1 giix) dXi dx j, where {giix)} is a smooth 2 x 2 positive definite matrix, then 
define the Lagrangian by L(x, x) = (1/2) Ir.j=l gij(x)xij/ Show that the Euler­
Lagrange equations are of the form 

2 

5C k + I ri~(x)x ixj = 0, 
i , j=l 

where q are the Christoffel symbols 

ri~ = t gkS{Ogsi + ogsj _ 09ij }, 
s=1 oXj OXi ax, 

and {gij(x)} is the inverse of {giix)} . 

14. Hill's lunar problem is defined by the Hamiltonian 

H = IIyl12 _ xTKy _ _ 1_ + (3xi _ Ilx112) 
2 Ilxll ' 

where x, y E ~2. Write the equations of motion. Show that it has equilibrium 
points on the X2 axis. 



CHAPTER II 

Linear Hamiltonian Systems 

A. Preliminaries 

In this chapter we study Hamiltonian systems which are linear differential 
equations. Many of the basic facts about Hamiltonian systems and symplectic 
geometry are easy to understand in this simple context. The basic linear alge­
bra introduced in this chapter is the cornerstone of many of the later results 
on nonlinear systems. Some of the more advanced results which require a 
knowledge of multilinear algebra or the theory of analytic functions of a 
matrix are relegated to the appendices or references to the literature. These 
results are not important for the main development. 

We assume a familiarity with the basic theory of linear algebra and linear 
differential equations. Let gl(m, IF) denote the set of all m x m matrices with 
entries in the field IF (IR or q and Gl(m, IF) the set of all nonsingular m x m 
matrices with entries in IF. Gl(m, IF) is a group under matrix multiplication and 
so is called the general linear group. (See the Problem Section for the definition 
and some basic facts about groups.) I = 1m and 0 = Om will denote the m x m 
identity and zero matrices, respectively. In general, the subscript will be clear 
from the context. 

In this theory a special role is played by the 2n x 2n matrix 

J=(_~ ~). 
Note that J is orthogonal and skew symmetric, i.e., 

J-1 = JT = -J. 

(1) 

(2) 

Let z be a coordinate vector in 1R2n, 0 an interval in IR, and S: 0 ~ gl(2n, IR) 

33 



34 II. Linear Hamiltonian Systems 

be continuous and symmetric. A linear Hamiltonian system is the system of 2n 
ordinary differential equations 

i3H 
i = J Tz = JS(t)z = A(t)z, (3) 

where 

H = H(t, z) = !zTS(t)z (4) 

and A(t) = JS(t). H, the Hamiltonian, is a quadratic form in the z's with coeffi­
cients which are continuous in tEO c: IR. In the case when S, and hence H, is 
independent of t, then H is an integral for (3) by Theorem lA.I. 

Let to E 0 be fixed. From the theory of differential equations, for each 
Zo E 1R2", there exists a unique solution ,p(t, to, zo) of(3) for all tEO which satis­
fies the initial condition ,p(to, to, zo) = zoo Let Z(t, to) be the 2n x 2n funda­
mental matrix solution of (3) which satisfies Z(to, to) = I. Then ,p(t, to, zo) = 
Z(t, to)zo. 

In case S and A are constants, we take to = 0 and 

00 A"t" 
Z(t) = eAt = exp(At) = L - . 

i=l n! 
(5) 

A matrix A E gl(2n, IF) is called Hamiltonian (or infinitesimally symplectic) if 

AT J + J A = O. (6) 

The set of all 2n x 2n Hamiltonian matrices is denoted by sp(n, IR). 

Theorem 1. The following are equivalent: (i) A is Hamiltonian, (ii) A = JR 
where R is symmetric, (iii) J A is symmetric. If A and B are Hamiltonian, then so 
are AT, aA (a E IF), A ± B, [A, BJ == AB - AB. 

PROOF. A = J( -J A) and (6) is equivalent to (-JAf = (-J A); thus, (i) and (ii) 
are equivalent. Since J2 = - I, (ii) and (iii) are equivalent. Thus, the coefficient 
matrix A(t) of the linear Hamiltonian system (3) is a Hamiltonian matrix. The 
first three parts of the next statement are easy. Let A = J Rand B = JS, where 
Rand S are symmetric. Then [A, BJ = J(RJS - SJR) and (RJS - SJRf = 
ST JTR T - RT JTST = -SJR + RJS so [A, BJ is Hamiltonian. _ 

In the 2 x 2 case, 

(7) 

and so, 

ATJ+JA=( 0 a+£5). 
-a-£5 0 

So, a 2 x 2 matrix is Hamiltonian if and only if its trace, a + £5, is zero. If you 
write a second-order equation x + p(t)x + q(t)x = 0 as a system in the usual 
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way with x = y, y = -q(t)x - p(t)y, then it is a linear Hamiltonian system 
when and only when p(t) == O. The p(t)x is usually considered the friction 
term. 

Now let A be a 2n x 2n matrix and write it in block form 

(8) 

and so 

AT J JA = ( c - c T aT + d) 
+ -a-dT b-bT • 

So, A is Hamiltonian if and only if aT + d = 0 and band c are symmetric. In 
higher dimensions, being Hamiltonian is more restrictive than just having 
trace zero. 

The function [', . J: gl(m, IF) x gl(m, IF) ~ gl(m, IF) of Theorem 1 is called 
the Lie product. The second part of this theorem implies that the set of all 
2n x 2n Hamiltonian matrices, sp(n, ~), is a Lie algebra. We shall develop 
some interesting facts about Lie algebras of matrices in the problems, but they 
are not important to our main development. 

A 2n x 2n matrix T is called symplectic with multiplier j1. if 

TTJT= j1.J, (9) 

where j1. is a nonzero constant. If j1. = + 1, then T is simply symplectic. The set 
of a1l2n x 2n symplectic matrices is denoted by Sp(n, ~). 

Theorem 2. If T is symplectic with multiplier j1., then T is nonsingular and 

T-1 = - j1.-1 JTT J. (10) 

If T and R are symplectic with multiplier j1. and v, respectively, then TT, T- 1, 

and TR are symplectic with multiplier j1., j1.-1, and j1.V, respectively. 

PROOF. Since the right-hand side, J, of (9) is nonsingular, T must be also. 
Formula (10) follows at once from (9). If T is symplectic, then from (10) one gets 
TT = - j1.JT-1 J; so, T JTT = T J ( - j1.JT-1 J) = j1.J. Thus, TT is symplectic 
with multiplier j1.. The remaining facts are proved in a similar manner. _ 

This theorem implies that Sp(n, ~) is a group, a subgroup of GI(2n, ~). 
Weyl says that originally he advocated the name "complex group" for 
Sp(n, IR), but it became an embarrassment due to the collisions with the word 
"complex" in the connotation of complex number. "I therefore proposed to 
replace it by the corresponding greek adjective 'symplectic'" (Weyl, 1946, 
p.165). 

In the 2 x 2 case 

(11) 
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and so 

T (0 IXb - PY) 
T JT = -lXb + PY 0 . 

So a 2 x 2 matrix is symplectic (with multiplier J1) if and only if it has deter­
minant + 1 (respectively J1). Thus, a 2 x 2 symplectic matrix defines a linear 
transformation which is orientation and area preserving. 

Now let T be a 2n x 2n matrix and write it in block form 

(12) 

and so 

So T is symplectic with multiplier J1 if and only if a T d - c Tb = J11 and aT c and 
b T d are symmetric. Being symplectic is more restrictive in higher dimensions. 
Formula (10) gives 

T-1 = -1 (d T _b T ) 
J1 T T· -c a 

(13) 

This reminds one of the formula for the inverse of a 2 x 2 matrix! 

Theorem 3. The fundamental matrix solution Z(t, to) of a linear Hamiltonian 
system is symplectic for all t, to E U. Conversely, if Z(t, to) is a continuously 
differentiable function of symplectic matrices, then Z is a matrix solution of a 
linear Hamiltonian system. 

PROOF. Let U(t) = Z(t, toV JZ(t, to). Since Z(to, to) = I, it follows that 
U(to) = J. U(t) = ZTJZ + ZTJZ = ZT(ATJ + JA)Z = 0; so, U(t) == J. 

If ZT JZ = J for t E U, then ZTJZ + ZT JZ = 0; so, (ZZ- lV J + J(ZZ-l) = 

O. This shows that A = ZZ-l is Hamiltonian and Z = AZ. • 

Corollary 4. The (constant) matrix A is Hamiltonian if and only if eAt is 
symplectic for all t. 

Change variables in the system (3) by u = U(t)z where U is nonsingular 
and let T(t) be the inverse of U(t); so, z = T(t)u. Equation (3) becomes 

Ii = (T- 1 A T - T- 1 t)u. (14) 

In general this equation will not be Hamiltonian, however: 

Theorem 5. If U is symplectic with multiplier J1, then (14) is a Hamiltonian 
system with Hamiltonian H(t, u) = tuT[J1TTS(t)T + R(t)Ju, where R(t) = 
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-JT-It. Conversely, if (14) is Hamiltonian for every Hamiltonian system (3), 
then U is symplectic with constant multiplier J.l. 

PROOF. Let U(t) be symplectic with multiplier J.l; so, T(t) is symplectic 
with multiplier J.l- I . Since T JTT = J.l- 1 J for all t, TJTT + T JTT = 0 or 
(T-1T)J + J(T-1Tf = 0; so, T-ITis Hamiltonian. Also T-IJ = J.lJTT; so, 
T- I AT= T-1JST = J.lJTTST, and so, T- I AT = J(J.lTTST) is Hamiltonian 
also. 

Now let (14) always be Hamiltonian. By taking A == 0 we have that 
T- 1 T = B(t) is Hamiltonian and T is a matrix solution of the Hamiltonian 
system 

i; = vB(t). (15) 

So, T(t) = KV(t, to), where V(t, to) is the fundamental matrix solution of (15), 
and K = T(to) is a constant matrix. By Theorem 3, V is symplectic. 

Consider the change of variables z = T(t)u = V(t, to)Ku as a two-stage 
change of variables: first z = V(t, to)w and second w = Ku. The first transfor­
mation from z to w is symplectic, and so, by the first part of this theorem, 
preserves the Hamiltonian character of the equations. Since the first transfor­
mation is reversible, it would transform the set of all linear Hamiltonian 
systems onto the set of all linear Hamiltonian systems. Thus, the second trans­
formation from w to u must always take a Hamiltonian system to a Hamil­
tonian system. 

If w = Ku transforms all Hamiltonian systems w = JCw, C cOllstant and 
symmetric, to a Hamiltonian system u = Dw, then D = K-1 JCK is Hamil­
tonian, and J K- 1 JCK is symmetric for all symmetric C. Thus, 

JK-1JCK = (JK-1JCK)T = KTCJK-TJ, 

C(KJ KT J) = (J KJ KT)C, (16) 

CR = RTC, 

where R = KJ KT J. Fix i, 1 ::;; i ::;; 2n and take C to be the symmetric matrix 
which has + 1 at the i, i position and zero elsewhere. Then the only nonzero 
row ofCR is the ith, which is the ith row of R and the only nonzero column of 
RTC is the ith, which is the ith column of RT. Since these must be equal, the 
only nonzero entry in R or RT must be on the diagonal. So Rand RT are 
diagonal matrices. Thus, R = RT = diag(rl"" ,r2n ), and RC - CR = 0 for all 
symmetric matrices C. But RC - CR = [(ri - rj)cij] = (0). Since cij' i < j, is 
arbitrary, ri = rj, or R = - J.lI for some constant J.l. R = KJ KT J = - J.lI 
implies KJ KT = J.lJ. • 

This is an example of a change of variables which preserves the Hamil­
tonian character of the system of equations. The general problem of which 
changes of variables preserve the Hamiltonian character is discussed in detail 
in the next chapter. 
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The fact that the fundamental matrix of (3) is symplectic means that the 
fundamental matrix must satisfy the identity (9). There are many functional 
relations in (9); so, there are functional relations between the solutions. The 
theorem given below is just one example of how these relations can be used. 
See Meyer and Schmidt (1982b) for some other examples. 

Let Z1' Z2: D --+ !R 2n be two smooth functions; we define the Poisson bracket 
of Z 1 and Z 2 to be 

(17) 

so {Z1' Z2}: D --+ !R 2n is smooth. The Poisson bracket is bilinear and skew sym­
metric. Two functions Z 1 and Z 2 are said to be in involution if {z l' Z 2} == o. 
A set of n linearly independent functions and pairwise in involution functions 
z l' . .. , Zn are said to be a Lagrangian set. In general, the complete solution of a 
2n-dimensional system requires 2n linearly independent solutions, but for a 
Hamiltonian system a Lagrangian set of solutions suffices. 

Theorem 6. If a Lagrangian set of solutions of (3) is known, then a complete set 
of 2n linearly independent solutions can be found by quadrature. (See formula 
(20).) 

PROOF. Let C = C(t) be the 2n x n matrix whose columns are the n linearly 
independent solutions. Since the columns are solutions, (; = AC; since they 
are in involution, CT JC = 0; and since they are independent, CTC is an 
n x n nonsingular matrix. Define the 2n x n matrix by D = JC(CTC)-1. 
Then DTJD = 0 and CTJD = -I, and so P = (D, C) is a symplectic matrix. 
Therefore, 

Change coordinates by Z = P( so that 

• -1 • (CTSD+CTJD 
(= P (AP - P)( = -DTSD _ DTJD (18) 

All the submatrices in (18) are n x n. The one in the upper left-hand cor­
ner is also zero, which can be seen by differentiating CT J D = - I to get 
(;T JD + CT JD = (ACf JD + CT JD = CTSD + CT JD = O. Therefore, 

u = 0, 
f; = _DT(SD + JD)u, where ( = (~). 

which has a general solution u = Uo, v = Vo - VUo, where 

V = (' DT(SD + JD) dt. J,o 

(19) 

(20) 

A symplectic fundamental matrix solution of (3) is Z = (D - Cv, C). Thus, 
the complete set of solutions is obtained by performing the integration or 
quadrature in formula (20). • 
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This result is closely related to the general result given in a later chapter 
which says that k integrals in involution for a general Hamiltonian system can 
be used to reduce the number of degrees of freedom by k and, hence, the 
dimension by 2k. 

Recall that a nonsingular matrix T has two polar decompositions, T = 
PO = 0' P', where P and P' are positive definite matrices and 0 and 0' are 
orthogonal matrices. These representations are unique. P is the unique posi­
tive definite square root of TTT; P' is the unique positive definite square root 
of TTT, 0 = (TTT)-1/2T, and 0' = T(TTT)-1 /2. 

Theorem 7. If T is symplectic, then the P, 0, P', 0' of the polar decomposition 
given above are all symplectic too. 

PROOF. The formula for T- 1 in (10) is an equivalent condition for T to 
be symplectic. Let T = PO. Since T-1 = -JTT J, 0-1 p-1 = _JOTpT J = 
(J 10 T J)(JTpT J). In this last equation, the left-hand side is the product of an 
orthogonal matrix 0-1 and a positive definite matrix p-I , as is the right­
hand side a product of an orthogonal matrix J-10J and a positive definite 
matrix JT P J. By the uniqueness ofthe polar representation, 0-1 = J-10 T J = 
-JOT J and p-1 = JTpJ = _JpT J . By (10) these last relations imply that P 
and 0 are symplectic. A similar argument gives that P' and 0' are symplectic. 

-
Theorem 8. The determinant of a symplectic matrix is + 1. 

PROOF. Depending on how much linear algebra you know, this theorem is 
either easy or difficult. In Section D and Chapter 3 we give alternate proofs. 
Let T be symplectic. Formula (9) gives det(TT JT) = det TT det J det T = 
(det T)2 = det J = 1 so det T = ± 1. The problem is to show that det T = + 1. 

The determinant of a positive definite matrix is positive; so, by the polar 
decomposition theorem it is enough to show that an orthogonal, symplectic 
matrix has a positive determinant. So let T be orthogonal also. 

Using the block representation in (12) for T, formula (13) for T-l, and the 
fact that T is orthogonal, T-1 = TT, one has that T is of the form 

(21) 

Define P as in (22) and compute 

~iI ' 
(22) 

PTP-1 = (a ~ bi a ~ bi). det T = det PTP- I = det(a - bi) det(a + bi) > o. 

J ) -I 1 (I I) 
P = y'2 -if if ' 

The last inequality follows because the left-hand side is a product of a 
complex number and its conjugate. -
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B. Symplectic Linear Spaces 

What is the matrix J? There are many different answers to this question 
depending on the context in which the question is asked. In this section we 
will answer this question from the point of view of abstract linear algebra. We 
shall present other answers later on, but certainly not all. 

Let W be an m-dimensional vector space over the field IF where IF = IR or C. 
A bilinear form is a mapping B: W x W -+ IF which is linear in both variables. 
A bilinear form is skew symmetric or alternating if B(u, v) = - B(v, u) for all 
u, v E W. A bilinear form B is nondegenerate if B(u, v) = ° for all v E W implies 
u = 0. An example of an alternating bilinear form on IFm is B(u, v) = uTSv, 
where S is any skew symmetric matrix. 

Let B be a bilinear form and e 1, ... , em a basis for W. Given any vector 
v E W, we write v = L: aiei and define an isomorphism <1>: W -+ IFm: v -+ a = 

(CXl,oo.,am). Define sij = B(ei, ej) and S to be the m x m matrix S = (sij), 
the matrix of B in the basis (e). Let <I>(u) = b = (Pl' 00., Pm), then B(u, v) = 

LLaiPjB(ei, ej) = aTSb. So in the coordinates defined by the basis (ei), the 
bilinear form is just a TSb, where S is the matrix (B(ei, ej)}. If B is alternating, 
then S is skew symmetric, and if B is nondegenerate, then S is nonsingular and 
conversely. If you change basis by ei = L qij}j and Q is the matrix Q = (%), 
then the bilinear form B has the matrix R in the basis (f), where R = QSQT. 
One says that Rand S are congruent (by Q). If Q is any elementary matrix so 
that premultiplication of S by Q is an elementary row operation, then post­
multiplication of S by QT is the corresponding column operation. Thus, R is 
obtained from S by performing a sequence of row operations and the same 
sequence of column operations. 

Theorem 1. Let S be any skew symmetric matrix; then there exists a nonsingular 
matrix Q such that R = QSQT = diag(K, K, ... , K, 0, 0, ... ,0), where 

K=(~1 ~). 
Or given an alternating form B where is a basis for W such that the matrix of B 
in this basis is R. 

PROOF. If S = 0, we are finished. Otherwise, there is a nonzero entry which can 
be transferred to the (2, 1) position by interchanging rows. By scaling the 
second row, the (2, 1) position can be made 1. Performing the corresponding 
column operations yields a skew symmetric matrix with the 2 x 2 matrix K in 
the upper left-hand corner. Using row operations we can eliminate all the 
nonzero elements in the first two columns below the first two rows. Perform­
ing corresponding column operation yields a matrix of the form diag(K, S'), 
where S' is a (m - 2) x (m - 2) skew symmetric matrix. Repeat the above 
argument on S'. • 



B. Symplectic Linear Spaces 41 

Note that the rank of a skew symmetric matrix is always even; so, a non­
degenerate, alternating bilinear form is defined on an even-dimensional space. 

A symplectic linear space, or just a symplectic space, is a pair, (V, w) where 
V is a 2n-dimensional vector space over the field IF, IF = IR or IF = C, and w is 
a non degenerate alternating bilinear form on V. The form w is called the 
symplectic form or the symplectic inner product. Throughout the rest of this 
section we shall assume that V is a symplectic space with symplectic form w. 
The standard example is 1F2n and w(x, y) = x T Jy. In this example we shall 
write {x, y} = x T Jy and call the space (1F2n, J) or simply 1F2n, if no confusion 
can arise. 

A symplectic basis for V is a basis VI' ... , V2n for V such that w(vj, v) = Jji , 
the i,jth entry of J. A symplectic basis is a basis so that the matrix of w is just 
J. The standard basis e I' ... , e2n' where ej is 1 in the ith position and zero else­
where, is a symplectic basis for (1F2n, J). Given two symplectic spaces (V j, Wj), 
i = 1,2, a symplectic isomorphism or an isomorphism is a linear isomorphism 
L: V I -+ V 2 such that w2(L(x), L(y» = WI (x, y) for all x, y E V I-that is, L 
preserves the symplectic form. In this case we say that the two spaces are 
symplectically isomorphic or symplectomorphic. 

Corollary 2. Let (V, w) be a symplectic space of dimension 2n. Then V has a 
symplectic basis. (V, w) is symplectically isomorphic to (1F 2n, J), or all symplectic 
spaces of dimension 2n are isomorphic. 

PROOF. By Theorem 1 there is a basis for V such that the matrix of W is 
diag(K, .. . ,K). Interchanging rows 2i and n + 2i - 1 and the corresponding 
columns brings the matrix to J. The basis for which the matrix of w is J is a 
symplectic basis; so, a symplectic basis exists. 

Let VI' ... , V2n be a symplectic basis for V and u E V. There exist constants 
CX j such that u = ~>jVj ' The linear map L: V -+ 1F 2n : u -+ (cx I , . .. , CX2n) is the 
desired symplectic isomorphism. -

The study of symplectic linear spaces is really the study of one canonical 
example, e.g., (1F 2n, J). Or put another way, J is just the coefficient matrix of 
the symplectic form in a symplectic basis. This is one answer to the question 
"What is J?" 

If V is a vector space over IF, then f is a linear functional if, f: V -+ IF is 
linear, f(cxu + pv) = cxf(u) + Pf(v) for all u, V E V, and cx, pElf. Linear func­
tionals are sometimes called 1-forms or covectors. If IE is the vector space of 
displacements of a particle in Euclidean space, then the work done by a force 
on a particle is a linear functional on IE. The usual geometric representation 
for a vector in IE is a directed line segment. Represent a linear functional by 
showing its level planes as shown in Figure B.t. The value of the linear func­
tional f on a vector V is represented by the number of level planes the vector 
crosses. The more level planes the vector crosses, the larger the value of f on v. 

The set of all linear functionals on a space V is itself a vector space when 
addition and scalar multiplication is just the usual addition and scalar multi-
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Figure B.l. A vector and a functional. 

plication offunctions. That is, iff and l' are linear functionals on V and (I. E IF, 
then define the linear functionals f + l' and (l.f by the formulas (f + 1')(v) = 
f{v) + 1'{v) and {(l.f)(v) = (l.f{v). The space of all linear functionals is called the 
dual space (to V) and will be denoted by V*. In the case when V is finite 
dimensional, V* is finite dimensional with the same dimension. Let Ul , ... , Um 

be a basis for V; then for any v E V, there are scalars f1, .. . , fm such that 
v = flu l + ... + fmum . The P are functions of v; so we will write P{v), and 
they are linear. It is not too hard to show that f l, ... ,fm forms a basis for V*; 
this basis is called the dual basis (dual to Ul , ... , um). The defining property of 
this basis is P{uj ) = bj (the Kronecker delta function, defined by bj = 1 if i = j 
and zero otherwise.) If W is a subspace of V of dimension r, then define 
WO = {j E V* : f{e) = 0 for all e E W}. WO is called the annihilators of Wand 
is easily shown to be a subspace of V* of dimension m - r. Likewise, if W is a 
subspace of V* of dimension r, then WO = {e E V : f{e) = 0 for all f E W*} is 
a subspace of V of dimension m - r. Also Woo = W. See any book on vector 
space theory for a complete discussion of dual spaces with proofs. See, for 
example, Halmos (1958). 

Since w is a bilinear form for each v E V, the function w(v, .): V -+ IR is a 
linear functional and so is in the dual space V*. Since w is nondegenerate, the 
map ~: V -+ V* : v -+ w{v, .) = vP is an isomorphism. Let #: W* -+ V : v -+ vll 
be the inverse of ~. Sharp # and flat ~ are musical symbols for raising and 
lowering notes and are used here because these isomorphisms are index rais­
ing and lowering operations in the classical tensor notation. 

Let IU be a subspace of W. Define IU.L = {v E W : w(v, IU) = o}. Clearly, IU.L 
is a subspace, {IU, IU.L} = 0 and IU = IU.L.L. 

Lemma 3.1U.L = IUOll; dim IU + dim IU.L = dim V = 2n. 
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PROOF. 

OJ.1 = {x E 'V: w(x, y) = 0 for all y E OJ} 

= {x E 'V: xl>(y) = 0 for all y E OJ} 

= {x E 'V: xl> E OJO} = OJ°l!. 
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The second statement follows from dim OJ + dim OJO = dim 'V and the fact 
that # is an isomorphism. -

A symplectic subspace OJ of 'V is a subspace such that W restricted to this 
subspace is nondegenerate. By necessity, OJ must be of even dimension, and 
so, (OJ, w) is a symplectic space. 

Proposition 4. If OJ is symplectic, then so is OJ.L, and 'V = OJ EE> OJ.1. Conversely, 
if 'V = OJ EE> Wand w(OJ, W) = 0, then OJ and Ware symplectic. 

PROOF. Let x E OJ n OJ.1; so, w(x, y) = 0 for all y E OJ, but OJ is symplectic so 
x = O. Thus, OJ n OJ.1 = O. This, with Lemma 3, implies 'V = OJ EE> OJ.1. Now 
let 'V = OJ EE> Wand w(OJ, W) = O. If w is degenerate on OJ, then there is an 
x E OJ, x # 0, with w(x, OJ) = o. Since 'V = OJ EE> Wand w(OJ, W) = 0, this im­
plies w(x, 'V) = 0 or that w is degenerate on all of 'V. This contradiction yields 
the second statement. _ 

A Lagrangian space OJ is a subspace of 'V of dimension n such that w is 
zero on OJ, i.e., w(u, w) = 0 for all u, WE OJ. A direct sum decomposition 
'V = OJ EE> W, where OJ and Ware Lagrangian spaces, is called a Lagrangian 
splitting, and W is called the Lagrangian complement of OJ. In jR2 any line 
through the origin is Lagrangian, and any other line through the origin is a 
Lagrangian complement. 

Lemma 5. Let OJ be a Lagrangian subspace of 'V, then there exists a Lagrangian 
complement of OJ. 

PROOF. The example above shows the complement is non unique. Let 'V = 1F2n 

and OJ C 1F2n. Then W = JOJ is a Lagrangian complement to OJ. _ 

Lemma 6. Let 'V = OJ EE> W be a Lagrange splitting and x I' ... , Xn any basis 
for OJ. Then there exists a unique basis YI, ••• , Yn ofW such that Xl' ... , X n, 

Y I , . .. , Y n is a symplectic basis for 'V. 

PROOF. Define ,pi E WO by ,pi(W) = w(xi , w) for WE W. If L (J.i,pi = 0, then 
w(L (J.iXi, w) = 0 for all W E W or w(L (J.iXi, W) = O. But since 'V = OJ EE> W 
and w(OJ, OJ) = 0, if follows that w(L (J.iXi, 'V) = O. This implies L (J.iXi = 0, 
since w is nondegenerate, and this implies (J.i = 0, since the XiS' are indepen­
dent. Thus, ,pI' ... , ,pn are independent, and so, they form a basis for WOo Let 
y I, ... , Yn be the dual basis in W; so, W(Xi, Yj) = ,pi(Y) = bij. -
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A linear operator L: W -+ W is called Hamiltonian if 

w(Lx, y) + w(x, Ly) = 0 

for all x, YEW. A linear operator L : W -+ W is called symplectic if 

w(Lx, Ly) = w(x, y) 

(1) 

(2) 

for all x, YEW. If W is the standard symplectic space (1F2n, J) and L is a 
matrix, then (1) means xT(LT J + JL)y = 0 for all x and y. But this implies 
that L is a Hamiltonian matrix. On the other hand, if L satisfies (2) then 
xTLTJLy = xTJy for all x and y. But this implies L is a symplectic matrix. 
The matrix representation of a Hamiltonian (respectively symplectic) linear 
operator in a symplectic coordinate system is a Hamiltonian (respectively 
symplectic) matrix. 

Lemma 7. Let W = QJ ED W be a Lagrangian splitting and A: W -+ W a Hamil­
tonian (respectively symplectic) linear operator which respects the splitting, i.e., 
A : QJ -+ QJ and A: W -+ W. Choose any basis of the form given in Lemma 6; the 
matrix representation of A in these symplectic coordinates is of the form 

(3) 

PROOF. Since A respects the splitting, and the basis for W is the union of the 
bases for QJ and W, the matrix representation for A must be in block-diagonal 
form. A Hamiltonian or symplectic matrix which is in block-diagonal form 
must be of the form given in (3)-see A.S and A.12. • 

C. The Spectra of Hamiltonian and 
Symplectic Operators 

In this section we shall obtain some canonical forms for Hamiltonian and 
symplectic matrices in some simple cases. The complete picture is very de­
tailed and would lead us too far afield to develop fully. We shall start with 
only real matrices, but sometimes we will need to go into the complex domain 
to finish the arguments. We simply assume that all our real spaces are im­
bedded in a complex space of the same dimension. 

If A is Hamiltonian and T is symplectic, then T- 1 A T is Hamiltonian also. 
Thus, if we start with a linear constant coefficient Hamiltonian system i = Az 
and make the change of variables z = Tu, then in the new coordinates the 
equations become Ii = (T- 1 A T)u, which is again Hamiltonian. If B = T- 1 AT, 
where T is symplectic, then we say that A and Bare symplectically similar. 
We seek canonical forms for Hamiltonian and symplectic matrices under 
symplectic similarity. Since it is a form of similarity transformation, the eigen­
value structure plays an important role in the following discussion. 
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Since symplectic similarity is more restrictive than ordinary similarity, one 
should expect more canonical forms than the usual Jordan canonical forms. 
Consider, for example, the two Hamiltonian matrices 

and -1) 
o ' (1) 

both of which could be the coefficient matrix of a harmonic oscillator. In fact, 
they are both the real Jordan forms for the harmonic oscillator. The reflection 
T = diag(l, -1) defines a similarity between these two, i.e., T-1 A1 T = A2. 
Since the determinant of T is not + 1, T is not symplectic. In fact, A1 and A2 
are not symplectically equivalent. If T-1A 1 T = A2, then T-1 exp(A1t)T = 
exp(A2t), and T would take the clockwise rotation exp(A1t) to the counter­
clockwise rotation exp(A2t). But, if T were symplectic, its determinant would 
be + 1 and thus would be orientation preserving. Therefore, T cannot be 
symplectic. Another way to see that the two Hamiltonian matrices in (1) are 
not symplectically equivalent is to note that A1 = JI and A2 = J( -I). So 
the symmetric matrix corresponding to A1 is I, the identity, and to A2 is -I. 
I is positive definite, whereas -I is negative definite. If A1 and A2 where 
symplectically equivalent, then I and - I would be congruent, which is clearly 
false. 

A polynomial p(A.) = am A. m + am- 1 A. m-1 + ... + ao is even if p( - A.) = p(A.), 
which is the same as ak = 0 for all odd k. If ,,1.0 is a zero of an even polynomial, 
then so is - ,,1.0; therefore, the zeros of a real, even polynomial are symmetric 
about the real and imaginary axes. The polynomial p(A.) is a reciprocal 
polynomial if p(A.) = A. mp(A. -1), which is the same as ak = am - k for all k. If ,,1.0 is 
a zero of a reciprocal polynomial, then so is ,,1.01 ; therefore, the zeros of a real, 
reciprocal polynomial are symmetric about the real axis and the unit circle (in 
the sense of inversion). 

Proposition 1. The characteristic polynomial of a real Hamiltonian matrix is an 
even polynomial. Thus, if A. is an eigenvalue of a Hamiltonian matrix, then so are 
- A., I, -I The characteristic polynomial of a real symplectic matrix is a 
reciprocal polynomial. Thus, if A. is a eigenvalue of a symplectic matrix, then so 
are rl, I, I-1. 

PROOF. Recall that det J = 1. Let A be a Hamiltonian matrix; then p(A.) = 
det(A - A./) = det(J AT J - A./) = det(J AT J + A.J J) = det J det(A + A./) det J = 
det(A + A./) = p( - A.). 

Let T be a symplectic matrix; by Theorem A.8, det T = + 1. p(A.) = 
det(T - A./) = det(TT - A./) = det( - JT-1 J - A./) = det( - JT-1 J + A.J J) = 
det( - T-1 + A./) = det T-1 det( - I + A. T) = A. 2n det( - A. -1 I + T) = A. 2np(A. -1 ) . 

• 
Actually we can prove much more. By A.6, a Hamiltonian matrix A 

satisfies A = r1( _AT)J; so, A and _AT are similar, and the multiplicity of 
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the eigenvalues ..1.0 and - ..1.0 are the same. In fact, the whole Jordan block 
structures will be the same for ..1.0 and - ..1.0, By A.lO, a symplectic matrix T 
satisfies T-1 = r 1T T J; so, T-1 and TT are similar, and the multiplicity ofthe 
eigenvalues ..1.0 and ..1.01 are the same. The whole Jordan block structures will 
be the same for ..1.0 and ..1.01. 

Consider the linear constant coefficient Hamiltonian system of differential 
equations 

x=Ax, (2) 

where A is a Hamiltonian matrix and Z(t) = eAt is the fundamental matrix 
solution. By the above it is impossible for all the eigenvalues of A to be in the 
left-hand plane, and, therefore, it is impossible for all the solutions to be 
exponentially decaying. Thus, the origin cannot be asymptotically stable. 

Henceforth, let A be a real Hamiltonian matrix and T a real symplectic 
matrix. First we will develop the theory for Hamiltonian matrices and then 
the theory of symplectic matrices. Since eigenvalues are sometimes complex, it 
will be necessary to consider complex matrices at times, but we will always be 
concerned with the real answers in the end. 

First consider the Hamiltonian case. Let A be an eigenvalue of A, and 
define subspaces of c2n by '7k(A) = kernel(A - U)k, '1t(A) = U~:!l '1k(A). The 
eigenspace of A corresponding to the eigenvalue A is '1(..1.) = '11 (A), and the 
generalized eigenspace is '1t(A). If {x, y} = x T Jy = 0, then x and yare 
J -orthogonal. 

Lemma 2. Let A and p be eigenvalues of A with A + P =F 0, then {'1(A), '1(p)} = 
O. That is, the eigenvectors corresponding to A and pare J -orthogonal. 

PROOF. Let Ax = AX, and Ay = py, where x, y =F O. A{x, y} = {Ax, y} = 
x T AT Jy = _xT JAy = - p{x, y}; and so, (A + p){x, y} = O. • 

Corollary 3. Let A be a 2n x 2n Hamiltonian matrix with distinct eigenvalues 
..1.1, ... , An' - ..1.1, ... , - An; then there exists a symplectic matrix S (possibly 
complex) such that S-l AS = diag(A1, ... , An' - ..1.1"", - An). 

PROOF. Let IIJ = '11(..1. 1) U"· U '11 (An) and W = '11( -..1.1) U .. · U '11( -An); by 
the above, W = IIJ <:9 W is a Lagrange splitting, and A respects this splitting. 
Choose a symplectic basis for W by Lemma B.6. Changing to that basis is 
affected by a symplectic matrix G, i.e., G-1 AG = diag(BT, - B), where B has 
eigenvalues ..1.1, ... , An' Let C be such that CT- 1 BT CT = diag(A1, ... , An), and 
define a symplectic matrix by Q = diag( CT, C-1). The required symplectic 
matrix is S = GQ. • 

If complex transformations are allowed, then the two matrices in (1) can 
both be brought to diag(i, - i) by a symplectic similarity, and to B; thus, one 
is symplectically similar to the other. However, they are not similar by a real 
symplectic similarity. Let us investigate the real case in detail. 
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A subspace V ofCn is called a complexification (of a real subspace) if V has 
a real basis. If V is a complexification, then there is a real basis Xl' .. . , X k for 
V, and for any u E V, there are complex numbers (Xl' ... , (Xk such that 
u = (X1X l + ... + (Xnxn' But then ii = (X1X l + ... + (Xnxn E V also. Conversely, 
if V is a subspace such that u E V implies ii E V, then V is a complexification. 
Because if Xl' ... , Xk is a complex basis with Xj = Uj + vji, then Uj = (Xj + xj)/2 
and Vj = (Xj - xj )/2i are in V, and the totality of Ui , ... , Uk' Vl , .•• , Vk span V. 
From this real spanning set, one can extract a real basis. Thus, V is a 
complexification if and only if V = OJ (i.e., U E V implies ii E V). 

Until otherwise said let A be a real Hamiltonian matrix with distinct eigen­
values .Ill' ... ,.Iln, -.Ill' ... , - .Iln , so 0 is not an eigenvalue. The eigenvalues of 
A fall into three groups: (1) the real eigenvalues ± (Xl' .. . , ± (x., (2) the pure 
imaginary ± Pl i, ... , ± Pri, and (3) the truly complex ± Yl ± 151 i, ... , ± Y, ± D,i. 
This defines a direct sum decomposition 

(3) 

where 

Vj = '1((Xj) EEl '1( -(Xj), 

Wj = '1(Pj i) EEl '1( - pji), (4) 

lLj = {'1(Yj + D)) EEl '1(Yj - D))} EEl {'1( - Yj - Dji) EEl '1( - Yj + Dji)}. 

Each of the summands in (4) is an invariant subspace for A. By Lemma 2, each 
space is l-orthogonal to every other, and so by Proposition B.4 each space 
must be a symplectic subspace. Because each subspace is invariant under 
complex conjugation, each is the complexification of a real space. Thus, we 
can choose symplectic coordinates for each of the spaces, and A in these 
coordinates would be block diagonal. Therefore, the next task is to consider 
each space separately. 

Lemma 4. Let A be a 2 x 2 Hamiltonian matrix with eigenvalues ± (x, (X real, 
(X #- O. Then there exists a real 2 x 2 symplectic matrix S such that 

S-lAS = (~ ~(X). (5) 

PROOF. Let Ax = (Xx, and Ay = - (Xy, where x and yare nonzero. Since x and 
yare eigenvectors corresponding to different eigenvalues, they are indepen­
dent. Thus, {x, y} #- O. Let U = {x, y}-ly: so, x, U is a real symplectic basis, 
S = (x, u) is a real symplectic matrix, and S is the matrix of the lemma. _ 

Lemma 5. Let A be a real 2 x 2 Hamiltonian matrix with eigenvalues ± Pi, 
P #- O. Then there exists a real 2 x 2 symplectic matrix S such that 

S-lAS = (0 P) 
-P 0 

or S-lAS = G -P) o . (6) 
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PROOF. Let Ax = ipx, x = u + vi 1= 0. So Au = - pv and Av = pu. Since 
u + iv and u - iv are independent, u and v are independent. Thus, {u, v} = 
b 1= 0. If b = - y2 < 0, then define S = (y- 1u, y-1v) to get the first option in (6); 
or if b = y2 > 0, then define S = (y-1 v, y-1U) to get the second option in (6) . 

• 
Sometimes it is more advantageous to have a diagonal matrix than to have 

a real one; yet you want to keep track of the real origin of the problem. This is 
usually accomplished by reality conditions as defined in the next lemma. 

Lemma 6. Let A be a real 2 x 2 Hamiltonian matrix with eigenvalues ±pi, 
p 1= 0. Then there exists a 2 x 2 matrix S and a matrix R such that 

S-l AS = (iOP 0) -iP , s = SR. (7) 

PROOF. Let Ax = ipx, where x 1= 0. Let x = u + iv as in the above lemma. 
Compute {x, x} = 2i{v, u} 1= 0. Let y = l / l{v, u}1 and S = (yx, yx). • 

If S satifies (7), then S is said to satisfy reality conditions with respect to 
R. The matrix S is no longer a symplectic matrix but is what is called a 
symplectic matrix with multiplier ±2i. We shall discuss these types of ma­
trices later. The matrix R is used to keep track of the fact that the columns 
of S are complex conjugates. We could require ST JS = + 2iJ by allowing an 
interchange ofthe signs in (7). 

Lemma 7. Let A be a 4 x 4 Hamiltonian matrix with eigenvalue ± y ± bi, 
Y 1= 0, b 1= 0. Then there exists a real 4 x 4 symplectic matrix S such that 

where B is a real 2 x 2 matrix with eigenvalues + y ± bi. 

PROOF. IU = '1(Yj + bji) EB '1(Yj - bji) is the complexification of a real subspace 
and by Lemma 2 is Lagrangian. A restricted to this subspace has eigenvalues 
+y ± bi. A Lagrangian complement to IU is W = '1( -Yj + bji) EB '1( -Yj - bji). 
Choose any real basis for IU and complete it by Lemma B.6. The result follows 
from Lemma B.7. • 

In particular you can choose coordinates so that B is in real Jordan form; 
so, 

B=(~b ~). 
This completes the case when A has distinct eigenvalues. 
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Next consider the symplectic case. Let A be an eigenvalue of T, and define 
subspaces of c 2n by 11k (A) = kernel(T - A.J)k, l1t(A) = Uinl1k(A). The eigen­
space of T corresponding to the eigenvalue A is l1(A) = 111 (A), and the general­
ized eigenspace is l1t(A). Since the proof of the next set of lemmas is similar to 
those given just before, the proofs will be left as problems. 

Lemma 8. Let A and fl. be eigenvalues of T with Afl. #- 1; then {l1(A), 11(fl.)} = o. 
That is, the eigenvectors corresponding to A and fl. are l-orthogonal. 

Corollary 9. Let T be a 2n x 2n symplectic matrix with distinct eigenvalues 
Al , ... , An' All, .. . , A;l; then there exists a symplectic matrix S (possibly com­
plex) such that S-l TS = diag(Al , ... , An' All, ... , A;l). 

If complex transformations are allowed, then the two matrices, 

( IX f3) (IX - f3) 2 2 _ f3 IX and f3 IX ' IX + f3 = 1, (8) 

can both be brought to diag(1X + f3i, IX - f3i) by a symplectic similarity, and 
thus, one is symplectically similar to the other. However, they are not similar 
by a real symplectic similarity. Let us investigate the real case in detail. 

Until otherwise said, let T be a real symplectic matrix with distinct eigen­
values Al , ... , An> All, . .. , An-I, so 1 is not an eigenvalue. The eigenvalues of T 
fall into three groups: (1) the real eigenvalues, fl.t-l, ... , fl.! I , (2) the eigen­
values of unit modulus, IXI ± f31 i, ... , 1X1 ± f3ri, and (3) the complex eigenvalues 
of modulus different from one, ± YI ± bl i, ... , ± Yt ± b/ This defines a direct 
sum decomposition 

(9) 

where 

Q) j = l1(fl.j) <£> l1(fl.j-1 ), 

Wj = l1(lXj + f3ji) <£> l1(lXj - f3ji), (10) 

7Lj = {l1(Yj + bji) <£> l1(Yj - bji)} <£> {l1(Yj - bjW I <£> l1(Yj + bjW I } . 

Each of the summands in (9) is an invariant subspace for T. By Lemma 8 each 
space is l-orthogonal to every other, and so each space must be a symplectic 
subspace. Because each subspace is invariant under complex conjugation, 
each is the complexification of a real space. Thus, we can choose symplectic 
coordinates for each of the spaces, and T in these coordinates would be block 
diagonal. Therefore, the next task is to consider each space separately. 

Lemma 10. Let T be a 2 x 2 symplectic matrix with eigenvalues fl.±!, fl. real, 
fl. #- 1. Then there exists a real 2 x 2 symplectic matrix S such that 
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(11) 

Lemma 11. Let T be a real 2 x 2 symplectic matrix with eigenvalues rx ± Pi, 
rx 2 + p2 = 1, P =F O. Then there exists a real 2 x 2 symplectic matrix S such 
that 

(12) 

Sometimes it is more advantageous to have a diagonal matrix than to have 
a real one; yet you want to keep track of the real origin of the problem. This is 
usually accomplished by reality conditions as defined in the next lemma. 

Lemma 12. Let T be a real 2 x 2 symplectic matrix with eigenvalues rx ± Pi, 
rx 2 + p2 = 1, P =F O. Then there exists a 2 x 2 matrix S and a matrix R such 
that 

S-lTS = (rx +0 iP 0) 
rx - iP , 

(13) 

STJS = ±2iJ, and S = SR. 

Lemma 13. Let T be a 4 x 4 symplectic matrix with eigenvalues (y ± (jWl, 
y2 + (j2 =F 1, (j =F O. Then there exists a real 4 x 4 symplectic matrix S such that 

S-lTS = (BT 0) o B- 1 ' 

where B is a real 2 x 2 matrix with eigenvalues + y ± (ji. 

In particular you can choose coordinates so that B is in real Jordan form; 
so, 

B = (~(j ~). 
This completes the case when T has distinct eigenvalues. 

D. Nonelementary Divisors 

In this section we shall indicate some extensions of the basic theory as given in 
Sections A -CO We will give references to the literature for further information. 

Lemma 1. Let A (respectively T) be any 2n x 2n real Hamiltonian (respectively 
symplectic) matrix with eigenvalues 2 and p., 2 + p. =F 0 (respectively 2p. =F 1). 
Then {'1 t(2), '1 t(p.)} = 0, i.e., the generalized eigenspaces are J-orthogonal. 
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PROOF. Let A be Hamiltonian with eigenvalues A and Jl, A + Jl #- O. By Lemma 
C.2, {1f 1 (A), 1f 1 (Jl)} = 0; so, make the induction assumption {1fk(A), 1fk(Jl)} = O. 
We will first show that {1fk+1(A), 1fk(Jl)} = O. Recall that {Ax, y} = {x, Ay} 
for all x, YEW. Let u E 1fk+1 (A) and v E 1fk(Jl); so, (A - AJ)k+1U = 0 and 
(A - JlJ)kV = O. Then 

0= {u, (A -JlJtv} = {u, (A + AI + [-A - JlJJ)kV} 

= i~ G)( -A - Jl)k-i{U, (A + AI)iV} 

= i~ G)( -A - Jl)k-i{( -A + AI)iU, v}. 

(1) 

Since u E 1fk+1 (A), (- A + AI)iU E 1fk(A) for i = 1, 2, ... ; so, all the terms 
in the last sum in (1) are zero except the term when i = 0, and so, 
( - A - Jl)k {u, v} = O. This proves {1fk+1 (A), 1fk(Jl)} = O. A similar argument 
shows that {1fk+ 1 (A), 1fk(Jl)} = 0 implies {1fk+dA), 1fk+l (Jl)} = 0; so, by induc­
tion the lemma holds. A similar argument holds for the symplectic matric T 
See Laub and Meyer (1974). • 

Let A be a real Hamiltonian matrix. The eigenvalues of A fall into four 
groups: (1) the eigenvalue 0, (2) the real eigenvalues ± a1 , ... , ± as, (3) the pure 
imaginary ± /31 i, ... , ± /3ri, and (4) the truly complex ± 1'1 ± (j1 i, ... , ± Yt ± (jJ 
This defines a direct sum decomposition 

where 

x = 1ft (O), 

IUj = 1ft (a) EB 1ft( -aj), 

WIIIj = 1ft (/3ji) EB 1ft ( - /3ji), 

7l.j = {1ft(Yj + (jji) EB 1ft(Yj - (jji)} EB {1ft( -Yj - (jji) EB 1ft( -Yj + (jji)} . 

(2) 

(3) 

Each of the summands in (3) is an invariant subspace for A. By Lemma 1 each 
space is I-orthogonal to every other, and so by Proposition BA, each space 
must be a symplectic subspace. Because each subspace is invariant under 
complex conjugation, each is the complexification of a real space. Thus, we 
can choose symplectic coordinates for each of the spaces where A in these 
coordinates would be block diagonal. Therefore, the next task would be to 
consider each space separately, but there are too many cases for a complete 
treatment. 
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We can group some of the subspaces together. Consider the decomposition 

'V = U EEl N EEl IP, 

U = XEEl( ~Wj), 

N = {EfJ '1t( -aJ} EB {~['1t( -Yj - bji) EB '1t( -Yj + bji)]} , 

iP' = {EfJ '1t( +aJ} EEl {~['1t( +Yj - bji) EEl '1t( +Yj + bji)]}. 

(4) 

U is the symplectic, A-invariant subspace such that the restriction of A to U has 
only imaginary eigenvalues. NEB iP' is the symplectic, A-invariant subspace 
such that the restriction of A to N EB iP' has eigenvalues with nonzero real 
parts. Nand iP' are Lagrangian subspaces of N EEl iP'; so, the following lemma is 
a direct result of Lemma B.7. 

Lemma 2. Let A be a real, 2n x 2n, Hamiltonian matrix all of whose eigen­
values have nonzero real parts. Then there exists a real 2n x 2n symplectic 
matrix P such that p-1 AP = diag(BT, - B), where B is a real n x n matrix, all 
of whose eigenvalues have negative real parts. In particular, B could be taken in 
real Jordan form. 

There are many cases when A has eigenvalues with zero real parts, i.e., zero 
or pure imaginary. See Laub and Meyer (1974) for a complete discussion. In 
the case the eigenvalue zero is of multiplicity 2 or 4 the canonical forms are 
the 2 x 2 and 4 x 4 zero matrices and 

0 1 0 0 0 1 0 0 

(~ ±1) 
0 0 0 0 0 0 0 ±1 

o ' 0 0 0 0 0 0 0 0 
(5) 

0 0 -1 0 0 0 -1 0 

The corresponding Hamiltonians are 

±'1i12, ~2'11> ~2'11 ± '1V2. (6) 

In the case of double eigenvalue ± ai, a l' 0, the canonical forms in the 4 x 4 
case are 

0 0 a 0 0 a 0 0 

0 0 0 ±a -a 0 0 0 

0 0 0 ±1 0 0 
(7) 

-a a 

0 =Fa 0 0 0 ±1 -a 0 
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The corresponding Hamiltonians are 

(a/2)(~i + 17i> ± (a/2)(~~ + 17~), 
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Let T be a real symplectic matrix. The eigenvalues of T fall into five groups: 
(1) + 1, (2) -1, (3) the real eigenvalues Ilf 1, ... , Il"f 1, (4) the eigenvalues of unit 
modulus a ± Pii, ... , a ± Pri, and (5) the complex eigenvalues of modulus 
different from zero (Y1 ± 151 if!, ... , (Yr ± brif1. This defines a direct sum 
decomposition 

W = X $ V $ ( cr Uj ) $ ( cr Wj ) $ ( cr Zj), (9) 

where 

Uj = 17t (ll) $ 17t (llj-1 ), 

Wj = 17t(aj + 13) $ 17t(aj - Pji), 
(10) 

Zj = {17t(Yj + bji) $ 17t(Yj - b))} $ {17t(Yj - bjit1 $ 17t(Yj + bjit1}. 

Each of the summands in (10) is an invariant subspace for T. By Lemma 1, 
each space is J-orthogonal to every other, and so each space must be a 
symplectic subspace. Because each subspace is invariant under complex con­
jugation, each is the complexification of a real space. Thus, we can choose 
symplectic coordinates for each of the spaces where T in these coordinates 
would be block diagonal. Again, considering all of the cases would take us too 
far afield. Each of the spaces in (10) is symplectic and so, in particular, even 
dimensional. Thus, the multiplicity of the eigenvalue -1 is even; so, the re­
striction of T to this space has determinant + 1. This gives an alternate proof 
of Theorem A.8. That is: 

Corollary 3. The determinant of a symplectic matrix is + 1. 

Canonical forms for symplectic matrices are discussed in Laub and Meyer 
(1974). Also see Williamson (1936,1937,1939). 

E. Periodic Systems and Floquet-Lyapunov Theory 
In this section we shall introduce some of the vast theory of periodic Hamil­
tonian systems. A detailed discussion of periodic systems can be found in the 
two volume set by Yakubovich and Starzhinksii (1975). 

Consider a periodic, linear Hamiltonian system 

8H 
i = J iii = JS(t)z = A(t)z, (1) 

where 
H = H(t, z) = tzTS(t)z (2) 
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and A(t) = JS(t). Assume that A and S are continuous and T-periodic, i.e., 

A(t + T) = A(t), S(t + T) = S(t) for all t E IR (3) 

for some fixed T> O. H, the Hamiltonian, is a quadratic form in the z's with 
coefficients which are continuous and T-periodic in t E IR. Let Z(t) be the 
fundamental matrix solution of(1) which satisfies Z(O) = I. 

Lemma 1. Z(t + T) = Z(t)Z(T) for all t E IR. 

PROOF. Let X(t) = Z(t + T) and Y(t) = Z(t)Z(T). X(t) = Z(t + T) = 
A(t + T)Z(t + T) = A(t)X(t); so, X(t) satisfies (1) and X(O) = Z(T). Y(t) 
also satisfies (1) and Y(O) = Z(T). By the uniqueness theorem for differential 
equations, X(t) == Y(t). • 

The above lemma only requires (1) to be periodic, not necessarily Hamil­
tonian. Even though the equations are periodic, the fundamental matrix need 
not be so, and the matrix Z(T) is the measure of the nonperodicity of the 
solutions. Z(T) is called the monodromy matrix of (1), and the eigenvalues of 
Z(T) are called the (characteristic) multipliers of (1). The multipliers measure 
how much solutions are expanded, contracted, or rotated after a period. The 
monodromy matrix is symplectic by Theorem A.3, and so, the multipliers are 
symmetric with respect to the real axis and the unit circle by Theorem C.l. 
Thus, the origin cannot be asymptotically stable. 

In order to understand periodic systems we need some information ofloga­
rithms of matrices. The complete proof requires a knowledge of the theory of 
functions of a matrix; so, the proof has been relegated to the Appendix. See 
Yakubovich and Stazhinskii (1975) or Sibuya (1960). Here we shall prove the 
result in the case when the matrices are diagonalizable. 

A matrix R has a logarithm if there is a matrix Q such that R = exp Q, and 
we write Q = In R. The logarithm is not unique in general, even in the real 
case, since I = exp 0 = exp(2nJ). If R has a logarithm, R = exp Q, then R is 
nonsingular and has a square root R 1/2 = exp(Q/2). The matrix 

R = (-1 1) o -1 

has no real square root and hence no real logarithm (see the Problem 
Section). 

Theorem 2. Let R be a nonsingular matrix; then there exists a matrix Q such 
that R = exp Q. If R is real and has a square root, then Q may be taken as real. 
If R is symplectic, then Q may be taken as Hamiltonian. 

PROOF. We shall only prove this result in the case when R is symplectic and 
has distinct eigenvalues because in this case we only need consider the canoni­
cal forms of Section C. The complete proof, given in the Appendix to this 
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chapter, requires some of the theory offunctions of a matrix. In particular, 

In (~ ~~1) = Cno~ -~ J 
is a real logarithm when ~ > 0 and complex when ~ < o. A direct computa­
tion shows that 

has no real square root when ~ < O. If 0( and P satisfy 0(2 + p2 = 1, then let e 
be the solution of 0( = cos e and p = sin e so that 

In diag(BT, B-1 ) = diag(ln BT , -In B), where 

B=(~~ ~). 
and 

InB=lnp(~ ~)+(~e ~) 
is real where p = J(y2 + ~2), and y = p cos e and ~ = p sin e. • 

The monodromy matrix Z(T) is nonsingular and symplectic, so there 
exists a Hamiltonian matrix K such that Z(T) = exp(KT). Define X(t) by 
X(t) = Z(t) exp( - tK) and compute X(t + T) = Z(t + T) exp K( - t - T) = 
Z(t)Z(T) exp( - KT) exp( - Kt) = Z(t) exp( - Kt) = X(t). Therefore, X(t) is 
T-periodic. Since X(t) is the product of two symplectic matrices, it is 
symplectic. In general, X and K are complex even if A and Z are real. To 
ensure a real decomposition, note that by Lemma 1, Z(2T) = Z(T)Z(T); 
so, Z(2T) has a real square root. Define K as the real solution of Z(2T) = 

exp(2KT) and X(t) = Z(t) exp( -Kt). Then X is 2Tperiodic. 

Theorem 3 (Floquet-Lyapunov). The fundamental matrix solution Z(t) of the 
Hamiltonian (1) which satisfies Z(O) = I is of the form Z(t) = X(t) exp(Kt), 
where X(t) is symplectic and T-periodic and K is Hamiltonian. Real X(t) and K 
can be found by taking X(t) to be 2T-periodic. 

Let Z, X and K be as above. In Equation (1) make the symplectic, periodic 
change of variables z = X(t)w; so, 

z = Xw + Xw = (Ze- Kt - Ze-KtK)w + Ze-Ktw 

= AZe-Ktw - Ze-KtKw + Ze-Ktw = Az = AXw = AZe-Ktw 
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and hence 

or 

w=Kw. 

Corollary 4. The symplectic periodic change of variables z = X(t)w transforms 
the periodic Hamiltonian system (1) to the constant Hamiltonian system (4). If X 
is 2T-periodic, then X(t) and K can be taken as real. 

The eigenvalues of K are called the (characteristic) exponents of (1) where K 
is taken as In [X(T)jT] even in the real case. The exponents are the logarithms 
of the multipliers and so are defined modulo 2ni. 

F. Parametric Stability 

Stability questions for Hamiltonian systems have been studied since the time 
of Newton. Is the solar system stable? This is an easy question to ask with 
obvious consequences, but is difficult to answer. We have seen some simple 
results-some positive and some negative. A satisfactory stability theory for 
Hamiltonian systems exists for linear autonomous and periodic systems only. 
The richness of this theory in this simplest of all cases foreshadows the com­
plexity of the nonlinear problem. A detailed discussion of periodic systems 
can be found in the two volume set by Yakubovich and Stazhinskii (1975). 

By the Floquet-Lyapunov theory, a periodic Hamiltonian system can be 
transformed by a linear, symplectic, periodic change of variables to an au­
tonomous (constant coefficient) Hamiltonian system. In theory, at least, the 
stability question for a periodic system can be reduced to an autonomous 
system; so, we shall only discuss this case. 

Consider the general linear system 

X= Ax, (1) 

where A is a constant square matrix. Solutions of such an equation are linear 
combinations of the basic solutions of the form t k exp(.A.t)a, where k is a non­
negative integer, a is a constant vector, and .A. is an eigenvalue of A. All solu­
tions of (1) will tend to 0 as t --+ 00 (the origin is asymptotically stable) if and 
only if all the eigenvalues of A have negative real parts. By Theorem C.1 this 
never happens for a Hamiltonian system. All solutions of (1) are bounded for 
t > 0 if and only if (i) all the eigenvalues of (1) have nonpositive real parts and 
(ii) if .A. is an eigenvalue of A with a zero real part (pure imaginary), then the k 
in the basic solutions, t k exp(.A.t)a, is zero. This last condition, (ii), is equivalent 
to the condition that the Jordan blocks for all the pure imaginary eigenvalues 
of A in the Jordan canonical form for A are diagonal. That is, there are 
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no off-diagonal terms in the Jordan blocks for pure imaginary eigenvalues of 
A. For Hamiltonian systems by Theorem C.1, again, if all the eigenvalues 
have nonpositive real parts, then they must be pure imaginary. Thus, if a 
Hamiltonian system has all solutions bounded for t > 0, then all solutions are 
bounded for all time. So for linear Hamiltonian systems, the meaningful con­
cept of stability is that all solutions are bounded for all t E ~, or the origin is 
positively and negatively stable. 

Henceforth, let A in (1) be a 2n x 2n constant Hamiltonian matrix. The 
Hamiltonian system (1) is said to be stable if all solutions of (1) are bounded 
for all t E ~. By the above discussion we have the following. 

Theorem 1. A linear constant Hamiltonian system (1) is stable if and only if all 
the eigenvalues of A are pure imaginary, and A is diagonalizable (over the 
complex numbers). 

Corollary 2. A linear periodic Hamiltonian system is stable if and only if the 
monodromy matrix has eigenvalues with unit modulus and is diagonalizable. 

PROOF. The change of variables given in Corollary D.4, which reduced the 
periodic system (D.1) to the constant system (D.4), is periodic and continuous 
and so takes bounded solutions to bounded solutions. The matrix K of the 
constant system (D.4) is the logarithm of the monodromy matrix or its square, 
and, so, the eigenvalues of K are logarithms of the eigenvalues of the mono­
dromy matrix or its square. Thus, the eigenvalues of the monodromy matrix 
are of unit modulus if and only if the eigenvalues of K are pure imaginary. A 
matrix is diagonalizable if and only if its logarithm is. • 

The question of stability of a single linear autonomous or periodic Hamil­
tonian system is completely answered in theory. The problem of performing 
the calculations is another matter. If Equations (1) are the mathematical mod­
el of a physical problem, then the coefficients in the equation, i.e., the matrix 
A, may not be known exactly. Is the question of stability sensitive to small 
changes in the Hamiltonian matrix A? This question gives rise to the fol­
lowing concept. The constant linear Hamiltonian system (1) is said to be pa­
rametrically stable if it and all sufficiently small constant linear Hamiltonian 
perturbations of it are stable. That is, (1) is parametrically stable if there is an 
E > ° such that x = Bx is stable, where B is any constant Hamiltonian matrix 
with IIA - BII < E. 

Lemma 3. If the Hamiltonian H is positive (or negative) definite, then A is 
parametrically stable. 

PROOF. Let H = x TSx/2 be the Hamiltonian of (1); so, A = JS. Since H is posi­
tive (respectively negative) definite, the level set H = h, where h is a positive 
(respectively negative) constant, is an ellipsoid in ~2n and hence a bounded 
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set. Since H is an integral, any solution which starts on H = h remains on 
H = h and so is bounded. So H being positive definite implies (1) is stable. 
Any sufficiently small perturbation of a positive definite matrix is positive 
definite, and so any sufficiently small perturbation of (1) is stable also. _ 

Lemma 4. If (1) is parametrically stable, then the eigenvalues of A must be pure 
imaginary, and A must be diagonalizable. 

PROOF. If (1) is parametrically stable, then it is stable. -
Lemma 5. If (1) is parametrically stable, then zero is not any eigenvalue of A. 

PROOF. Assume not; so, assume that "t(O) is not trivial. By the discussion in 
Section E, the subspace "t(O) is an A-invariant symplectic subspace; so, A 
restricted to this subspace, denoted by A', is Hamiltonian. Since A is diago­
nalizable so is A'. So A' is a diagonalizable matrix all of whose eigenvalues are 
zero or A' is the zero matrix. Let B be a Hamiltonian matrix with real eigen­
values ± 1; then BB is a small perturbation of A' = 0 for small B and has 
eigenvalues ±B. Thus, by perturbing A along the subspace "t(O) by BB and 
leaving A fixed on the other subspaces we give a small Hamiltonian perturba­
tion which is not stable. _ 

Let A have distinct eigenvalues ± PI i, ... , ± Psi. The space "t( + pji) (f) 
"t( - pji) is the complexification of a real space Vj and A restricted to Vj will 
be denoted by Aj. Vj is a symplectic linear space, and Aj is invariant. Aj is 
Hamiltonian with eigenvalues ± pi. 

Theorem 6. Using the notation given above, system (1) is parametrically stable if 
and only if the Hamiltonian Aj is positive or negative definite for eachj. 

Thus, the systems defined by the Hamiltonians H = 4(xi + yi) - (x~ + yn 
and H = (xi + yi) + (x~ + yn are parametrically stable, whereas the system 
defined by the Hamiltonian H = (xi + yi) - (x~ + y~) is not parametrically 
stable. 

Idea of Proof 

We cannot give a complete proof here, but the ideas are simple. First, the if 
part. Given A and the decomposition of V into the invariant symplectic sub­
spaces V I, ... , V S' there is an B so small that if B is any Hamiltonian B­

perturbation of A, then there are B-invariant symplectic spaces WI' ... , W s. 

Moreover, dim Vj = dim Wj' Vj and Wj are closed and the eigenvalues of B 
restricted to Wj are close to ± pji. Given these facts, it is clear that the Hamil­
tonian for the B system is positive or negative definite on each Wj' and so all 
the solutions are bounded. 
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Second, the only if part. What we need to show is that if the Hamiltonian is 
not definite on one of the spaces Ai' then some perturbation will be unstable. 
We will show how the perturbation is constructed in one typical case. 

Consider the Hamiltonian of two harmonic oscillators with equal fre­
quencies; namely, 

2H = (xi + yi) ± (x~ + YD· (2) 

There are two choices of the sign in (2). If the plus sign is taken, then the 
Hamiltonian is positive definite, and, in this case, (2) is parametrically stable. 
If the minus sign is taken, then the perturbation 

2H = (xi + yi) ± (x~ + y~) + eYIY2 (3) 

is unstable for small e because the characteristic equation of the system with 
Hamiltonian (3) is (A 2 + 1)2 + e2; and so, the eigenvalues are ± J( -1 ± ei), 
which has a real part nonzero for e =f. O. 

G. The Critical Points in the Restricted Problem 

In Section LD.4 it was shown that the restricted problem of three bodies has 
five equilibrium points. They are the three collinear points 2 1 , 2 2 , and 2 3 , 

and the two triangular points 24 and 2 5 , We will use the methods developed 
in this chapter to investigate the behavior of solutions near these equilibria. 
Only if the corresponding linearized system has periodic solutions can we 
hope to find solutions of the full nonlinear system which will liberate near one 
ofthese equilibrium points. 

The Hamiltonian function of the restricted problem of three bodies is 

H = !(yi + yD + X2Yl - XIY2 - U, 

where U is the self-potential given by 

U=I-J1.+~ 
dl d2 

with 

(1) 

(2) 

df = (Xl + J1.? + x~ and di = (Xl + J1. - 1)2 + x~. (3) 

If Xl' x 2 is a critical point of the amended potential, 

V = !(xi + X~) + U(Xl' x 2), (4) 

then Xl' X2, Yl = -X2' Y2 = Xl is an equilibrium point. Let ~l and ~2 be one 
of the five critical points of (4). In order to study the motion near this equilib­
rium point, we translate to new coordinates by 

Ul=Xl-~l' 

U 2 = X 2 + ~2' 
Vl = Yl + ~2' 
V2 = Y2 - ~l' 

(5) 
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This translation to the new coordinates (u 1, U2' Vl' v 2 ) is obviously sym­
plectic; so, we can perform this change of coordinates in the Hamiltonian (1) 
and preserve its structure. Expanding through second-order terms in the new 
variables, we obtain 

H = !(vi + v~) + U2 V1 - U1V2 - !(Uxlxlui + 2UXIX2U1U2 + UX2X2U~) + .... 
(6) 

There are no linear terms because the expansion is performed near an equilib­
rium and the constant term has been omitted because it contributes nothing 
in forming the corresponding system of differential equations. The above qua­
dratic Hamiltonian function gives rise to the following Hamiltonian matrix: 

0 1 1 0 

-1 0 0 1 

U X1X1 U X1X2 0 1 
(7) 

U X1X2 U X2X2 -1 0 

The eigenvalues of this matrix determine the behavior of the linearized system 
of (1). With the help of(4), we obtain for the characteristic equation of(7) 

A,4 + (4 - VX1X1 - VX2X2 )A,2 + VX1X1 VX2X2 - v,,~X2 = O. (8) 

The partial derivatives are 

_ 1 (1 _ ) 3(x1 + 1l)2 - d~ 3(X1 + Il - 1)2 - di 
VX1X1 - + Il di + Il di ' 

v" , X2 = 3X1X2 C ~ Il + ~), (9) 

1 (1 ) 3x~ - d~ 3x~ - di 
VX2X2 = + - Il di + Il di 

They have to be evaluated at the critical points. Thus, we have to consider the 
coliinear points and the triangular points separately. 

Lemma 1. At the collinear points, the matrix (7) has two real eigenvalues and 
two purely imaginary eigenvalues. 

PROOF. By direct computation one finds that for the collinear points VX1X1 = 
1 + 2(1 - ll)d13 + 2J1d"2 3 > 0, v", X2 = 0, and v,,2X2 = 1 - (1 - ll)d13 - J1d"2 3 

< o. Only the last statement requires some additional work. We will present it 
for 21 and leave the other cases as exercises. 

If(~l' 0) are the coordinates of the Lagrangian point 2 1, then d1 = ~1 + Il, 
d2 = ~ 1 - 1 + Il, and ~ 1 is the real solution of VX1 = 0, that is, of a quintic 
polynomial 

(10) 
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We will use this relationship in the form 

(1 - ll)d12 = dl - Ild'2 2 - Il 

when we evaluate the second derivative of Vat (e l' 0), that is, we get 

= ~ (1 + d'22 - d l d'23) 

= ~ (1 - d'23) < O. 
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(11) 

(12) 

The last equality follows from dl = 1 + d2 and the inequality follows then 
from thefact that 0 < d2 < 1. 

Setting A = 2 - t(Vx,x, + VX2X ) and B = - Vx,x, VX2X2 ' the characteristic 
equation for the collinear points takes on the form 

A.4 + 2AA? - B = 0 (13) 

with the solutions 

A.2 = -A ± J A2 + B. (14) 

Since B > 0 the statement of the lemma follows. It also means that the 
collinear points of Euler are unstable. Therefore, some solutions which start 
near to the Euler points will tend away from these points as time tends to 
infinity. _ 

Lemma 2. At the triangular equilibrium points, the matrix (8) has purely imagi­
nary eigenvalu!.!f0r values of the mass ratio Il in the interval 0 < Il < Ill' where 
III = t(l - J69/9) is called Routh's critical mass ratio. For Il = III the matrix 
has the repeated eigenvalues + ifi/2 and - ifi/2 with nonelementary divi­
sors. For III < Il ~ t, the eigenvalues are off the imaginary axis. 

PROOF. Since the coordinates for the Lagrangian point 24 have been found to 
be el = t -Il and e2 = tj3, the second derivatives of V can be computed 
explicitly. They are 

3 
V. =­

XIX, 4' 
3j3 

v""X2 = - -4-(1 - 21l), 

The characteristic equation for (8) is then 

27 
A.4 + A.2 + 4 1l(1 -Il) = o. 

It has the roots 

(15) 

(16) 

(17) 
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When the above square root is zero, we have the double eigenvalues 
± iJ212. This occurs for Il = III = t(1 - .)6919), that is, for Routh's critical 
mass ratio (and due to symmetry also for 1 - Ild. It can be seen that the 
matrix (7) has nonsimple elementary divisors, which means it is not diago­
nalizable at Ill ' We will return to this case later on. 

For III < Il < 1 - Ill' the square root in (17) produces imaginary values, 
and so A will be complex with a nonzero real part. The eigenvalues of (7) lie ofT 
the imaginary axis, and the triangular Lagrangian points cannot be stable. 

This leaves the interval 0 < Il < III (and 1 - III < Il < 1) where the matrix 
(S) has purely imaginary eigenvalues of the form ±iwl and ±iw2. We will 
adopt the convention that W l will be the larger of the two values so that W l 

and W 2 are uniquely defined by the conditions which follow from (17): 

0<w2<J212<wl' 

wi + w~ = 1, 

(ISa) 

(ISb) 

(ISc) 

• 
We restrict now our attention to the case when the mass ratio Il is smaller 

than Routh's critical value Ill' The quadratic part of the Hamiltonian func­
tion near 24 is 

1 2 2 1 2 3}3 5 2 
Q = 2(V l + V2) + U2Vl - U1 V2 + gUl - - 4- 1l(1 - Il)U 1 U2 - gU2' (19) 

We will construct the symplectic linear transformation which brings this 
Hamiltonian function into its normal form. In terms of complex coordinates, 
this normal form will turn out to be 

(20) 

It is the Hamiltonian function for two harmonic oscillators with frequencies 
W l and W 2 . Since the original Hamiltonian was indefinite, the two terms do 
not have the same sign. 

When we perform these calculations, it is not so convenient to work with 
the parameter Il. It hides the symmetry of the problem with respect to Il = 1-
The calculations are simpler if we use 1 - 21l as a parameter instead of Il. At 
the same time we can simplify the calculations further by absorbing the factor 
3}3 into this parameter. We, thus, use 

y = 3}3(1 - 21l). (21) 

The other difficulty in performing the calculations by hand and even more 
so by machine has to do with the fact that the expressions for W l and W 2 are 
rather lengthy and it is easier to express everything in terms of these variables 
instead of Il. But W l and W2 are not independent as (IS) shows. Indeed, in 
order to simplify intermediate results, one has to use the relationships (ISb) 
and (ISc). One strategy is to replace w~ by 1 - wi whenever it occurs and, 
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thus, restrict the exponents of W2 to 0 and 1. But most expressions are shorter 
if the symmetry between the frequencies W 1 and W2 is preserved within the 
formulas. 

Our approach will reduce the problem so that it has the minimum number 
of essential parameters. We will divide the Hamiltonian function by Wl' and 
we will set w = W2/Wl. Due to our previous convention for W 1 and W2 one 
sees that w lies in 0 < w < 1. We use (ISb) to express terms containing Wl and 
W2 as a function of w. The relationship (1Sc) then reads 

16w2 

(1 + (2)2 = 27 - y2 (22) 

or 

2 27 + 3Sw2 + 27w4 

Y = (1 + ( 2)2 (23) 

The last form will be used to limit the exponent of y to 0 and 1 in all intermedi-
ate expressions. 

The Hamiltonian matrix derived from (7) is 

0 1 1 0 

1 -1 0 0 1 
A= - (24) 

W 1 -1/4 y/4 0 1 

y/4 5/4 -1 0 

Its eigenvalues are ± i and ± iw. The eigenvectors belonging to + i and to 
+ iw are denoted by /Xl and /X2 ' respectively. They are given by 

1 

_(w2 + l)y + SiJw2+! 

9w2 + 13 

/Xl = (w2 + l)y + i(w2 + 5)/Jw2+! ' 

9w2 + 13 

9w2 + 5 - iyJw2+! 

9w2 + 13 

1 

_(w2 + l)y + SiwJw2+! 

13w2 + 9 

/X2 = (w2 + 1)y + iw(5w2 + 1)!Jw2+! 

13w2 + 9 

5w2 + 9 - iywJw2+! 

13w2 + 9 

(25a) 

(25b) 



64 II. Linear Hamiltonian Systems 

Since ai Ril = -ir; /2 and ai Ja2 = iri /2, where r l and r2 are the positive real 
roots of 

(26) 

respectively, we create the transformation matrix T to the new set of complex 
valued variables (Zl' Z2' Zl' Z2) by 

(27) 

Since we have TT JT = (1/ - 2i)J, the transformation is symplectic with 
multiplier -1/2i. The old and new Hamiltonians are related by 

(28) 

and it leads to 

(29) 

We remark in passing that T is not the only symplectic matrix which 
accomplishes the transformation to this complex normal form. The matrix 
(al /r;, a2 /ri , aI' a2 ) would do the same and at the same time has a simpler 
form than T On the other hand, the reality conditions for it are more compli­
cated. The advantage of a simpler form is lost when we want to go back to real 
coordinates. 

Therefore, we stay with the above form for T and introduce a new set of 
real variables (~l ' ~2' 111' 112) by Zj = ~j + i11j,j = 1, 2. It is a symplectic trans­
formation with multiplier - 2i, and the transformed Hamiltonian becomes 

1 2 2 W 2 2 
.ff = 2(~1 + 111) - 2(~2 + 112)' (30) 

The transformation from the original coordinates to these new coordi­
nates is then given by 

Xl ~l 

X2 1 ~2 
= RS 

Yl 2~ 111 
(31) 

Y2 112 

where R is the matrix 

9w2 + 13 13w2 + 9 0 0 

_y(w2 + 1) _y(w2 + 1) 8(w2 + 1) -8(w2 + 1) 
R= 

Y(W2 + 1) Y(W2 + 1) w 2 + 5 - 5w2 - 1 
(32) 

9w2 + 5 5w2 + 9 _y(w2 + 1) Y(W2 + 1) 
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and S the diagonal matrix 

. ( 4 Ja7+1 4 Ja7+1 S = dlag , , 
.j9w2 + 13 .j w(13w2 + 9) 

1 Jw) 
4Ja7+1J9w2 + 13' 4Ja7+1J13w2 + 9 . 

(33) 

The matrix A in (24) and the subsequent Hamiltonian :f( in (30) have been 
scaled. The true matrix of the restricted problem at 24 is Wi A. The transfor­
mations given above will diagonalize Wi A also. In fact, K in (29) becomes 
K = -iWiZiZi + iW2Z2Z2, and :f( in (30) becomes :f( = (wi/2)(~i + 11i)­
(w2/2)(~~ + 11~)" 

The above transformation becomes singular when W = 1. This is due to the 
fact that the Hamiltonian matrix (24) is not diagonalizable when y = J23 or 
when J1. = J1.1" We will construct the linear transformation which brings 

0 1 0 

A=J2 
-1 0 0 1 

-1/4 J23/4 0 1 
(34) 

J23/4 5/4 -1 0 

into its complex normal form 

-i 0 0 0 

0 0 0 
c= 

0 -1 0 
(35) 

-1 0 0 -i 

and afterwards we will convert it into the corresponding real normal form 

0 1 0 0 

-1 0 0 0 
B= (36) 

-1 0 0 1 

0 -1 -1 0 

For the eigenvalue + i of the matrix A, we calculate the eigenvector ex and 
the generalized eigenvector {3. They are given by 

2ft + 8iJ2 -8J2 - 8ift 

-10 r 0 
ex=r 2 + i)46 

{3 = sex + -
-)46 - 48i 

(37) 
5 

2ft + 3iJ2 17J2 - 8ift 
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where rand s are complex-valued constants which have to be determined 
such that the transformation is symplectic. Due to the form of C the transfor­
mation matrix T from real coordinates to the new complex coordinates has to 
be T = (p, /3, ct, a). 

The only terms which are nonzero in TT JT are /Y ip, /3T Ja, and 
those directly related to them. We compute f3T Ja = (80.J2) ri' and f3T ip = 
il6)2[10 Im(rs) - ri']. 

In order to get a symplectic transformation to the new complex coordi-

nates (ZI' Z2' Z3' Z4), we set r = 1/J80)2 and s = -ir/ 10. From the form of 
the matrix C, it also follows that the reality conditions have to be ZI = Z2 and 
Z3 = Z4 ' It requires that the transformation to real position coordinates ~1 ' ~2 
and their conjugate momenta '11' '12 has to be set up in the following special 
way: 

ZI = ~l + i~2 ' 

Z2 = ~1 - i~2' 

Z3 = '11 - i172' 

Z4 = 171 + i'12 ' 

(38) 

This form is forced upon us if we want to preserve the two-form, that is, 
dZ I /\ dZ3 + dZ2 /\ dZ4 = 2(d~1 /\ d'11 + d~l /\ d'12)' 

Summarizing, we first transformed the original Hamiltonian function 
)2H into the complex normal form 

K = -iZlZ3 + iZ2Z4 + ZIZ2 , 

which we then transformed into the real normal form 

.% = -~1'12 + ~2'11 + t(~i + ~D· 

(39) 

(40) 

The composite transformation from the original to the new real coordinates is 
given by 

Xl 4)2 9ft -10ft -40)2 ~1 

X2 J5..)2 0 -5 50 0 ~2 
---

fo/2 -5fo 
(41) 

Y1 100 49 -10 '11 

Y2 -37)2/2 9ft -10ft -15)2 '12 

The transformations given above takes the matrix A in (34) to its normal 
form but A = Jl.B where B is the true matrix at ft'4' Similarly the transfor­
mations takes J2Q to normal form where Q is the true quadratic Hamiltonian 
at ft'4 ' The transformations take Q to K = ()2/2){ -iZlZ3 + iZ2Z4 + ZIZ2} 
and.% = ()2/2){ -~1 '12 + ~2'11 + (~i + ~D/21 In order to get Q into its true 
normal form, one additional scaling, ~; -+ 4 .J2~; , 17; -+ lr )2'1;, is required. 
This scaling is symplectic, and the Q becomes ()2/2){ - ~1 '12 + ~2'1d + 
(~ i + ~D/2. 
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H. Further Reading 

Be careful in reading other texts because the terminology has only recently 
stabilized to what is found here. In some of the older texts "symplectic" 
becomes "canonical" and "Hamiltonian" becomes "infinitesimal canonical." 
Other variations are possible. 

The most complete discussion of linear Hamiltonian systems is contained 
in Yakubovick and Stazhinskii (1975). This two-volume set gives a complete 
discussion of the theory of parametric stability and its applications. These 
books are well written, but a little wordy. A great deal of the basic informa­
tion and special facts about symplectic matrices can be found with diligence in 
the almost unreadable text by Wintner (1944). Siegel and Moser (1971) con­
tain a nice discussion of Hamiltonian and symplectic matrices with applica­
tions to the equilibrium points of the restricted problem. The material on 
linear systems is scattered in various chapters, but the treasure is worth the 
search. 

The most complete treatment of the canonical forms for Hamiltonian ma­
trices is found in Willianson (1936, 1938, 1939). These papers are a little hard 
to read, due to the old style of treating algebraic questions. The more geo­
metric treatment given here is a part of the complete discussion given in Laub 
and Meyer (1974). 

Appendix. Logarithm of a Symplectic Matrix 

The simplest proof that a symplectic matrix has a Hamiltonian logarithm 
uses the theory of analytic functions of a matrix. Since this theory is not 
widely known and it would take us too far afield to develop it here, we 
will give the proof without the background development for those who know 
the theory. This proof and some of the background material is found in 
Yakubovich and Stazhinskii (1975). See Sibuya (1960) for a more algebraic, 
but not necessarily simpler, proof. 

Lemma 1. Let T be a real symplectic matrix which does not have -1 as an 
eigenvalue. Then there exists a real, Hamiltonian matrix B such that T = 
expB. 

Proof Outline 

The logarithm of a nonsingular matrix, T, is given by the formula 

In T = -21 . I (0 - T)-l In ( d(, 
nz 'f r (1) 
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where r is a smooth, closed curve which contains in its interior all the eigen­
values of T but not the origin. There are many branches of the In functions 
used in (1), and so there are many branches of the matrix logarithm also. 

Let T be symplectic and have distinct eigenvalues AI' ... , A2k , with Ai "# -1 
for all i. The set of eigenvalues of T are symmetric with respect to the real axis 
and the unit circle by Proposition C.l. Let r 1, ••• , r 2k be small, nonintersect­
ing circles in the complex plane centered at AI' ... , AZk ' respectively, which are 
symmetric with respect to the real axis and the unit circle. Thus, conjugation, 
z --+ z, and inversion, z --+ liz, take the set of circles r 1 , ••• , rZk into itself 
(possibly permutating the order). 

Let Ln be a branch of the logarithm function defined by slitting the com­
plex plane alone the negative real axis and - 11: < arg(Ln z) < 11:. Then a loga­
rithm of T is given by 

1 2k t B = In T = ~ L (0 - T)-1 Ln , d,. 
m j=l rj 

(2) 

Let conjugation take Ij to - rs = ~ (the minus indicates that conjugation 
reverses orientation). Then 

-21 . 1. (0 - T)-1 Ln , d, = - ~ 1. ([1 - Tr1 Ln ( d( 
m Jrj 2m J fj 

= - ~ 1- (0 - T)-l Ln , d, (3) 
2m J -r. 

= -21 .1- (0 - T)-1 Ln , d,. 
m Jr. 

So conjugation takes each term in (2) into another, which implies that B is 
real. 

Now we claim that B is Hamiltonian. Let inversion take Ij into rs (inver­
sion is orientation preserving). Make the change of variables' = 1/~ in the 
integrals in (2) and recall that T-1 = -JTT J. Then 

(0 - T)-l Ln' d, = [(lle)/ - T]-l( -Ln~)( _d~/~Z) 

= (/ - ~T)-1~-1 Ln ~ d~ 

= {T(/ - ~T)-1 + ~-lI}Ln ~ d~ 
= {(T- 1 - or1 + ~-lI}Ln ~ d~ 
= {(-JTTJ - ~/)-1 + ~-lI}Ln ~ d~ 
= -J(TT - ~/)-1 J Ln ~ d~ + ~-1 Ln ~ d~. 

(4) 

Since the circle Ij does not enclose the origin, f C 1 Ln ~ d~ = 0 on Ij for allj. 
Making the substitution, = 1/~ in (2) and using (4) shows that B = JBT J or 
J BT + BJ = O. Thus, B is Hamiltonian. _ 
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Theorem 2. Let T be a real, symplectic matrix. T has a real, Hamiltonian 
logarithm if and only if it has a real, symplectic square root. 

PROOF. By the discussion in Section D, the symplectic space has a direct sum 
decomposition V = V (£) IL, where both V and IL are T-invariant, symplectic 
subspaces, and T restricted to V has only the eigenvalue - 1, whereas T 
restricted to IL does not have the eigenvalue -1. By the lemma given above, 
T restricted to IL has a real Hamiltonian logarithm; so, it must be shown that 
T restricted to V has a real Hamiltonian logarithm. 

Thus, we can assume that T has only the eigenvalue -1. If T has a real, 
symplectic square root, Q, so T = Q2, then Q has eigenvalues ± i. By Lemma 
1, there is a real Hamiltonian matrix B' so that Q = exp B'. But exp(2B') = 
exp B' exp B' = Q2 = T. Thus, B = 2B' is the real, Hamiltonian logarithm 
of T. Conversely, if T = exp B, where B is a real, Hamiltonian matrix, then 
exp(B/ 2) is a real, symplectic square root of T. • 

Problems 

1. Supply proofs to the Lemmas and Corollaries e.S to C.13. 

2. Prove that the two symplectic matrices in formula (12) in Lemma e.ll are not 
symplectically similar. 

3. Consider the linear fractional (or Mobius transformation) 

1 + z 
(J>: z -+ w = --, 

1-z 
w-1 

(J>-l: w -+ z = --. 
w+l 

a. Show that (J> maps the left half-plane into the interior of the unit circle. What 
are (J>(O), (J>(1), (J>(i), and (J>( oo)? 

b. Show that (J> maps the set of m x m matrices with no eigenvalue + 1 bijective1y 
onto the set of m x m matrices with no eigenvalue -1. 

c. Let B = (J>(A) where A and Bare 2n x 2n. Show that B is symplectic if and only 
if A is Hamiltonian. 

d. Apply (J> to each of the canonical forms for Hamiltonian matrices to obtain 
canonical forms for symplectic matrices. 

e. Prove the analog of Theorem F.3 for symplectic matrices by using Theorem F.3 
for Hamiltonian matrices and (J>. 

4. Consider the system (*) M ij + V q = 0, where M and V are n x n symmetric matri­
ces and M is positive definite. From matrix theory there is a nonsingular matrix P 
such that pTMP = I and an orthogonal matrix R such that RT(pTVp)R = A = 
diag(A.1 , • . . , A.n ). Show that the above equation can be reduced to p + Ap = O. 
Discuss the stability and asymptotic behavior of these systems. Write (*) as a 
Hamiltonian system with Hamiltonian matrix H. Use the above results to obtain a 
symplectic matrix T such that 

T-1HT = (0 I). 
-A 0 
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5. a. Let M and V be as in Problem 4. Show that if V has one negative eigenvalue, 
then some solutions of(*) in Problem 4 tend to infinity as t ~ ±oo. 

b. Consider the system (**) Mij + U(q) = 0, where M is positive definite and 
U: IR!" ~ IR! is smooth. Let qo be a critical point of U such that the Hessian of U 
at qo has one negative eigenvalue (so qo is not a local minimum of U). Show that 
qo is an unstable critical point for the system (**). 

6. Let H(t, z) = tz TS(t)Z and W) be a solution of the linear system with Hamiltonian 
H. Show that 

i.e., 

d a 
- H= - H 
dt at' 

d a at H(t, ((t)) = at H(t, ((t)). 

7. Let G be a set. A product on G is a function from G x G into G. A product is usually 
written using infix notation; so, if the product is denoted by 0, then one writes aOb 
instead of O(a, b). Addition and multiplication of real numbers define products on 
the reals, but the inner product of two vectors does not define a product since the 
inner product of two vectors is a scalar not a vector. A group is a set G with a 
product 0 on G which satisfies the following: (i) There is a unique element e E G 
such that aCe = eOa = a for all a E G; (ii) for every a E G there is a unique element 
a - I E G such that aOa- 1 = a - loa = e; (iii) (aOWc = aO(bOc) for all a, b, c E G. e is 
called the identity, a-I the inverse of a, and the last property is the associative law. 
Show that the following are groups. 
a. G = IR!, the reals, and ° = +, addition of real numbers (what is e? Answer: 0). 
b. G = C, the complex numbers, and ° = +, addition of complex numbers (what 

is I - I . Answer: -1). 
c. G = IR!\ {O}, the nonzero reals, and ° = ., multiplication of rea Is. 
d. G = Gl(n, IR!), the set of all n x n real, nonsingular matrices, and ° = • matrix 

multiplication. 
Show that the following are not groups. 

e. G = 1E3, three dimensional geometric vectors, and ° = x, the vector cross 
product. 

f. G = IR!+, the positive reals, and ° = +, addition. 
g. G = IR!, and ° = ., real multiplication. 

8. A subgroup of a group G is a subset H c G, which is a group with the same 
product. A matrix Lie group is a closed subgroup of Gl(m, IF). Show that the follow­
ing are matrix Lie groups. 
a. Gl(m, IF) = general linear group = all n x n nonsingular matrices. 
b. Sl(m, IF) = special linear group = set of all A E Gl(m, IF) with det A = 1. 
c. O(m, IF) = orthogonal group = set of all m x m orthogonal matrices. 
d. So(m, IF) = special orthogonal group = O(m, IF) (\ Sl(m, IF). 
e. Sp(n, IF) = symplectic group = set of all2n x 2n symplectic matrices. 

9. Show that the following are Lie subalgebras of gl(m, IF), see problem I.2.c. 
a. sl(m, IF) = set of m x m matrices with trace = O. (sl = special linear.) 
b. o(m, IF) = set ofm x m skew symmetric matrices. (0 = orthogonal.) 
c. sp(n, IF) = set of all 2n x 2n Hamiltonian matrices. 
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10. Let Q(n, IF) be the set of all quadratic forms in 2n variables with coefficients in IF, so 
q E ~(n, IR), if q(x) = !x TSX , where S is a 2n x 2n symmetric matrix and x E 1F2". 

a. Prove that ~(n, IF) is a Lie algebra, where the product is the Poisson bracket. 
b. Prove that 'II: ~(n, IF) -+ sp(n, IF) : q(x) = txTSx -+ JS is a Lie algebra 

isomorphism. 

11. Prove the theorem: eAt E <§ for all t if and only if A E .91 in the following cases: 
a. When <§ = Gl(m, IF) and .91 = gl(m, IF). 
b. When <§ = Sl(m, IF) and .91 = sl(m, IF). 
c. When <§ = So(m, IF) and .91 = so(m, IF). 
d. When <§ = Sp(n, IF) and .91 = sp(n, IF). 

12. Show that the matrices 

(-1 1) 
o -1 

(
-2 

and 0 

have no real logarithm. 

13. Prove Lemma E.1 for the symplectic matrix T by using induction on the formula 
{17k(l ), 17k(P,)} = 0, where 17k(l) = kernei(Tk - A./). (See Laub and Meyer, 1974.) 

14. Write the fourth-order equation X(4) = 0 as a Hamiltonian system. (Hint: see the 
canonical forms in D.3.) 

15. Compute exp A for each canonical form given in D.3 and D.5. 

16. Hill's lunar problem is defined by the Hamiltonian 

H = 11~"2 _ xTKy _ 11:11 + (3 x i - IlxI12), 

where x, y E 1R2. Show that it has two equilibrium points on the X 2 axis. Linearize 
the equations of motion about these equilibrium points and put the linearized 
equations in normal form by a real symplectic change of coordinates. 

17. Consider a quadratic form H = !xTSx, where S = ST is a real symmetric matrix. 
The index of the quadratic form H is the dimension of the largest linear space 
where H is negative. Show that the index of H is the same as the number of 
negative eigenvalues of S. Show that if S is nonsingular and H has odd index, then 
the linear Hamiltonian system x = JSx is unstable. (Hint: show that the determi­
nant of JS is negative.) 



CHAPTER III 

Exterior Algebra and Differential Forms 

Differential forms play an important part in the theory of Hamiltonian sys­
tems, but his theory is not universally known by scientists and mathemati­
cians. It gives the natural higher-dimensional generalization of the results of 
classical vector calculus. We give a brief introduction with some, but not all, 
proofs and refer the reader to Flanders (1963) for another informal introduc­
tion but a more complete discussion with many applicatons, or to Spivak 
(1965) or Abraham and Marsden (1978) for more complete mathematical 
discussion. The reader conversant with the theory of differential forms can 
skip this chapter, and the reader not conversant with the theory should realize 
that what is presented here is not meant to be a complete development but 
simply an introduction to a few results that will be used sparingly later. 

In this chapter we introduce and use the notation of classical differential 
geometry by using superscripts and subscripts to differentiate between a vec­
tor space and its dual. This convention helps sort out the multitude of differ­
ent types of vectors encountered. 

A. Exterior Algebra 

Lev W be a vector space of dimension m over the real numbers IR. The best 
examples to keep in mind are the space of directed line segments in Euclidean 
3-space, 1E 3 , or the space of all forces which can act at a point. Let Wk denote k 
copies of W, i.e., Wk = W X ... x W (k times). A function ¢J: Wk -+ IR is called 
k-multilinear ifit is linear in each argument; so, 

¢J(a b . .. , ar- 1 , rxu + f3v, ar+1' .•. , ad 
(1) 

= rx¢J(a 1 , ••• , ar- 1 , u, ar+1 , • •• , ak ) + f3¢J(a 1 , • • . , ar-l, v, ar+1 , ••• , ad 

72 
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for all al . ... , ak, U, v E W, all ex,p E ~, and all arguments, r = 1, ... , k. A 
I-multilinear map is a linear functional which we sometimes call a co vector 
or I-form. In ~m the scalar product (a, b) = aTb is 2-multilinear, in ~2n the 
symplectic product {a, b} = aT lb is 2-multilinear, and in ~m the determinant 
is m-multilinear in its m rows (or columns). A k-multilinear function rjJ is skew 
symmetric or alternating if interchanging any two arguments changes its sign; 
so, 

rjJ(a l , ... , a" ... , as' ... , ak) = -rjJ(al , ... , as, ... , ar , ••• , ak) (2) 

for all al , ... , ak E Wand all r, s = 1, ... , k, r "# s. Clearly, rjJ is zero if two of its 
arguments are the same. We shall call an alternating k-multilinear function a 
k-linear form or k-form for short. In ~2n the symplectic product, {a, b} = 

aT lb, and in ~m the determinant are alternating. Let A 0 = ~ and A k = A k(W) 
be the space of all k-forms for k ~ 1. It is easy to verify that Ak is a vector 
space when using the usual definition of addition of functions and multiplica­
tion offunctions by a scalar. 

In 1E 3, as we have seen, a linear functional (a 1-form or an alternating 
I-multilinear function) acting on a vector v can be thought of as the scalar 
project of v in a particular direction. A physical example is work. The work 
done by a uniform force is a linear functional on the displacement vector of a 
particle. (See Figure A.1). 

Physical examples which are 2-forms are torque, angular momentum and 
magnetic field. Given two vectors in 1E 3 , they determine a plane through the 
origin and a parallelogram in that plane. The oriented area of this parallelo­
gram is a 2-form. Two vectors in 1E3 determine (i) a plane, (ii) an orientation 
in the plane, and (iii) a magnitude-the area of the parallelogram. Physical 
quantities that also determine a plane, an orientation, and a magnitude are 
torque, angular momentum, and magnetic field. 

Three vectors in 1E3 determine a parallelepiped, and its oriented volume is a 
3-form. The flux of a uniform vector field, v, crossing a parallelogram deter­
mined by two vectors a and b is a 3-form. 

If 1/1 is a 2-multilinear function, then rjJ defined by rjJ(a, b) = {I/I(a, b) -
I/I(b, a)} /2 is alternating and is sometimes called the alternating part of 
1/1. If 1/1 is already alternating, then rjJ = 1/1. If ex and p are I-forms, then 
rjJ(a, b) = ex(a)p(b) - ex(b)p(a) is a 2-form. This construction can be gener­
alized. Let Pk be the set of all permutations of the k numbers 1,2, ... , k and 
sign: Pk ~ { + 1, -1} the function that assigns + 1 to an even permutation 

Figure A.l. Multilinearfunctions. 
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and -1 to an odd permutation. So if ,p is alternating, ,p(a,,(l)' ... , a,,(k» = 
sign(u),p(al , ... , ak)' IfI/J is a k-mutilinear function, then,p defined by 

,p(al , ... , ak) = k\ L sign(u)I/J(a,,(1)"'" a"(k» (3) 
. aePk 

is alternating. We write ,p = Alt(I/J). If I/J is already alternating, then I/J = 
alt(I/J). If oc E Wk and p E Wr, then define oc /\ p E wk+r by 

(k + r)! 
oc /\ p = kTrlalt(ocp) 

or 

oc /\ p(al , ... , ak+r) = L sign(u)oc(a,,(l)"' " a,,(k»p(a,,(k+l)' ... , a,,(k+r»' (4) 
"EP 

The operator /\: /'1:/ x Ar -+ Ak+r is called the exterior product or wedge 
product. 

Lemma 1. For all k-forms oc, r-forms p, and s-forms y: 

(i) oc /\ (P + y) = oc /\ P + oc /\ y, 
(ii) oc /\ (P /\ y) = (oc /\ P) /\ y, 

(iii) oc /\ P = ( - 1 )kr p /\ OC. 

PROOF. Parts (i) and (ii) are fairly easy and are left as exercises. Let r be the 
permutation r : (1, ... , k, k + 1, ... , k + r) -+ (k + 1, ... , k + r, 1, ... , k), i.e., r 
interchanges the first k entries and the last r entries. By thinking of r as being 
the sequence (1, ... , k, k + 1, ... , k + r) -+ (k + 1, 1, ... , k, k + 2, ... , k + r) 
-+ (k + 1, k + 2, 1, ... , k + 3, ... , k + r) -+ ... -+ (k + 1, ... , k + r, 1, ... , k), it 
is easy to see that signer) = (-1r. Now 

oc /\ p(al , ... , ak+r) = L sign(u)oc(a"(l)"'" a,,(k»p(a,,(k+l)' ... , a,,(k+,» 
"EP 

= L sign(u 0 r)oc(a"Ot(1)' ... , a"Ot(k»p(a"Ot(k+1)' ... , a"Ot(k+r» 
"EP 

= L sign(cr) sign(r)p(a"(l)' ... , a"(kr»oc(a,,(k+l)' ... , a,,(k+r» 
"EP 

• 
Let e l' ... , em be a basis for Wand f l, ... ,fm be the dual basis for the dual 

space W*; so, p(ej) = bj = 0 if i '1= j, and p(ej) = bj = 1 if i = j. This is our first 
introduction to the subscript-superscript convention of differential geometry 
and classical tensor analysis. 

Lemma 2. dim A k = (~). In particular a basis for A k is 

{PI /\ fi 2 /\ ... /\ Pk: 1 ~ i l < i2 < ... < ik ~ m}. 
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PROOF. Let I denote the set {(ii" '" id: i/s are positive integers with 1 ~ 
i1 < ... < ik ~ m} and P = f il 1\ ... I\Pk when i e I. From the definition, 
P2 1\ fi 2 1\ ... 1\ pk(eit, . . . , ejJ equals 1 if i,j e I and i = j and equals 0 other­
wise-in short,fi(e) = bJ. 

Let ¢J be a k-form and define 

t/J = I ¢J(eil , .. . , eiJPI 1\ P2 1\ •.• 1\ fik = I ¢J(e;)F (5) 
ieI ieI 

Let Vi = I a1 ej' i = 1, ... , k, be k arbitrary vectors. By the multilinearity of ¢J 
and t/J, one sees that ¢J(v 1 , •• • , vk ) = t/J(v1 , ••• , vd; so, they agree on all vectors 
and, therefore, are equal. Thus, the set {p: i e I} spans. 

Assume that 
I ail ' " ikfil 1\ P2 1\ . .. 1\ fik = O. 
ieI 

(6) 

For a fixed set of indices Sl " ' " Sk' let rk+1" ' " rm be a complementary set, i.e., 
S 1, ... , Sk> rk +1 , ••• , r m is just a permutation of the integers 1, .. . , m. Take the 
wedge product of (6) withrk+' 1\ • . • 1\ I'm to get 

I ail'" ikfi, 1\ P2 1\ . . . 1\ Pk 1\ rk+1 1\ ... 1\ I'm = O. (7) 
ieI 

The only term in the above sum without a repeated f in the wedge is the one 
with i 1 = S l ' . . . , ik = Sk' and so it is the only nonzero term. Since S l' .. . , Sk' 
rk+1, ... , rm is just a permutation of the integers 1, .. . , m, 1'1 1\ 1'2 1\ ... 1\ 

f'k 1\ rk+1 1\ . . . 1\ I'm = ±f1 1\ ... 1\ fm. Thus, applying the sum in (6) to 
e1, ... , em gives ±aSI ", Sk = O. Thus, the p, i e I, are independent. -

In particular, the dimension of '%;m is 1, and the space has as a basis the 
single elementf1 1\ ... 1\ fm. 

Lemma 3. Let gl, . . . , gr e V*, Then gl, ... , gr are linearly independent if and 
only if gl 1\ ... 1\ gr #- O. 

PROOF. If the g's are dependent, then one of them is a linear combination of 
the others say, gr = I~:~ asgs. Then gl 1\ ••• 1\ gr = I~:~ asg1 1\ • . . 1\ gr-1 1\ gS. 
Each term in this last sum is a wedge product with a repeated entry, and so by 
the alternating property, each term is zero. Therefore, gl 1\ ... 1\ gr = O. Con­
versely, if gl, . .. , gr are linearly independent, then extend them to a basis 
gl, . . . , gr, .. . , gm. By Lemma 2, gl 1\ • • • 1\ gr 1\ .•• 1\ gm #- 0, so gl 1\ . . . 1\ 

gr #- O. _ 

A linear map L : V -+ V induces a linear map Lk: A,k -+ A,k by the formula 
Lk¢J(a 1, ... , ak) = ¢J(La1, ... , Lak)' If M is another linear map of V onto itself, 
then (LM)k = MkLk because (LM)k¢J(a 1, ... , ak) = ¢J(LMa1,··· , LMak) = 
Lk¢J(M a1, ... , M ak) = MkLk¢J(a1, . . . ,ak). Recall that A, 1 = V* is the dual 
space, and L1 = L * is called the dual map. 

If V = IRm (column vectors), then we can identify the dual space V* = A, 1 
with IRm by the conventionf<=>f, where f e V*,fe IRm, and f(x) = IT x. In this 
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case, L is an m x m matrix, and Lx is the usual matrix product. Ldis defined 
by Ld(x) = f(Lx) = fTLx = (LTff x; so, the matrix representation of L1 is 
the transpose of L, i.e., L 1 (f) = L T f. The matrix representation of Lk is dis­
cussed in Flanders (1963). 

By Lemma 1, dim Am = 1, and so every element in Am is a scalar multiple 
of a single element. Lm is a linear map; so, there is a constant t such that 
LJ = tf for all f E Am. Define the determinant of L to be this constant t, and 
denote it by det(L); so, LJ = (det(L))f. 

Lemma 4. Let Land M: V ~ V be linear. Then (i) det(LM) = det(L) det(M), 
(ii) det (1) = 1, where I: V ~ V is the identity map, (iii) L is invertible if and only 
if det(L) =f. 0, and, in this case, det(L -1) = det(Lf1. 

PROOF. Part (i) follows from (LM)m = MmLm which was established above. (ii) 
follows from the definition. Let L be invertible; so, LL -1 = I, and by (i) and 
(ii), det(L) det(r1) = 1; so, det(L) =f. 0 and det(L -1) = 1/det(L). Conversely 
assume L is not invertible so there is an e E V with e =f. 0 and Le = O. Extend 
e to a basis, e1 = e, e2, ... , em' Then for any m-form </J, Lm</J(e1, ... , em) = 
</J(Le 1, ... , Lem) = </J(O, ... , Lem) = O. So det(L) = O. • 

Let V = [Rm, e1, e2' ... , em be the standard basis of [Rm, and let L be the 
matrix L = (L{); so, Lei = L j L{ej. Let t/J be a nonzero element of Am. 

[det(L)]</J(e 1 ,···, em) = Lm</J(e1, .. . , em) 

= </J(Le1' ... , Lem) 

= L· .. L </J(U{ eit' .. . , L{;ej",) 
it j", 

= L'" L Lj{ ... L{;</J(eit, ... , ej",) 
it j", 

_ "L"(1) L"(m)' ()""( ) - L... 1 . .. m sIgn u '{/ e 1, ... , em . 
I1EP 

In the second to last sum above the only nonzero terms are the ones with 
distinct e's. Thus, the sum over the nonzero terms is the sum over all permu­
tations of the e's. From the above, 

det(L) = L Li(1) ... V;,(m) sign(u), (8) 
I1EP 

which is the classical formula for the determinant of a matrix. 

B. The Symplectic Form 

In this section, let (V, w) be a symplectic space of dimension 2n. Recall that in 
Chapter 2 a symplectic form, w (on a vector space V), was defined to be a 
nondegenerate, alternating bilinear form on V, and the pair (V, w) was called 
a symplectic space. 
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Theorem 1. There exists a basis f 1, .•• ,f 2n for W * such that 

n 

OJ = L P 1\ r+;· (1) 
;=1 

PROOF. By Theorem II.B.1 and its corollary, there is a symplectic basis e1 , ••• , 

e2n so that the matrix of the form OJ is the standard J = (J;) or Jij = OJ(e;, e). 
Let f 1, ••• , f2n E W* be the basis dual to the symplectic basis e1 , ••• , e2n . The 
2-form given on the right in (1) above agrees with OJ on the basis e1 ,···, e2n . 

• 
The basis fl, ... , pn is a symplectic basis for the dual space W*. By the 

above, OJn = OJ 1\ OJ 1\ ... 1\ OJ (n times) = ± n!f 1 1\ f2 1\ ... 1\ f 2n, where the 
sign is plus if n is even and minus if n is odd. Thus, OJn is a nonzero element of 
A 2n. Since a symplectic linear transformation preserves OJ, it preserves OJn, 
and, therefore, its determinant is + 1. 

Corollary 2. The determinant of a symplectic linear transformation (or matrix) 
is + 1. 

Actually, using the above arguments and the full statement of Theorem 
II.B.1, we can prove that a 2-form v on a linear space of dimension 2n is 
nondegenerate if and only if vn is nonzero. 

C. Tangent Vectors and Cotangent Vectors 

Let I[j) be an open set in an m-dimensional vector space W over IR, e 1, ... , em a 
basis for W, and f 1, .•. ,fm the dual basis. Let x = (Xl, ... , xm) be coordinates 
in W relative to e 1, ••• , em and also coordinates in V* relative to the dual basis. 
Let 1= (-1,1) c IRI, and let t be a coordinate in 1R1. Think of Was IRm-we 
use the more general notation because it is helpful to keep a space and its dual 
distinct. IRm and its dual are often identified with each other, which can lead to 
confusion. 

Much of analysis reduces to studying maps from an interval in 1R1 into I[j) 
(curves, solutions of differential equations, etc.) and the study of maps from I[j) 
into 1R1 (differentials offunctions, potentials, etc.). The linear analysis of these 
two types of maps is, therefore, fundamental. The linearization of a curve at a 
point gives rise to a tangent vector, and the linearization of a function at a 
point gives rise to a cotangent vector. These are the concepts of this section. 

A tangent vector to I[j) at p is to be thought of as the tangent vector to a 
curve through p. Let g, g': I --+ I[j) C W be smooth curves with g(O) = g'(O) = p. 
We say g and g' are equivalent at p if Dg(O) = Dg'(O). Since Dg(O) E 2(1R, W), 
we can identify 2(1R, W) with W by letting Dg(O)(1) = dg(O)/dt E W. Being 
equivalent at p is an equivalence relation on curves, and an equivalence class 
(a maximal set of curves equivalent to each other) is defined to be a tangent 
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vector or a vector to 0 at p. That is, a tangent vector, {g}, is the set of all curves 
equivalent to g at p, i.e., {g} = {g': I ~ 0: g'(O) = p and dg(O)/dt = dg'(O)/dt}. 
In the x coordinates, the derivative is dg(O)/dt = (dgl(O)/dt, ... , dgm(O)/dt) = 
(yl, . .. , ym); so, (yl, . . . , ym) are coordinates for the tangent vector {g} relative 
to the x coordinates. The set of all tangent vectors to 0 at p is called the 
tangent space to 0 at p and is denoted by T"O. This space can be made into a 
vector space by using the coordinate representation given above. The curve 
~i: t ~ P + tei has d~i(O)/dt = ei which is (0, ... ,0, 1,0, . .. ,0)-1 in the ith 
position-in the x coordinates. The tangent vector consisting of all curves 
equivalent to ~i at P is denoted by %xi = %xi. %x!, ... , %xm form a 
basis for T"O. A typical vector vp E T"O can be written vp = yl(O/OX l ) + ... + 
ym(%xm). In classical tensor notation, one writes vp = yi(OjOXi); it was under­
stood that a repeated index, one as a superscript and one as a subscript, was 
to be summed over from 1 to m. This was called the Einstein or summation 
convention. 

A cotangent vector (or covector for short) to 0 at p is to be thought 
of as the differential of a function at p. Let h, h': 0 ~ jRl be two smooth 
functions. We say hand h' are equivalent at p if Dh(p) = Dh'(p). [Dh(p) 
is the same as the differential dh(p).] This is an equivalence relation. A 
cotangent vector or a covector to 0 at p is by definition an equivalence 
class of functions. That is, a co vector {h} is the set offunctions equivalent to 
hat p, i.e., {h} = {h': 0 ~ jRl: Dh'(p) = Dh(p)}. In the x coordinate, Dh(p) = 
(oh(p)/ox!, ... ,oh(p)/oxm) = (tTl' ... ' tTm); so, (tTl' ... ' tTm) are coordinates for the 
covector {h}. The set of all co vectors at p is called the cotangent space to 0 at 
p and is denoted by T,,* O. This space can be made into a vector space by using 
the coordinate representation given above. The function Xi: 0 ~ jRl has a 
cotangent vector at p, which is (0, . .. , 1, .. . ,0)-1 in the ith position-in the 
x coordinates. The co vector consisting of all functions equivalent to Xi at p is 
denoted by dXi. dXl, ... , dxm forms a basis for T,,*O. A typical covector 
vP E T,,*O can be written tTl dx l + ... + tTm dxm or tTi dx i using the Einstein 
convection. 

In the above two paragraphs there is clearly a parallel construction being 
carried out. In fact, they are dual constructions. Let g and h be as above; so, 
hog: I c jRl ~ jRl. By the chain rule, D(h 0 g)(0)(1) = Dh(p) 0 Dg(0)(1) which 
is a real number; S9 Dh(p) is a linear functional on tangents to curves. In 
coordinates, if 

and 

then 
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dg 1 ah dg m ah 
vP(vp) = D(h 0 g)(O) = -d (O)-a 1 (p) + ... + -d (O)-a (p) 

txt xm 

= y1111 + ... + ym11m (= yi11i in Einstein notation). 

Thus, 7;,0 and 7;,* 0 are dual spaces. 
At several points in the above discussion the corrdinates Xl, ... , Xm were 

used. The natural question to ask is to what extent do these definitions de­
pend of the choice of coordinates. Let i, ... , ym be another coordinate system 
which may not be linearly related to the x's. Assume that we can change 
coordinates by y = fjJ(x) and back by x = ifJ(y), where fjJ and ifJ are smooth 
functions with nonvanishing Jacobians, DfjJ and DifJ. In classical notation, one 
writes Xi = xi(y),yj = yj(x), and DfjJ = {al/axi},DifJ = {axi/al}. 

Let g: n -+ 0 be a curve. In x coordinates let g(t) = (a 1(t), ... , am(t)) and in 
y coordinates let g(t) = (b 1(t), ... , bm(t)). The x coordinate for the tangent 
vector vp = {g} is a = (da 1(0)/dt, ... , dam(O)/dt) = (0(1, ... , O(m), and the y coor-
dinate for vp = {g} is b = (db 1(0)/dt, ... , dbm(O)/dt) = (13 1, ... , 13m). Recall that 
we write vectors in the text as row vectors, but they are to be considered 
as column vectors. Thus a and b are column vectors. By the change of vari­
ables, a(t) = ifJ(b(t»; so, differentiating gives a = DifJ(p)b. In classical notation, 
ai(t) = xi(b(t»; so, dai/dt = Li(aXi/ayj)(dbj/dt) or 

. maxi . ( axi '. .. .) 
0( I = L -. f31 = -a . f31 m Emstem notatIon . 

j=l ayl yl 
(1) 

This formula tells how the coordinates of a tangent vector are transformed. 
In classical tensor jargon, this is the transformation rule for a contravariant 
vector. 

Let h: 0 -+ 1R1 be a smooth function. Let h be a(x) in x coordinates 
and b(y) in y coordinates. The cotangent vector vP = {h} in x coordinates 
is a = (aa(p)/ox1, ... , oa(p)/oxm) = (0(1' ... , O(m) and in y coordinates it is 
b = (ab(p)/ox1, ... , ob(p)/axm) = (131, ... , 13m). By the change of variables 
a(x) = b(fjJ(x)); so, differentiating gives a = DfjJ(pfb. In classical notation 
a(x) = b(y(x»; so, O(i = aa/axi = L(ob/ai)(oyj/oxi) = Ljpioyi/oXi) or 

~ Oyip ( oi p ' E" .) 
O(i = ~ ~ j = -0 i j m mstem notatIon . 

l=l vX X 
(2) 

This formula shows how the coordinates of a cotangent vector are trans­
formed. In classical tensor jargon this is the transformation rule for a co­
variant vector. 

D. Vector Fields and Differential Forms 
Continue the notation of the Section C. A tangent (cotangent) vector field on 
o is a smooth choice of a tangent (cotangent) vector at each point of O. That 
is, in coordinates, a tangent vector field, V, can be written in the form 
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~. iJ ( . iJ) V = V(x) = .L. v'(x)~ = v'(x)~ , 
,=1 uX uX 

(1) 

where the Vi: I[} -+ [Ri, i = 1, .. . , m, are smooth functions, and a cotangent 
vector field, U, can be written in the form 

m 

U = U(x) = L ui(x) dx i (= ui(x) dx i), (2) 
i=1 

where Ui : I[} -+ [Rl, i = 1, ... , m, are smooth functions. 
A tangent vector field V gives a tangent vector V(p) E 7;,1[} which was de­

fined as the tangent vector of some curve. A different curve might be used for 
each point of I[}; so, a natural question to ask is, Does there exist a curve 
g: ~ c [R -+ I[} such that dg(t)/dt = V(g(t))? In coordinates this is dgi(t) = 
vi(g(t)). This is the same as asking for a solution of the differential equation 
x = V(x). Thus, a tangent vector field is an ordinary differential equation. In 
classical tensor jargon it is also called a contravariant vector field. 

A cotangent vector field U gives a cotangent vector U(p) E 7;,*1[} which was 
defined as the differential of a function at p. A different function might be used 
for each point of I[}; so, a natural question to ask is, Does there exist a func­
tion h: I[} -+ [Rl such that dh(x) = U(x)? The answer to this question is no, in 
general. Certain integrability conditions discussed below must be satisfied 
before a cotangent vector field is a differential of a function. If this cotangent 
vector field is a field of work elements, i.e., a field of forces, then if dh = - U, 
the U would be a potential and the field would be conservative. But, as we 
shall see, not all forces are conservative. 

Let PEl[}, and denote by A:I[} the space of k-forms on the tangent space 
7;,1[}. A k-difJerential form or k-form on I[} is a smooth choice of a k-linear form 
in A:I[} for all PEl[}. That is, a k-form, F, can be written 

F= (3) 

where the functions h, ... ik : I[} -+ [R are smooth. In the last expression in (3), I 
denotes the set {(ii, ... , ik ): i/s are positive integers with 1 ~ il < ... < ik ~ m}, 
and dx i = dx i, /\ .. . /\ dX ik. Since A~I[} = [R, O-forms are simply smooth 
functions, and since A: I[} = 7;,* I[}, I-forms are covector fields. 

In classical analysis, everything was a vector. In [R3, I-forms are often 
identified with (or confused with) vector fields. For example, the differential 
of a function, df = fx dx + fy dy + fz dz, is treated as a vector field by writing 
Vf = grad f = fxi + fJ + fzk. That is why one calls a force a vector and not a 
co vector even when it is the gradient of a potential function. 

Also, since the dimension of the space of 2-linear forms in a 3-dimensional 
space is (~) = 3 classically 2-forms in [R3 were identified with (or confused 
with) vector fields. Usually one identifies aj /\ k + bk /\ i + ci /\ j with 
ai + bj + ck. Think about the cross product of vectors. This is why angular 
momentum and magnetic fields are sometimes misrepresented as vectors. 
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Given a O-form F, i.e., a function, dF is a l-form. The natural generalization 
is the exterior derivative operator d which converts a k-form F as given in (3) 
into a (k + l)-form dF by the formula 

~ " 0;; i (x).. . ~" . dF = 1.- L... , .. . k dx) /\ dx" /\ .. . /\ dX'k = 1.- 1.- d;;(x) /\ dx'. 
j=l l ,; i, ... <ik';m oXj j=l I 

(4) 

Lemma 1. Let F and G be smooth forms defined on an open set O. Then 

(i) d(F + G) = dF + dG, 
(ii) d(F /\ G) = dF /\ G + (_l)deg(F) F /\ dG, 

(iii) d(dF) = 0 for all F, 
(iv) if F is a function, then dF agrees with the standard definition of the differ­

ential of F, 
(v) the operator d is uniquely defined by the properties given above. 

PROOF. Part (iv) is obvious, and parts (i), (ii), and (v) are left as exercises. Part 
(iii) will be proved here. Let i be a multiple index, and so the summations on i 
range over 1. Let F = Ii;; dXi. Then 

n 

dF = I I (o/;/ox) dxj /\ dx i, 
i j=l 

= L I ( 02
;; - 02

;; ) dx k /\ dxj /\ dx i = O. 
i j<k oxjoXk oxkoxj 

The last sum is zero by the equality of mixed partial derivatives. • 
Remark. The first four can be used as a coordinate free definition of the 
operator d. Formula (4) shows its existence, and part (v) shows its uniqueness. 

Let (x, y, z) be the standard coordinates in 1R3 and i, j, k the usual unit 
vectors. If F(x, y, z) is a function, then 

of of of 
dF = - dx + - dy + - dz 

ox oy OZ 

is the usual differential. The classical approach is to make the differential a 
vector field by defining 

of of of 
VF = grad F = ox i + oyj + OZ k. 

Next consider a l-form F = a(x, y, z) dx + b(x, y, z) dy + c(x, y, z) dz, 
then 
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( oc Ob) (oa OC) (Ob oa) dF = - - - dy 1\ dz + - - - dz 1\ dx + - - - dx 1\ dy. 
~ & & ~ ~ ~ 

The classical approach is to make this F a vector field F = ai +bj + ck and to 
define a new vector field by 

V x F = curl F = (oc _ Ob)i + (oa _ oC)j + (Ob _ oa)k. 
oy oz oz ax ax oy 

Now let F be a 2-form so F = a dy 1\ dz + b dz 1\ dx + c dx 1\ dyand 

( oa ob oc) 
dF = ax + oy + ax dx 1\ dy 1\ dz. 

The classical approach would have considered F as a vector field F = 
ai + bj + ck and defined a scalar function 

. (oa ob oc) 
V' F = dlV F = ax + oy + ax . 

The statement that d(dF) = 0, or d 2 = 0, contains the two classical statement 
curl (grad F) = 0 and div(curl F) = o. 

A k-form, F, is closed if dF = O. A k-form, F, is exact if there is a (k - 1)­
form G such that F = dG. Part (iii) of Lemma 1 says that an exact form is 
closed. A partial converse is also true as we shall see. 

Theorem 2 (Poincare's Lemma). Let 10 be a ball in IRm and F a k-form such that 
dF = O. Then there is a (k - I)-form f on 10 such that F = df 

Remark. This is a partial converse to d(df) = O. Note that the domain of 
definition, 10, of the form F is required to be a ball. The theorem says that in a 
ball, a closed form is exact. The I-form, F = (x dy - Y dx)!(x2 + y2), satisfies 
dF = 0, but there does not exist a function, J, defined on all of 1R2 \ (0, 0) such 
that df = F. The form F is the differential of the polar angle () = arctan(y/x) 
which is not a single-valued function defined on all of 1R2 \ (0, 0). However, it 
can be made single valued in a neighborhood of any point in 1R2 \ (0, 0), e.g., 
for any point not on the negative x axis, one can take -n < () < n, and for 
points on the negative x axis, one can take 0 < () < 2n. Since F locally defines 
a function, we have dF = O. 

Poincare's lemma contains classical theorems: (i) if F is a vector field de­
fined on a ball in 1R3 with curl (F) = 0, then there is a smooth function f such 
that F = grad (f), and (ii) if F is a smooth vector field such that div(F) = 0, 
then there is a smooth vector field f such that F = curl (f). 

PROOF. The full statement of the Poincare Lemma will not be needed here­
only the case when k = 1 will be used in subsequent chapters. Therefore, only 
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that case will be proved here. The proof of the full theorem can be found in 
Flanders (1963), or Spivak (1965), or Abraham and Marsden (1978). 

Let F = Li/;(X) dXi be a given I-form. 

dF = L L (88/;.) dxi /\ dx i = L (88/;. - 88jji) dxi /\ dXi. 
i j Xl i<i Xl X 

So dF = 0 if and only if 8.t;;8xi = 8jj/8x i. Define g(x) = Sb Li /;(tx)x i dt. So 

Thus,dg = F. 

8;;~) = f {f e~~;))txi + jj(tX)} dt 

= f {f (81~~)) tx i + jj(tX)} dt 

= Ll f d~;tx) + jj(tX)} dt 

= lj}(tx)IA = jj(x). 

• 
Note that the function 9 defined in the proof given above is a line integral 

and the condition dF = 0 is the condition that a line integral be independent 
of path. 

Corollary 3. Let F = (F 1 , ... , Fm) be a vector field defined in a ball I[) in IRm. 
Then a necessary and sufficient condition for F to be the gradient of a function 
f: I[) -4 IR is that the Jacobian matrix (8Fi/8xi ) be symmetric. 

PROOF. First, to see that it is a corollary, consider F as the differential form 
F = Fl dx 1 + .. . + Fm dxm. Then by the above, 

( 8Fi 8Fi) . . 
dF = L -8 . - -8 i dx' /\ dXl. 

i<i Xl X 

So dF = 0 if and only if the Jacobian (8Fi/8xi ) is symmetric. Corollary 3 
follows from Lemma 1 (iii) and Theorem 2. • 

E. Changing Coordinates and Darboux's Theorem 

To change coordinates for vector fields or differential forms, simply trans­
form the coordinates as was done in Section C using the Jacobian of the 
transformation. In particular, let X and y be coordinates on I[), and assume 
that the change of coordinates is given by X = /fo(y) and the change back 
by y = ljJ(x), or in classical notation X = x(y) and y = y(x). Assume the 
Jacobians, D/fo = {8yi/8xi} and DIjJ = {8x i/8yi}, are nonsingular. 
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If a vector field V is given by 

m . 0 m. 0 
V = L (X'(x)~ = L fJ'(x)~, 

i=l uX i=l uy 

and we set a(x) = ((Xl (x), ... , (Xm(x)), b(y) = (fJ 1(y), ... , pm(y», then 

a = Dt/I(b) or 
m ~ i 

. "ux R' (X' = 1... _'1". 
j=l oy' 

If a differential1-form is given by 
m m 

F = L (Xi(X) dx i = L fJi(y) dyi, 
i=l i=l 

and we set a(x) = ((Xl (x), ... , (Xm(x» and b(y) = (fJ1 (y), ... , fJm(y», then 

m oyi 
a = bD¢J or (Xi = L ~fJj' 

j=l uX 

If a differentiable 2-form F is given by 
m m m m 

(1) 

(2) 

(3) 

(4) 

F = L L (Xij(x) dx i /\ dx j = L L fJij(y) dyi /\ dyi, (5) 
i=l j=l i=l j=l 

and we set A = {(Xij}, B = {fJij} (A and B are skew-symmetric matrices), then 

m m oy' oy' 
A = D¢JTBD¢J or (Xij = L L ~~fJ.,. 

.=1 ,=1 ux uX 
(6) 

Let 0 be an open set in 1R2". A 2-form F on 0 is nondegenerate if pn = 

F /\ F /\ ... /\ F (n times) is nonzero. As we saw above, the coefficients in 
a coordinate system of a 2-form can be represented as a skew-symmetric 
matrix. As we saw in Section B, a linear 2-form is nondegenerate if and only 
if the coefficient matrix is nonsingular. Thus, the 2-form F in (5) is non­
degenerate if and only if A (or B) is nonsingular on all of O. A symplectic 
structure or symplectic form on 0 is a closed nondegenerate 2-form. The 
standard symplectic structure in 1R2" is 

" " o = L dz i /\ dz j = L dqi /\ dpi, (7) 
i=l i=l 

where z = (z1, ... , Z2") = (q1, ... , q", p1, ... , p") are coordinates in 1R2". The.co­
efficient matrix of 0 is just J. By Corollary II.B.2, there is a linear change of 
coordinates so that the coefficient matrix of a nondegenerate 2-form is J at 
one point. A much more powerful result which will not be needed in the 
subsequent chapters is the following. 

Theorem I (Darboux's Theorem). If F is a symplectic structure on an open ball 
in 1R2", then there exists a coordinate system z such that F in this coordinate 
system is the standard symplectic structure O. 
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PROOF. See Abraham and Marsden (1978). • 
A coordinate system for which a symplectic structure is n is called sym­

plectic coordinate (for this form). A symplectic transformation, ¢, is one which 
preserves the form n or preserves the coefficient matrix J, i.e., D¢ T J D¢ = J. 

F. Integration and Stokes' Theorem 

We shall not need any result from integration theory on manifolds, and so 
we will not develop the theory here. To tease the reader into learning more 
about this subject, consider a weak form of the general Stokes' theorem. It will 
illustrate the power and beauty of differential forms. Let M be an n-dimen­
sional oriented manifold with an (n - 1)-dimensional boundary oM. Let the 
boundary oM be oriented consistently with M. Let w be an (n - 1)-form on 
M; so, dw is an n-form on M. One can define the integral of an n-form on an 
n-manifold in a logical way, and then one has: 

f w = f dw (Stokes'Theorem). 
oM M 

This one general theorem contains Green's theorem, the divergence theo­
rem, and the classical Stokes' theorem of classical vector calculus. See Spivak 
(1965) for a complete discussion of the general Stokes' theorem and all its 
ramifications. 

Problems 

1. Show that iff 1, . .. ,fk are I-forms, then 

3. Let F and G be 0-, 1-, or 2-forms in [R3. Verify Lemma D.l in this case. 

4. 8. Let F be a 1-form in [R3 such that dF = O. Verify that if F = a dx + b dy + e dz, 
then oa/oy = oa/oz, ob/oy = ob/ox,oe/ox = oe/oy. Also verify that if 

f(x , y, z) = f (a(tx, ty, tz)x + b(tx, ty, tz)y + e(tx, ty, tz)z) dt, 

then F = df. 
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b. Let F be a 2-form in [R3 such that dF = O. Verify that if F = a dy A dz + 
b dz A dx + c dx A dy, then aa/ax + ab/ay + ac/az = O. Also verify that F = df 
where 

f = (f (a(tx, ty, tz)t dt}y dz - z dy) 

+ (f (b(tx, ty, tz)t dt) (z dx - x dz) 

+ (f (c(tx, ty, tz)t dt)(X dy - y dx). 

5. Prove that the A operator is bilinear and associative. (See Lemma A.l.) 

6. a. Show that the operator d which operates on smooth forms is linear, i.e., 
d(F + G) = dF + dG. 

b. Show that d satisfies a product rule, i.e., d(F A G) = dF A G + ( - I )deg(F) F A dG. 
c. Show that if fJ is a mapping which takes smooth k-forms to (k + I)-forms and 

satisfies (a) fJ(F + G) = fJF + fJG, (b) fJ(F A G) = fJF A G + ( -1 )def(F) F A fJG, (c) 
fJ(fJF) = 0 for all F, and (d) if F is a function, then fJF agrees the standard defini­
tion of the differential of F, then (j is the same as the operator d given by the 
Formula (DA). 

7. Let Q(q, p) and P(q, p) be smooth functions defined on an open set in [R2. Consider 
the four differential forms Q1 = PdQ - pdq, Q2 = PdQ + q dp, Q3 = Q dP + 
pdq, Q 4 = Q dP - q dp. 
a. Show that Qj is exact if and only ifQj is exact for j,j = 1,2,3,4. 
b. Show that Q j is closed if and only if Qj is closed for i,j = 1,2, 3,4. 
c. Show that if Q j is exact (or closed), then so is e = (Q - q)d(P + p) -

(P - p)d(Q + q). [Hint: d(qp) = q dp + pdq is exact.] 



CHAPTER IV 

Symplectic Transformations 
and Coordinates 

A. Symplectic Transformations 

The form of Hamilton's equations is very special, and the special form is not 
preserved by an arbitrary change of variables; so, the change of variables that 
preserve that special form are very important in the theory. The classical 
subject of celestial mechanics is replete with special coordinate systems which 
bear the names of some of the greatest mathematicians. We shall consider 
some of them in this chapter. 

1. General Definition 

Let 3: 0 --+ 1R2n: (t, z) --+ , = 3(t, z) be a smooth function where 0 is some 
open set in 1R2n+1; 3 is called a symplectic function (or transformation or map, 
etc.) if the Jacobian of 3 with respect to z, D2 3(t, z) = 03/oz, is a symplectic 
matrix at every point of(t, z) E o. Sometimes we will use the notation D2 3 for 
the Jacobian of 3, and sometimes the notation 03/oz will be used. In the first 
case we think of the Jacobian D2 3 as a map from 0 into the space Y(1R2n, 1R2n) 
oflinear operators from 1R2n to 1R2n, and in the second case, we think of 03/oz 
as the matrix 

[

03 1 

03 = OZl 

OZ 032n 

OZl 

Thus, 3 is symplectic if and only if 

87 
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a~T a~ 
.=. J .=. = J. 
az az 

(2) 

Since the product of two symplectic matrices is symplectic, the composition of 
two symplectic maps is symplectic by the chain rule of differentiation. Since 
a symplectic matrix is invertible, and its inverse is symplectic, the inverse 
function theorem implies that a symplectic map is locally invertible and its 
inverse, Z(t, 0, is symplectic where defined. Since the determinant of a sym­
plectic matrix is + 1, the transformation is orientation and volume preserving. 

If the transformation z -+ , = S(t, z) is considered a change of variables, 
then one calls' symplectic or canonical coordinates. Consider a nonlinear 
Hamiltonian system 

i = JVzH(t, z) (3) 

where H is defined and smooth in some open set 0 C 1R2n+1. Make a sym­
plectic change of variables from z to , by 

, = S(t, z) with inverse z = Z(t, 0 (4) 

[so, == S(t, Z(t, m, z == Z(t, S(t, z))]. Let 0 E 1R2n+1 be the image of 0 under 
this transformation. Then the Hamiltonian H(t, z) transforms to the function 
fl(t, 0 = H(t, Z(t, m. Later we will abuse notation and write H(t, 0 instead 
of introducing a new symbol, but now we will be careful to distinguish Hand 
fi. Equation (3) transforms to 

. as as as as (aH )T ,= Yt(t, z) + az (t, z)i = Yt(t, z) + az (t, z)J Tz(t, z) 

as as (afl as )T 
= Yt(t, z) + az (t, z)J 8[(t, 0 az (t, z) (5) 

as (afl)T as I ~ = ~(t, z) + J v = ~(t, z) + JV{H(t, ,). 
vt v., vt z=Z(r,{) 

The notation in the second to last term in (5) means that you are to take the 
partial derivative with respect to t first and then substitute in z = Z(t, n If the 
change of coordinates, S, is independent of t, then the term as/at is missing in 
(5); so, the equation in the new coordinates is simply, = Jv{fl, a Hamil­
tonian system with Hamiltonian fl. In this case one simply substitutes the 
change of variables into the Hamiltonian H to get the new Hamiltonian fl. In 
this case the Hamiltonian character of the equations is preserved. Actually the 
system (5) is still Hamiltonian even if S depends on t, provided 0 is a nice set 
as we shall see in the next paragraph. 

For each fixed t, let the set Or = g: (t, 0 EO} be a ball in 1R2n. We will 
show that there is a smooth function R: 0 -+ 1R1 such that 

as I ~(t, z) = JV{R(t, O. 
vt z=Z(r,{) 

(6) 
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R is called the remainder function . Therefore, in the new coordinates, Equa­
tion (5) is Hamiltonian with Hamiltonian R(t, () + H(t, (). [In case Or is not a 
ball, the above holds locally, i.e., at each point of p E 0 there is a function R 
defined in a neighborhood of p such that (6) holds in the neighborhood, but R 
may not be globally defined as a single-valued function on all of 0.] By 
Corollary III.D.3, we must show that J times the Jacobian of the left-hand 
side of(6) is symmetric. That is, we must show 

r = rT , (7) 
where 

02g I oZ 
r(t, () = J :l :l (t, z) :lr (t, (). 

vtvZ z=Z(t , ~) v., 
Differentiating (2) with respect to t gives 

02gT og og 02g 
otoz (t, z)J oz (t, z) + oz (t, z)J otoz (t, z) = 0, 

og-T 02gT 02g og-1 
---az (t, z) otoz (t, z)J + J otoz (t, z)--az(t, z) = O. 

(8) 

Substituting z = Z(t, 0 into (8) and noting that (og-1 joZ)(t, Z(t, m = 
oZ(t, O/o( yields - rT + r = O. Thus we have shown: 

Theorem 1. A symplectic change of variables takes a Hamiltonian system of 
equations into a Hamiltonian system. 

A partial converse is also true. If a change of variables preserves the Hamil­
tonian form of all Hamiltonian equations, then it is symplectic. We will not 
need this result and leave it as an exercise. 

2. The Variational Equations 

Let t/J(t, r, () be the general solution of(3); so, t/J(r, r, 0 = "and let X(t, r, () be 
the Jacobian of t/J with respect to (, i.e., X(t, r, 0 = ot/J(t, r, 0/0(. X(t, r, 0 is 
called the monodromy matrix. Substituting t/J into (3) and differentiating with 
respect to ( gives 

x = JS(t, r, OX, 
02H 

S(t, r, () = ox2 (t, t/J(t, r, m. (9) 

Equation (9) is called the variational equation and is a linear Hamiltonian 
system. Differentiating the identity t/J(r, r, 0 = ( with respect to ( gives 
X(r, r, 0 = I, the 2n x 2n identity matrix; so, X is a fundamental matrix solu­
tion of the variational equation. By Theorem II.A.3, X is symplectic. 

Theorem 2. Let t/J(t, r, 0 be the general solution of the Hamiltonian system 
(3) . Then for fixed t and r, the map ( ~ t/J(t, r, () is symplectic. Conversely, if 
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</1(t, r, 0 is the general solution of a differential equation i = f(t, z), where f is 
defined and smooth on I x 0, I an interval in IR and 0 a ball in 1R2n, and the map 
C ~ </1(t, r, 0 is always symplectic, then the differential equations i = f(t, z) is 
Hamiltonian. 

PROOF. The direct statement was proved above; now consider the converse. 
Let </1(t, r, C) be the general solution of i = f(t, z), and let X(t, r, 0 be the 
Jacobian of </1. Since X is symplectic, XX-1 is Hamiltonian, and -JXX-1 

is symmetric. But X(t, r, 0 = (iJfliJz)(t, </1(t, r, mX; so, -JiJf/iJz is symmetric. 
Since 0 is a ball, - Jf is a gradient of a function H by Corollary 1II.O.3. Thus, 
f(t, z) = JVH(t, z). • 

This theorem says that the flow defined by an autonomous Hamiltonian 
system is volume preserving. So, in particular, there cannot be an asymptoti­
cally stable equilibrium point, periodic solution, etc. This makes the stability 
theory of Hamiltonian systems difficult and interesting. In general, it is dif­
ficult to construct a symplectic transformation with nice properties using 
definition (2). The theorem above gives one method of assuring that a trans­
formation is symplectic, and this is the basis of the method of Lie transforms 
explored in Chapter 6. 

3. Poisson Brackets 

Let F(t, z) and G(t, z) be smooth, and recall the definition of the Poisson 
bracket {F, G}At, z) = VzF(t, Z)T lVzG(t, z). Here we subscript the bracket to 
remind us it is a coordinate-dependent definition. Let F(t, 0 = F(t, Z(t, m 
and G(t, C) = G(t, Z(t, m where Z is symplectic; so, 

{F, Gh(t, C) = V,F(t, Cf JV,G(t, 0 

( iJZT )T iJZT 
= ar(t, OVzF(t, Z(t, m J ar(t, OVzF(t, Z(t, m 

TiJZ iJZT 
= VzF(t, Z(t, m iJC (t, OJ ar(t, C)VzF(t, Z(t, m (10) 

= VJ(t, Z(t, Of JVzF(t, Z(t, m 
= {F, G}At, Z(t, m. 

Equation (10) shows that the Poisson bracket operation is invariant under 
symplectic changes of variables. That is, you can commute the operations of 
computing Poisson brackets and making a symplectic change of variables. 

Theorem 3. A symplectic change of coordinates preserves Poisson brackets. 
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8 is symplectic if its Jacobian is a symplectic matrix or it satisfies (2). But by 
Theorem H.A.2, 8 is sympectic if and only if the transpose of the Jacobian of 8 
is symplectic, i.e., 

08 08T 

- J - =J. oz oz (11) 

Let (i = 8 i(t, z) be the ith component of the transformation. In components, 
(11) says 

(12) 

where J = (JiJ 
If the transformation (4) is given in the classical notation 

Qi = Qi(q, p), Pi = Pi(q, p), (13) 

then (12) becomes 

{~, lj} = 0, (14) 

where bij is the Kronecker delta. 

Theorem 4. The transformation (4) is symplectic if and only if (12) holds, or the 
transformation (13) is symplectic if and only if (14) holds. 

B. Applications 

1. The N -body Problem in Rotating Coordinates 

Let 

( K) ( COS wt sin wt) 
exp w t = . 

-sm wt cos wt 
(1) 

be 2 x 2 matrices, and consider the planar N-body problem; so, the vectors qi' 
Pi in Section I.e are 2-vectors. Introduce a set of coordinates which uniformly 
rotate with frequency w by 

Ui = exp(wKt)qi, Vi = exp(wKt)Pi' (2) 

Since K is skew symmetric, exp(wKt) is orthogonal for all t; so, the change of 
variables is symplectic. The remainder function is - L wut Kvi , and so the 
Hamiltonian of the N -body problem in rotating coordinates is 

H = f IIvII2 - f WUrKVi - L mimj (3) 
i=1 2mi i=1 1 s.i,js.N IIUi - Uj II 
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The remainder term give rise to extra terms in the equations of motion which 
are sometimes called Coriolis forces. 

2. Jacobi Coordinates 

Jacobi coordinates are ideal coordinates for many investigations in the N­
body problem. First, one coordinate locates the center of mass of the system, 
and so it can be set to zero and ignored in subsequent considerations. One of 
the other coordinates is the vector from one particle to another, and this is 
useful when studying the case when two particles are close together. Let qi' 
Pi E 1R3 for i = 1, ... , N be the coordinates of the N-body problem as discussed 
in Section I.C. Define a sequence of transformations starting with 91 = ql and 
J1.1 = m1 and proceed inductively by 

{

Uk = qk - 9k-l' 

1',.: 9k = (11J1.k)(mkqk + J1.k-19k-d, 

J1.k = J1.k-l + mk 

(4) 

for k = 2, ... , N . J1.k is the total mass, and 9k is the position vector of the center 
of mass of the system of particles with indices 1, 2, ... , k. The vector Uk is the 
position of the kth particle relative to the center of mass of the previous k - 1 
particles. See Figure B.t. Consider 1',. as a change of coordinates from 9k-l' 

U2, ... , Uk-I' qk' ... , qN to 9k' U2' ... , Uk' qk+l' ... , qN or simply from 9k-l' qk to 
9k' qk+l' The inverse of 1',. is 

1',.-1: {qk = (J1.k-t! J1.k)Uk + gk' 
gk-l = (-mklJ1.k)Uk + gk ' 

(5) 

This is a linear transformation on the q variables only, i.e., on a Lagrangian 
subspace; so, Lemma II.B.14 forces the transformation on the P variables in 
order to have a symplectic transformation. To make the symplectic comple-

Figure B.l. Jacobi coordinate for the 3-body problem. 
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tion of T-1, define G1 = P1 and 

Qk: {Vk = (Jlk-dJlk)Pk - (mt!Jlk)Gk-1' 
Gk = Pk + Gk- 1, 

Q-1. {Pk = Vk + (mkIJlk)Gk, 
k . Gk- 1 = -Vk + (Jlk-dJlk)Gk. 
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(6) 

(7) 

Here Gk is the total linear momentum of the system of particles with indices 
1,2, ... , k. 

If we denote the coefficient matrix in (4) by A, then the coefficient matrices 
in (5), (6), and (7) are A-I, A -T, and AT, respectively; so, the pair 1k, Qk is a 
symplectic change of variables. Thus, the composition of all these changes is 
symplectic, and the total set gN, U2, ... , UN' GN, V2, ... , VN forms a symplectic 
coordinate system known as the Jacobi coordinates. 

These variables satisfy the identities 

(8) 

and 

II Gk - 1 112 + IIpkll2 = IIGkll 2 + IIvkl12 
2Jlk-1 2mk 2Jlk 2Mk ' 

(9) 

where Mk = mkJlk-dJlk. Thus, kinetic energy is 

KE = f IIpkl1 2 = IIGN I12 + f IIvkl12 
k=1 2mk 2JlN k=2 2Mk ' 

(10) 

and total angular momentum is 

N N 

A = L qk X Pk = gN X GN + L Uk X Vk· (11) 
1 2 

Also, gN is the center of mass of the system, and GN is the total linear momen­
tum. 

Unfortunately, the formulas for the variables Uk and Vk are not simply 
expressed in terms ofthe variables qk and Pk. Note that 

(12) 

Let dij = qi - % and so the Hamiltonian of the N -body problem in Jacobi 
coordinates is 

(13) 

Note that the Hamiltonian is independent of gN' and so, GN = 0 or GN is an 
integral of the system. When a variable does not appear in the Hamiltonian, it 
is called ignorable, and its conjugate variable is an integral. Since gN = GNIJlN' 
the center of gravity moves with uniform rectilinear motion. In general, one 
may assume that the center of mass if fixed at the origin of the system and so 
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sets gN = GN = 0, which reduces the problem by three degrees of freedom in 
the spatial problem. 

In the planar problem, one verifies 
N N 

L q[KPk = g'JKGN + L U[KVk' (14) 
2 2 

which is the same as Formula (8). So the Hamiltonian of the planar N-body 
problem in rotating coordinates with the center of mass fixed at the origin is 

H = f IIvkll2 - f U[KVk - L mimj (15) 
k=2 2Mk 2 1 $i<j$N IIdij II 

3. The 2-Body Problem in Jacobi Coordinates 

When N = 2, then (13) with g2 = G2 = 0 takes the simple form 

H = IIvII2 _ ml~ 
2M lIull' 

(16) 

where v = V2 , U = U2 = q2 - ql' M = ml m2/(ml + m2 ). This is just the 
Kepler problem, and so in Jacobi coordinates the 2-body problem is just the 
Kepler problem. This says that the motion of one body, say the moon, when 
viewed from another, say the earth, is as if the earth were a fixed body and the 
moon was attracted to the earth as a central force. 

4. The 3-Body Problem in Jacobi Coordinates 

In the 3-body problems the distances between the bodies, and hence the po­
tential, are not too complicated in Jacobi coordinates. Moreover, the Hamil­
tonian of the 3-body problem in Jacobi coordinates will be transformed to 
polar coordinates in Section IV.e.8, which will be used in Chapter V to 
understand reduction of the 3-body problem and to establish the existence of 
periodic solutions for two small masses (Poincare's periodic solutions of the 
first kind). 

Let 

(17) 

then the Hamiltonian of the 3-body problem with center of mass fixed at the 
origin and zero linear momentum in Jacobi coordinates is 
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(18) 

See Figure B.1. Sometimes one numbers the N-bodies from ° to N - 1. In 
this case all the subscripts in (18) except the subscripts of the o('s are reduced 
by 1, which looks nicer to some people. 

C. Differential Forms and Generating Functions 

Definition (A.2) is easy enough to check a posteriori, but it is difficult to 
use this definition to generate a symplectic transformation with desired prop­
erties. This section contains only a local analysis; so, we shall assume that 
everything is defined in some ball about the origin in 1R2n. 

1. The Symplectic Form 

Recall that in Chapter III we defined the (standard) symplectic form to be 

Q = ~ t t Jij dz i 1\ dzj = t dz i 1\ dzi+n = t dqi 1\ dpi = dq 1\ dp. (1) 
2 i=1 j=1 i=1 i=1 

Here we have used the noation of differential geometry and Chapter III by 
using superscripts for components instead of subscripts. Also we have z = 
(ZI, ... , z2n) = (ql, . . . , qn, pI, ... , pn) as usual. Q is closed, dQ = 0, but, in fact, it 
is exact because 

n 

Q = dO(, 0( = L qi dpi = q dp. (2) 
i=1 

In short, Q is a closed, nondegenerate (the coefficient matrix is nonsingular) 
2-form. By Darboux's theorem discussed in Chapter III, for any closed, non­
degenerate 2-form, there are local coordinates such that in these coordinates 
the 2-form is given by (1). This says that J is simply the coefficient matrix of a 
closed, nondegenerate 2-form in Darboux coordinates. The left-hand side of 
(A.2) is just the transformation law for a 2-form with coefficient matrix J; so, a 
symplectic transformation is a transformation which preserves the special 
form of the differential form Q. In two dimensions, Q = dq 1\ dp, the area form 
in 1R2, and so we see again that a two-dimensional symplectic transformation 
is area preserving. In higher dimensions, being symplectic is far more restric­
tive than being volume preserving. 

2. Action-Angle Variables 

The change from rectangular coordinates q, p to polar coordinates r, ¢J is not 
symplectic, but the following is symplectic 
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dq /\ dp = r dr /\ d</J = d(r2/2) /\ d</J = JI /\ d</J, 

</J = arctan ( ~), (3) 

q = fo cos </J, p = fo sin </J. 

Therefore, I, </J are symplectic (or canonical) coordinates called action-angle 
coordinates. In Chapter II, we saw that the harmonic oscillator could be 
written as a Hamiltonian system with Hamiltonian 

H = tW(q2 + p2) = wI, (4) 

and in action-angle coordinates, the equations of motion are 

. oH 
1= o</J = 0, 

. oH 
</J=- - =-w 01 . (5) 

So the solutions move on the circles I = constant with uniform angular fre­
quency w in a counterclockwise direction. 

Action-angle variables are used quite often in perturbation theory, for ex­
ample, Duffing's equation has a Hamiltonian 

(6) 

where y is a constant. Writing Duffing's Hamiltonian in action-angle vari­
ables gives 

H = I + yI2 cos4 </J = I + hI2{3 + 4 cos 2</J + cos 4</J}. (7) 

The last form in (7) was named a Poisson series by Deprit for linguistic rea­
sons. He claims that "Poisson" was a French name that is almost impossible 
for his English speaking friends to pronounce correctly. A Poisson series in 
r = fo and </J is a Fourier series in </J with coefficients which are polynomials 
in r. Such series arise from substituting action-angle variables into a power 
series expansion in q and p, but not all Poisson series come about in this 
manner. Action-angle variables are used and misused so often in celestial 
mechanics that we shall investigate this point in a little detail in the next 
subsection. 

3. d' Alembert Character 

Consider a Poisson series g(r, </J) = LiaiOri + LL(ai/ cosj</J + bi/ sinj</J). 
The Poisson series g(r, </J) comes from a power series f(q, p) = Lfijqipi if 
g(r, 0) = f(r cos </J, r sin </J). The Poisson series g has the d' Alembert character 
if aij = 0, bij = ° unless i ~ j and i = j mod 2 (i.e., i and j have the same parity). 

Theorem 1. The Poisson series g comes from a power series if and only if it has 
the d'Alembert character. 
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PROOF. xiyi = ri+i cosi ¢J sini ¢J. Claim: cosi ¢J sini ¢J has a Fourier polynomial 
of the form ao + L {ak cos k¢J + bk sin k¢J}, where ak = bk = 0 unless k ~ i + j 
and k == i + j mod 2. The claim is clearly true for i + j = 1; so, assume it is 
true for i + j < N, and let i + j = N. Let i #- 0; then 

cosi ¢J sini ¢J = cos ¢J[cosi-l ¢J sini ¢J] 

= cos ¢J[0(0 + L {O(k cos k¢J + Pk sin k¢J}] 

'" O(k = 0(0 cos ¢J + i..J 2 (cos(k + 1)¢J + cos(k - 1)¢J) 

+ L ~ (sin(k + 1)¢J + sin(k - 1)¢J). 

The induction hypothesis gives O(k = 0, Pk = 0 unless k ~ i + j - 1, and k == 
i + j - 1 mod 2. The last polynomial above shows that the induction hypoth­
esis is true for i + j = N. Similar formulas hold whenj #- O. So a power series 
gives rise to a Poisson series with the d' Alembert character. 

Conversely, if r a cos b¢J satisfies a ~ b and a == b mod 2, then cos b¢J = 
9l(exp i¢J)b = a sum of terms like cos(b - 2s)¢J sin 2s¢J. The d'Alembert 
character gives a = b + 2p, so ra cos b¢J = a sum of terms like 
r2p {rb- 2p cos(b - 2p<J»} {r2P sin (2p¢J) } = (x2 + y2)pXb-2Py2P. • 

A perturbation analysis is often done in action-angle variables-see later 
chapters-keeping track of the d'Alembert character of the change of vari­
ables in action-angle variables is important in order to keep track of the 
analyticity of the change of variables in rectangular variables. 

Say you want an analytic Hamiltonian with a fivefold symmetry. In polar 
coordinates the functions rk, cos 50, and sin 50 are all invariant under the 
rotation 0 -+ 0 + 2n/5 but are not analytic in rectangular coordinates. The 
functions r2k, r2k+5 cos 50, and r2k+5 sin 50 are all invariant under the rota­
tion 0 -+ 0 + 2n/5 and have the d' Alembert character; therefore, any linear 
combination (finite or uniformly convergent for r < p, p > 0) gives an analytic 
function in rectangular coordinates with a fivefold symmetry. 

4. Generating Functions 

Use classical notation z = (q, p) so that the standard symplectic form is 

n 

n = L dqi /\ dpi = dq /\ dp. (8) 
i=1 

Let Q = Q(q, p), P = P(q, p) be a change of variables, and assume the func­
tions Q and P are defined in a ball in 1R2n. This change of variables is sym­
plectic if and only if 

dq /\ dp = dQ /\ dP. (9) 
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This is equivalent to d(q dp - Q dP) = 0 or that lTl = q dp - Q dP is exact. lTl 
is exact if and only if lT2 = lTl + d(QP) = q dp + PdQ is exact. In a similar 
manner the change of variables Q = Q(q, p), P = P(q, p) is symplectic if and 
only if anyone of the following forms is exact: 

lTl = q dp - Q dP, 

lT3 = P dq - PdQ, 

lT2 = q dp + PdQ, 

lT4 = P dq + Q dP. 
(10) 

Since the functions Q and P are defined in a ball, exact forms are closed by the 
Poincare lemma; so, the change of variables is symplectic if and only if one of 
the functions SI' S2, S3, S4 exists and satisfies 

dS1(p, P) = lTl' 

dS3(q, Q) = lT3' 

dS2(p, Q) = lTz, 

dS4 (q, P) = lT4 . 

(11) 

In the above formulas, there is an implied summation over the components. 
These statements give an easy way to construct a symplectic change of 

variables. Assume that there exists a function SI (p, P) such that dS I = lT1 ; so, 

aSI aSI 
dSI = Tp dp + ap dP = q dp - Q dp. 

Soif 
aS I 

q = Tp(p, P), (12) 

defines a changes of variables from (q, p) to (Q, P), then it is symplectic. By the 
implicit function theorem, the equations in (12) are solvable for P as a func­
tion of q and p and for p as a function of Q and P when the Hessian of SI in 
nonsingular. Thus, in a similar manner we have 

Theorem 2. The following define a local symplectic change of variables: 

aSI 
q = Tp(p, P), 

aSI 
Q = - ap (p, P) 

a2s 
when ap a~ is nonsingular; (13a) 

aS2 
q = Tp(p, Q), 

aS2 
P = aQ (p, Q) 

a2s 
when ap a~ is nonsingular; (13b) 

aS3 
p = aq(q, Q), 

aS3 
P = - aQ (q, Q) 

a2s 
when aq a~ is nonsingular; (13c) 

aS4 
p = aq(q, P), 

aS4 
Q = ap (q, P) 

a2s 
when aq a~ is nonsingular. (13d) 

The functions Si are called generating functions. For example, if Sz(p, Q) = 
pQ, then (13b) says that the identity transformation Q = q, P = p is sym­
plectic, or if SI (p, P) = pP, then the switching of variables Q = - p, P = q is 
symplectic. 
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5. Mathieu Transformations 

If you are given a point transformation Q = f(q), with of/oq invertible, then 
the transformation can be extended to a symplectic transformation by de­
fining S4(q, P) = f(q)Tp and 

p = Z (q)Tp, Q = f(q)· (14) 

These transformations were studied by Mathieu (1874). 

6. Polar Coordinates 

Let x, y be the usual coordinates in the plane and X, Y their conjugate mo­
mentum. Suppose we wish to change to polar coordinates, r, f) in the x, y 

plane and to extend this point transformation to a symplectic change of 
variables. Let R, 0 be conjugate to r, f). By the above, we take S = S4 = 
X r cos f) + Yr sin f), and so 

as 
x = - = rcos f) ax ' 

as . f) 
Y = - = r SIn ay , 

as . xX + yY 
R = - = X cos f) + Y SIn f) = ---'--

~ r 

as . f) f) o = - = - X r SIn + Yr cos = x Y - yX. 
af) 

(15) 

If we think of a particle of mass m moving in the plane, then X = mx and 
Y = my are linear momenta in the x and y directions; so, R = mf is the linear 
momentum in the r direction, and 0 = mxy - my x = mr2{) is angular mo­
mentum. The inverse transformation is 

X = R cos f) - (~) sin f), 

Y = R sin f) + (~) cos f). 

(16) 

7. Kepler's Problem in Polar Coordinates 

The Hamiltonian of Kepler's problem (1.e.7) in polar coordinates is 

1 2 2 JI. 1 (2 0 2) JI. 
H = 2(X + Y ) - (x2 + y2) ="2 R + 7 --;:. (17) 

Since H is independent of f), it is an ignorable coordinate, and 0 is an integral. 
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The equations of motion are 

r=R, 
. e 
() = 2' 

r 

These equations imply that e, angular momentum, is constant, say c; so, 

_ . c2 p 
r=R= --+-. r2 r2 

(18) 

(19) 

This is a one-degree-of-freedom equation for r; so, it is solvable by the 
method discussed in Section I.B.2. Actually, this equation for r can be solved 
explicitly. 

Assume c =F 0; so, the notion is not collinear. In (19) make the changes of 
variables u = 11r and dt = (r2/c) d() so 

or 

.. c d {c dr} 2 2 d { 2 du- 1
} 2 2 " 

r = r2 d() r2 d() = c u d() u --;[{} = - c u u 

2 
C P 2 2 2 

= - - + - = - c u + pu , r3 r2 

u" + u =!!.. 2' c 

(20) 

(21) 

where I = dld(). Equation (21) is just the nonhomogeneous harmonic oscilla­
tor which has the general solution u = plc2 (1 + e cos«() - g)), where e and g 
are integration constants. Let f = () - g; so, 

c2/p 
r= . 

1 + e cos f 
(22) 

Equation (22) is the equation of a conic section in polar coordinates. Con­
sider a line t in Figure C.1 which is perpendicular to the ray at angle g 
through the origin and at a distance c2/p. Rewrite (22) as r = e(c2/pe - r cos!), 
which says that the distance of the particle to the origin, r, is equal to e times 
the distance of the particle to the line t, c2Ipe-rcosf. This is one of the many 
definitions of a conic section. One focus is at the origin. e is the eccentricity, 
and the locus is circle if e = 0, an ellipse if 0 < e < 1, a parabola if e = 1, and a 
hyperbola if e > 1. 

The point of closest approach, p in Figure C.1, is called the perihelion if the 
sun is the attractor at the origin or the perigee if the earth is. The angle f is 
called the true anomaly and g the argument of the perihelion (perigee). 
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e 

p 

Figure C.l. An elliptic orbit. 

8. The 3-Body Problem in Jacobi-Polar Coordinates 

Consider the 3-body problem in Jacobi coordinates with center of mass at the 
origin and linear momentum zero, i.e, the Hamiltonian (B.I8). Introduce po­
lar coordinates for U2 and U 3 as in Subsection 6). That is, let 

V2 = (Rl cos ()l - (~ll) sin ()l' Rl sin ()l + (~ll) cos ()l), (23) 

V3 = ( R2 cos ()2 - (~22) sin ()2' R2 sin ()2 + (~22) cos ()2} 

so, the Hamiltonian (B.18) becomes 

H = _1 {Ri + (e2i)} + _1 {R~ + (e2~)} _ mOml 
2M G 2~ ~ G 

Jri + a~rf - 2aOr1r2 COS(()2 - ()l) 

m1m2 

(24) 

The constants are the same as in (B.I7). Note that the Hamiltonian only 
depends on the difference of the polar angles, ()2 - ()l. 



102 IV. Symplectic Transformations and Coordinates 

D. Symplectic Transformations with Multipliers and 
Scaling 

If instead of satisfying (A.2) a transformation' = 3(t, z) satisfies 

03T 03 
J=j1-J-oz oz' (1) 

where j1 is some nonzero constant, then, = 3(t, z) is called a symplectic trans­
formation (map, change of variables, etc.) with multiplier j1. Equations (A.3) 
become 

(2) 

where all the symbols have the same meaning as in Section IV.A. In the 
time-independent case, you simply multiply the Hamiltonian by j1. Let us 
look at some examples and applications. 

1. Universal Gravitational Constant 

When the N-body problem was introduced in Section I.C, the equations con­
tained the universal gravitational constant G. Later we set G = 1. This can be 
accomplished by a symplectic change of variables with multiplier. The change 
of distance only. A better way to make the universal gravitational constant 
unity is to change the unit of mass. This scaling is simply given as an example. 

H = f IIp;11 2 _ L G mimj 

i~l 2mi l:;;;i<j:;;;N (X3 Ilq; - qjll' 
(3) 

If we take 1X3 = G, then in the prime coordinates the gravitational constant 
will be 1. q has the dimensions of distance, p has the dimensions of distance­
mass/time; and so the change of variables can be done by changing the units 
of distance only. A better way to make the universal gravitational constant unity 
is to change the unit of mass. This scaling is simply given as an example. 

2. Equations Near an Equilibrium Point 

Consider a Hamiltonian which has a critical point at the origin; so, 

H(z) = JzTSz + K(z), (4) 

where S is the Hessian of H at z = 0, and K vanishes along with its first and 
second partial derivatives at the origin. The change of variables z = eW is 
a symplectic change of variables with multiplier e- 2 ; so, the Hamiltonian 
becomes 

(5) 
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In the above, the classical notation, O(e), of perturbation theory is used. Since 
K is at least third order at the origin, there is a constant C such that 
le- 2 K(ew)1 ::; Ce for w in a neighborhood of the origin and e small, which is 
written e- 2 K(ew) = O(e). The equations of motion become 

w = Aw + O(e), A =JS. (6) 

If IIwll is about 1 and e is small, then z is small. Thus, the above transformation 
is useful in studying the equations near the critical point. To the lowest order 
in e the equations are linear; so, close to the critical point the linear terms are 
the most important terms. This is an example of what is called scaling vari­
ables, and e is called the scale parameter. To avoid the growth of symbols, one 
often says: scale by z -t ez which means replace z by ez everywhere. This 
would have the effect of changing w back to z in (6). It must be remembered 
that scaling is really changing variables. 

3. The Restricted 3-Body Problem 

In the traditional derivation of the restricted 3-body problem, one is asked to 
consider the motion of a particle of infinitesimal mass moving in the plane 
under the influence of the gravitational attraction of two finite particles which 
move around each other on a circular orbit of the Kepler problem. Although 
this description is picturesque, it hardly clarifies the relationship between the 
restricted 3-body problem and the full problem. Consider the 3-body problem 
in rotating coordinates (B.3) with N = 3 and (0 = 1. Let the third mass be 
small by setting m3 = e2 and considering e as a small positive parameter. 
Making this substitution into (B.3) and rearranging terms gives 

IIv3112 T 2 e2mi 
H3 = - 2 2 - U3 KV3 - .L II _ II + H 2 • e 1=1 Ui U 3 

(7) 

Here H2 is the Hamiltonian of the 2-body problem in rotating coordinates, 
i.e., (B.3) with N = 2. e is a small parameter which measures the smallness of 
one mass. A small mass should make a small perturbation on the other parti­
cles; thus, we should attempt to make e measure the deviation of the motion of 
the two finite particles from a circular orbit. That is, e should measure the 
smallness of the mass and how close the two finite particles' orbits are to 
circular. To accomplish this we must prepare that Hamiltonian so that one 
variable represents the deviation from a circular orbit. 

Let Z = (u 1 , U2 , V 1 , V2); so H2 is a function of the 8-vector Z. A circular 
solution of the 2-body problem is a critical point of the Hamiltonian of the 
2-body problem in rotating coordinates, i.e., H2 . Let Z* = (a 1 , a2' b1 , b2 ) be 
such a critical point (later we will specify Z*). By Taylor's theorem 

H 2 (Z) = H 2 (Z*) + t(Z - Z*)TS(Z - Z*) + O(IIZ - Z* 11 3 ), (8) 

where S is the Hessian of H2 at Z*. Since the equations of motion do not 
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depend on constants, drop the constant term in (8). If the motions of the two 
finite particles were nearly circular, the Z - Z* would be small; this suggests 
that one should change variables by Z - Z* = BU, but to make the change 
of variables symplectic, you must also change coordinates by U3 = ~, V3 = 
B211, which gives a symplectic change of variables with multiplier B- 2• The 
Hamiltonian becomes 

H3 = {1111112 _ ~TKI1 _ ± mi } + ~ UTSU + o (B). (9) 
2 i=1 II~ - adl 2 

The quantity in the braces in (9) is the Hamiltonian of the restricted 3-body 
problem if we take m1 = fl, m2 = 1 - fl, a1 = (1 - fl, 0), and a2 = (fl, 0). The 
quadratic term above in (9) is simply the linearized equations about the circu­
lar solutions of the 2-body problem in rotating coordinates. Thus, to first 
order in B, the Hamiltonian of the full 3-body problem is the sum of the 
Hamiltonian for the restricted problem and the Hamiltonian of the linearized 
equations about the circular solution. So, to first order, the equations of the 
full 3-body problem decouples into the equations for the restricted problem 
and the linearized equations about the circular solution. 

In Chapter VI, this scaled version of the restricted problem will be used to 
prove that nondegenerate periodic solutions of the restricted problem can be 
continued into the full3-body problem for small mass. 

E. Delaunay and Poincare Elements 

There is an old saying in celestial mechanics that "no set of coordinates is 
good enough." Indeed, classical and modern literature are replete with end­
less coordinate changes. There are two set of coordinates which make the 
2-body problem particularly simple and, thus, simplify perturbation argu­
ments. These coordinates will only be used in examples, so the complete 
justification of their validity will not be given, and the reader is referred to 
the specialized literature for complete details. The first set of variables, the 
Delaunay elements, are valid for the elliptic orbits, and the second set, the 
Poincare elements, are valid near the circular orbits ofthe 2-body problem. 

1. The Delaunay Elements 

Let D c /R4 be the set of initial conditions (qo , Po) for the 2-body problem, 
(I.e. 7) with fl = 1, which give rise to elliptic solutions (circular and collision 
orbits excluded). This domain is known as the elliptic domain. It can be co­
ordinatized by two angles and two rectilinear coordinates. For example, the 
semi-major axis, a, the eccentricity, B, and the argument of the perihelion, g, 
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specify the ellipse, and the true anomaly, t, specifies where the particle is 
on the ellipse. These are not symplectic coordinates, whereas the Delaunay 
elements to be introduced are. 

Tradition holds that the Delaunay elements are denoted t, g, L, and G. The 
symplectic change of coordinates from the polar coordinates (r, e, R, 0) to 
(t, g, L, G) is obtained from the generating function 

fr { G2 2 1 }1/2 
W(r, e, L, G) = eG + - 2 + - - 2 dx, 

z x x L 
(1) 

where z = L{L - (L2 - G2)1/2}. The transformation is given implicitly by the 
formulas 

oW 
t= oL' 

oW 
g = oG' 

(2) 

Since 0 = G, G is angular momentum. From the formula for R it follows 
that the Hamiltonian of Kepler's problem (C.17) becomes 

1 2 2 1 1 (2 0 2) 1 1 
H="2(X + Y )-(X2+y2)="2 R +7 --':=-2L2· (3) 

So the Hamiltonian of Kepler's problem depends on only one variable, the 
unnamed variable L. The equations of motion become 

. 1 
t= -

L 3 ' 
L=o, 

9 =0, G=O; 
(4) 

so, L, g, and G are integrals of the motion, and t is swept out uniformly. 
The Hamiltonian of Kepler's problem in rotating coordinates becomes 

H= - (X + Y )-(xY-yX)- =- R + - -0- -1 2 2 1 1 (2 0 2) 1 
2 (x2 + y2) 2 r2 r 

(5) 
1 

=-- -G 
2L2 ' 

and the equations of motion become 

. 1 
t = L 3 ' 

9 = -1, G = O. 
(6) 

After considerable effort, it can be shown that (t, g, L, G) define a valid 
set of coordinates on D and that both t and g are angular variables defined 
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Figure D.l. Delaunayangles. 

modulo 2n. In fact, it can be shown that z is the perihelion on the elliptic orbit 
and that g is the argument of the perihelion. The angle t is new and is known as 
the mean anomaly. It is measured from the perihelion. It is the ratio of the area 
swept out by the ray from the origin to the particle from its passage by the 
perihelion to the total area (see Figure D.l). The variable L is unnamed in the 
classical literature and is related to the semi-major axis, a, by L = a1/2 • 

2. Poincare Elements 

The argument of the perihelion is clearly undefined for circular orbits; so, 
Delaunay elements are not valid coordinates in a neighborhood of the circu­
lar orbits. To overcome this problem Poincare introduced what he called 
Kepler variables but which have become known as Poincare elements. Make 
the symplectic change of variables from the Delaunay variables (t, g, L, G) to 
the Poincare variables (Ql' Q2' PI' P2) by 

Ql = t + g, Q2 = [2(L - G)]I/2 cos t, 

P2 = [2(L - G)] 1/2 sin t. 
(7) 

The Hamiltonian of the Kepler problem (I.e. 7) becomes 

1 1 1 
H = 2(X2 + y2) - (x2 + i) = - 2Pt (8) 

and the Hamiltonian of the Kepler problem in rotating coordinates becomes 

Ql is an angular coordinate defined modulo 2n, and the remaining coordi­
nates Q2, PI' and P2 are rectangular variables. Q2 = P2 = 0 correspond to the 
circular orbits of the 2-body problem. Even though these new coordinates are 
defined from the Delaunay elements, which are not defined on the circular 
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orbits, it can be shown that these are valid coordinates in a neighborhood of 
the direct circular orbits. There is a similar set for the retrograde orbits. 

F. Further Reading 

Almost any advanced book on mechanics has some material on symplectic 
(or canonical) transformations, but their presentation may be a little slipshod 
for a mathematician. Pollard (1966) has a very short, clean presentation that 
is well worth reading. Arnold (1978) and Siegel and Moser (1971) have most of 
the general material presented here in one form or another. The most detailed 
presentation is found in Wintner (1944). As we have said before, Wintner is 
not easy to read. 

Szebehely (1967) has a nice presentation of Delaunay and Poincare ele­
ments. The examples from Section D were taken from the survey article 
by Meyer (1984a). More examples and applications are given in the paper. 

Problems 

1. Show that if you scale time by t -+ I-It, then you should scale the Hamiltonian by 
H -+ 1-I- I H. 

2. Scale the Hamiltonian on the N-body prolem in rotating coordinates (I1I.A.11) so 
that w is 1. 

3. Consider the restricted 3-body problem (I.C.9). To investigate solutions near 00, 

scale by x -+ e- 2x, y -+ ey. Show that the Hamiltonian becomes H = -xTKy + 
e3 {II y112/2 - 1/llxll} + 0(e2 ). Justify this result on physical grounds. 

4. Consider the restricted 3-body problem (I.C.9). To investigate solutions near one of 
the primaries first shift the origin to one primary by x -+ x - (1 - 1-1, 0). Then scale 
by x -+ e2x, y -+ e- l y, t -+ e3 t. 

5. In Section C, the equations for the Kepler problem were written in polar coordi­
nates (see C.18). Since angular momentum, 0, is a constant, set 0 = c and in­
vestigate the equation for r, i' = R = _c2/r3 + l-I/r2, using the geometric methods 
discussed in Section I.B.2. 

6. Write the functions r 2k, r2k+5 cos 58, and r2k+5 sin 58 in rectangular coordinates. 
Sketch the level curves ofr2 + r5 cos 58. 

7. Use the notation used to discuss the crystal model in Section E. Let T(x, y) = 
(X(x, y), Y(x, y)). Show that oX(x, y)joy > O. This implies that T is a monotone 
twist map as defined and discussed in Chapter VII. 

S. Give an example of a linear symplectic transformation which is not given by a 
generating function as given in Theorem C.2. 
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9. Let T : (q, p) ...... (Q, P) = (Q(q, p), P(q, p» be a symplectic transformations defined on 
an open set in 1R2. 
a. Show that OJ = (Q - q)d(P + p) - (P - p)d(Q + q) is closed. 
b. Assume that domain of definition of Q and P is such that Poincare's lemma 

applies, so OJ = dS. Assume also that ~ = P + p, '1 = Q + q is a valid change of 
coordinates (not necessary symplectic). Show that the critical points of S are 
fixed points oftransformation T: (q, p) ...... (Q, Pl. 

c. Let S = q2/2 + JlP + p3/3 where Jl is a parameter. Find the critical points of S as 
Jl varies. Compute the map T corresponding to this S. What can you say about 
T's fixed points as Jl varies. 



CHAPTER V 

Introduction to the Geometric Theory of 
Hamiltonian Dynamical Systems 

This chapter gives an introduction to the geometric theory of autonomous 
Hamiltonian systems by studying some local questions about the nature of 
the solutions in a neighborhood of a point or a periodic solution. The depen­
dences of periodic solutions on parameters is also presented in the case when 
no drastic changes occur, i.e., when there are no bifurcations. Bifurcations 
are addressed in Chapter VIII. Several applications to the 3-body problem 
are given. The chapter ends with a brief introduction to hyperbolic objects 
and homoclinic phenomena. 

The geometric theory of Hamiltonian systems is vast and far from com­
plete. Some of the basic definitions and results from the theory of dynamical 
systems are given to put the topic in context. In most cases, the background 
theory for ordinary (non-Hamiltonian) equations is given first. Since the non­
Hamiltonian theory is fairly well documented in the literature, the more 
lengthy proofs will be given by referral. 

A. Introduction to Dynamical Systems 

Consider an autonomous system of ordinary differential equations of the 
form 

x = f(x), (1) 

where f: () ~ Rm is smooth and () is an open set in Rm. Let t/t(t) be a solution 
of (1) defined for t E (ex, w). A geometric representation of a solution (for a 
nonautonomous as well as an autonomous system) is the graph of tIt, 
{(t, t/t(t»: t E (ex, w)}, in () x (ex, w) c: Rm+l, position-time space. See Figure 
A.l . The fundamental existence and uniqueness theorem for differential equa-

109 



110 V. Introduction to the Geometric Theory of Hamiltonian Dynamical Systems 

x 

Figure A.I. Solutions and orbits of x = - x. 

tions asserts that there is one and only one solution through a point ~ E 10 
when t = to; so, there is one and only one graph of a solution through a point 
(~, to) E 10 x IR. 

Since (1) is independent of t, any translate of a solution, t/J(t - r), is a 
solution also. (There is no clock for an autonomous equation and so no initial 
epoch.) If one thinks of t/J as a curve in 10 c IRm, then all translates of the 
solution t/J give the same curve in IRm. The parameterized curve t/J(t) in IR" is 
called a trajectory, and the oriented but unparameterized curve t/J(t) is called 
an orbit. An orbit is the set {t/J(t): t E (IX, w)} with the orientation coming from 
the orientation of (IX, w) in IR, and a trajectory is the map t/J: (IX, w) -. IR. In 
dynamical systems, the geometry of the trajectories (orbits) in IRm is the object 
of study. 

If t/Ji(t), i = 1, 2, are two solutions with t/Jl(t1 ) = t/J2(t2) then X(t) = 
t/J2(t - tl + t2) is also a solution of (1) with X(t 1) = t/J2(t2) = t/Jl (tl); so, by the 
uniqueness theorem for differential equations, X(t) = t/J2(t - tl + t2) == t/Jl(t). 
So if two solutions meet, they are simply time translates of each other and are 
the same orbit in 10. Thus, orbits never cross in 10. 

Let t/J(t, ~) denote the general solution of (1), that is, the maximal solution 
of(1) which satisfies t/J(O, ~) = ~ for ~ E 10. 

Lemma 1. If t and. are such that t/J(r, ~) and t/J(t + r, ~) are defined, then 

t/J(t, t/J(., m = t/J(t + ., ~). (2) 

PROOF. Both sides of (2) are solutions of(1) and are equal to t/J(r, ~) when t = O. 
Thus, by the uniqueness theorem for differential equations, they are equal 
~re~~ _ 

Lemma 2. Let ~o E 10 be a equilibrium point; so, f(~o) = o. If t/J(t, n -. ~o as 
t -. t' + (respectively t -. t' -) and ~' =F ~o, then t' = +00 (respectively t' = 
- 00.) It takes on infinite amount of time to come to rest! 
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PROOF. Assume not; so t' is finite. Then ,,(t) == eo is one solution through eo at 
time t' and so is I/I(t), where I/I(t) = ~(t, 0 for t < t' and I/I(t) = eo for t ~ t' . 
But this contradicts the uniqueness theorem for differential equations since 

e' # eo· • 
Let g: 0 -+ IR be smooth and positive; then a reparameterization of the 

solutions of(1) is defined by 

dt = g(x) dr, 

and if a prime denotes dldr, then Equations (1) become 

x' = f(x)g(x). 

(3) 

(4) 

The solution curves of (1) and (3) are the same, only their parameterizations 
are different. 

Lemma 3. There exists a reparameterization of (1) such that all solutions are 
defined for all t. 

PROOF. We shall only prove this theorem when 0 = IRm. Let g(x) = 

1/(1 + II f(x) II). The equation x' = f(x)g(x) = h(x) satisfies Ilh(x) II :::; 1 for all 
x. By the discussion in I.A.2, a solution I/I(t) is either defined for all time or 
tends to 00 in finite time. But 11~(t)11 :::; 1 implies III/I(t)II :::; 111/1(0)11 + t; so, 1/1 
must be defined for all t. • 

In the general case when 0 # IRm, one can construct a smooth function 
g: 0 -+ IR such that g(x) -+ 0 and f(x)g(x) -+ 0 as x -+ 00 where 00 is the 
boundary of O. By the above argument, the solutions of x ' = h(x) = f(x)g(x) 
will be defined for all t. By defining h(x) = 0 for x ¢ 0, the equations and 
solutions would be defined for all x E IRm also. 

Assume that the function f(x) in (1) is defined and smooth on all of 0 and 
that all the solutions of (1) are defined for all t E IR. By the discussion given 
above, these assumptions are always valid after a reparameterization, so these 
assumptions do not limit the discussion of the geometry of the orbits. Let 
~(t, e) be the solution of (1) which satisfies ~(O, e) = e. By the definition and 
Lemma 1, the family {~,} satisfies 

~o = id = the identity map on 0, 

~, 0 ~t = ~t+t' 
(5) 

This implies ~, has an inverse ~_I and so ~, is a homeomorphism for all t. Any 
family of smooth mappings satisfying (5) defines a dynamical system or a flow 
on O. If (1) is a Hamiltonian system of equations, then ~, is symplectic for all t 
by Theorem IV.A.2. In this case, the family of smooth maps ~, defines a H amil­
tonian dynamical system or a Hamiltonian flow. Sometimes the name dynam­
ical system is used even if the solutions are not defined for all t. 
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A trajectory ~t(~O) = ~(t, ~o) is periodic if there is a T#- 0 such that 
~(t + T, ~o) = ~(t, ~o) for all t E IR. The number T is called a period, and the 
least positive T is called the period. 

Two dynamical systems ~t: I[} -+ I[} and t/lt: Q -+ Q are (topologically) equiv­
alent if there is a homeomorphism h: I[} -+ Q which carries orbits of ~t onto 
orbits of t/lt and vice versa. Usually it is required to preserve the sense or 
orientation of the orbits also. Thus, two dynamical systems are equivalent if 
the geometry of their orbits is the same, but the timing may not be the same. 
The homeomorphism will take equilibrium points to equilibrium points and 
periodic orbits to periodic orbits. The dynamical systems defined by the two 
harmonic oscillators x = WiY, Y = -WiX, i = 1, 2, are equivalent, since the 
identity map takes orbits to orbits, but since their periods are, in general, 
unequal, they would not be equivalent if the parameterization were required 
to be preserved. 

Lemma 4. ~t(~o) is periodic with period T if and only if ~T(~O) = ~o. 

PROOF. If ~t(~o) is periodic, then set t = 0 in ~(t + T, ~o) = ~(t, ~o) to get 
~(T, ~o) = ~(O, ~o) = ~o· If ~T(~O) = ~o, then apply ~t to both sides and apply 
(5) to get ~(t + T, ~o) = ~t 0 ~T(~O) = ~t(~o) = ~(t, ~o)· • 

An invariant set is a subset Q c I[} such that if ~ E Q, then ~(t, ~) E Q for all 
t. That is an invariant set is a union of orbits. 

A linear equation x = Ax, A a constant m x m matrix, defines a linear 
dynamical system t/lt(x) = eAtx on,lRm• If A is a Hamiltonian matrix, then the 
map is a symplectomorphism. The origin is an equilibrium point. If Xo = 
Uo + ivo is an eigenvector corresponding to a pure imaginary eigenvalue 
A = iw, W #- 0, then eAtu is a 2n/w periodic solution. In fact, the two­
dimensional real linear space span {u, v} is filled with 2n/w periodic solutions. 

If none of the eigenvalues of the matrix A are pure imaginary, then the 
matrix A is called hyperbolic, and the equilibrium point at the origin is called 
hyperbolic also. If all the eigenvalues of A have real parts less (greater) than 
zero, then eAtx -+ 0 as t -+ +00 (respectively as t -+ -00) for all x. Neither of 
these cases happens for a Hamiltonian matrix A because the eigenvalues of a 
Hamiltonian matrix are symmetric with respect to the imaginary axis. If A has 
k eigenvalues with negative real parts and m - k eigenvalues with positive 
real parts, then by the Jordan canonical form theorem there is a nonsingular 
m x m matrix P such that p-1 AP = A' = diag(B, C), where B is a k x k ma­
trix with eigenvalues with negative real parts and C is an (m - k) x (m - k) 
matrix with eigenvalues with positive real parts. The matrix P can be thought 
of as the matrix of a change of variables, so that in the new variables, A has 
the form A' = diag(B, C). Thus, in this case A preserves the splitting IRm = 
IRk X IRm-\ i.e., the coordinate planes IRk x {OJ and {OJ x IRm-k are invariant 
sets. If x E IRk x {OJ, then eA't -+ 0 as t -+ +00, and if x E {O} X IRm.,-\ then 
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(a) (b) 

Figure A.2. Linear dynamical systems. (a) Hyperbolic; (b) elliptic. 

eA'tx ..... 0 as t ..... -00. Figure A.2 (a) indicates the orbit structure for the hy­
perbolic, Hamiltonian matrix A' = diag( -1, + 1). 

If all the eigenvalues of the matrix A are pure imaginary and A is simple 
(diagonalizable), then A is called elliptic, and the equilibrium point at the 
origin is called elliptic. By the Jordan canonical form theorem, there is a non-
singular, m x m matrix P such that p-1 AP = A' = diag(w1 J, ... , wkJ, 0, ... ,0) 
where J is the 2 x 2 matrix (~l 6). Then eA't = diag(R(w1 t), ... , R(ev"t), 1, ... ,1), 
where R(O) is the rotation matrix 

R(O) = ( co~ 0 sin 0). 
-sm 0 cos 0 

Figure A.2(b) indicates the orbit structure for the elliptic, symplectic matrix 
R(O). 

If p is an equilibrium point for the nonlinear equation (1), then the equa­
tion x = Ax, where A = Df(p) = of(p)/ox, is called the linearization of(1) at p. 
The equilibrium point p is called hyperbolic or elliptic as matrix A is called. 

A famous theorem of Hartman (1964) says that the flow near a hyperbolic 
equilibrium point is equivalent to a linear flow. That is, if p is a hyperbolic 
equilibrium for (1), then there are neighborhoods (]I of p and OJ of the 0 E IRm 

and a homeomorphism h: (]I ..... Q such that h maps orbits of(1) onto orbits of 
x = Ax. No such theorem is true for elliptic equilibrium points. 

B. Discrete Dynamical Systems 

Closely related to differential equations are diffeomorphisms which define 
discrete dynamical systems. Since discrete dynamical systems are first intro­
duced in this section, several examples will be given. 
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1. DifTeomorphisms and Symplectomorphisms 

A map 1/1: 0 ~ IRm, 0 open in IRm, is a diffeomorphism if 1/1 is differentiable and 
has a differentiable inverse. In particular, a diffeomorphism is a homeomor­
phism of 0 onto 1/1(0). In many cases it is required that 1/1 take 0 into 0, 
1/1(0) = 0, in which case 1/1 is said to be a diffeomorphism of O. Let k be a 
positive integer, and let I/I k = 1/1 0 1/1 0 ••• 0 1/1, k times, be the kth composition 
of 1/1 with itself. So 1/1 1 = 1/1. Define 1/10 = id, the identity map [id(x) = x] and 
I/I-k = 1/1-1 0 1/1-1 0 ••• 0 1/1-1, k times, be the kth composition of 1/1-1, the 
inverse of 1/1. If 1/1 is a diffeomorphism of 0, then I/I k is defined for all k and is a 
diffeomorphism of 0 for all k. In general, I/I k may be defined for some k and on 
only a part of O. In either case, it is easy to verify that I/Ik+S = I/I k 0 I/Is when­
ever the two sides are defined. If 1/1 is a symplectic diffeomorphism, then 1/1 is 
called a symplectomorphism. 

A discrete dynamical system is simply a diffeomorphism 1/1 of a set O. A 
discrete Hamiltonian dynamical system is simply a symplectomorphism ofa set 
O. If we let Z be the integers and 'I'(k, ~) = I/Ik(~), then '1': Z x IRm ~ IRm is 
analogous to the general solution of a differential equation. In fact, 'I'(k, ~) is 
the general solution of the difference equation x(k + 1) = I/I(x(k)), x(O) = ~. 

The set {I/In(p): -co < n < +co} is called the orbit of the point p. A point 
p E 0 such that I/I(p) = p is called afixed point (of 1/1), and a point p EO such 
that I/Ik(p) = p, for some positive integer k, is called a periodic point (of 1/1), and 
k is call a period. The least positive integer k such that I/Ik(p) = p is called the 
period. 

Two discrete dynamical systems </J: 0 ~ 0 and 1/1: iIJ ~ iIJ are (topological­
ly) equivalent if there is a homeomorphism h: 0 ~ iIJ which carries orbits of </J 

onto orbits of 1/1 and vice versa. This is the same as h 0 </J = 1/1 0 h. 
A nonsingular linear map x ~ Ax, A a constant m x m matrix, defines a 

discrete dynamical system I/I(x) = Ax on IRm. If A is a symplectic matrix, then 
the map is a symplectomorphism. The origin is a fixed point. If Xo is an 
eigenvector corresponding to an eigenvalue A which is a kth root of unity, 
A k = 1, then Xo is a periodic point of period k because Akxo = A kxo = Xo. 

If none ofthe eigenvalues of the matrix A have modulus 1, then the matrix 
A is called hyperbolic, and the fixed point at the origin is called hyperbolic also. 
If all the eigenvalues of A have modulus less (respectively greater) than 1, then 
Anx ~ 0 as n ~ +co (respectively as n ~ -co) for all x. Neither of these cases 
happens for a symplectic matrix A. If A has k eigenvalues with modulus less 
than 1 and m - k eigenvalues with modulus greater than 1, then by the Jor­
dan canonical form theorem, there is a nonsingular, m x m matrix P such 
that p-1 AP = A = diag(B, C), where B is a k x k matrix with eigenvalues of 
modules less than 1, and C is an (m - k) x (m - k) matrix with eigenvalues 
of modules greater than 1. The matrix P can be thought of as the matrix 
of a change of variables, so that in the new variables, A has the form A = 
diag(B, C). Thus, in this case, A preserves the splitting IRm = IRk X IRm-k, i.e., A 
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Figure B.l. Linear dynamical systems. (a) Hyperbolic; (b) elliptic. 

carries the coordinate plane IRk x {OJ into itself and the coordinate plane 
{OJ x IR",-k into itself. If x E IRk x {OJ, then Anx --+ 0 as n --+ +00 and if x E 

(0) X IRm-\ then Anx --+ 0 as n --+ -00. Figure B.l(a) indicates the orbit struc­
ture for the hyperbolic, symplectic matrix A = diagH, 2). 

If all the eigenvalues of the matrix A have modulus 1 and A is diago­
nalizable, then A is called elliptic and the fixed point at the origin is called 
elliptic. By the Jordan canonical form theorem, there is a nonsingular, m x m 
matrix P such that p- 1 AP = A = diag(R(Od, ... , R(Ok), ± 1, ... , ± 1) where 
R(O) is the rotation matrix 

R(O) = ( co~ 0 sin 0). 
-sm 0 cos 0 

A is the direct sum of rotations in coordinate planes and reflections in coordi­
nate axes. Figure B.l (b) indicates the orbit structure for the elliptic, symplectic 
matrix R(O). 

If t/J is a general nonlinear diffeomorphism with fixed point p (respectively 
periodic point p of period k), then p is call hyperbolic or elliptic as matrix 
Dt/J(p) [respectively Dt/Jk(p)] is called. 

A famous theorem of Hartman (1964) says that near a hyperbolic fixed 
point, a diffeomorphism is equivalent to its linear part. That is, if p is a hyper­
bolic point for t/J, then there are neighborhoods (]) of p and Q of the 0 E IRm 
and a homeomorphism h: (]) --+ Q such that h maps orbits of t/J onto orbits of 
x --+ Ax. No such theorem is true for elliptic fixed points. 

2. The Henon Map 

The Henon map is the quadratic map of 1R2 into itself defined by H: (x, y)--+ 
(x', y'), where 
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x' = rx - y - x 2 , 

y' =x, 

x = y', 

y = rx - x' _ y'2, 
(1) 

and rx is simply a parameter. The map is one-to-one and onto since its inverse 
is a quadratic map also. The Jacobian of this map is clearly + 1, so the map is 
area preserving, and (1) defines a discrete Hamiltonian dynamical system. 

The Henon map has fixed points at (-1 ± ~, - 1 ± ~). The 
one at (-1 + ~, - 1 + ~) is hyperbolic for all rx, and the one at 
( - 1 -~, -1 - ~) is elliptic for - 1 < rx :=:;; 3 and hyperbolic other­
wise. The Henon map has been extensively studied by computer simulation. 

3. The Time T Map 

If tP(t, ~) is the general solution of the autonomous differential equation x = 
f(x), then for a fixed T the map 1/1 : ~ -+ tP(T, ~) is a diffeomorphism since its 
inverse is 1/1-1 : ~ -+ tP( -T, ~). It is called the time T map. If the differential 
equation is Hamiltonian, then 1/1 is a symplectomorphism. 

Let p be afixed point ofl/l, I/I(p) = tP(T, p) = p. Then by Lemma A.4, p is an 
initial condition for a periodic solution of period T. In a like manner a periodic 
point of period k is an initial condition for a periodic solution of period kr. 
This example is somewhat artificial because the choice of T was arbitrary. 
There is no clock in an autonomous system. 

The harmonic oscillator tj = oH/op = wp, p = -oH/oq = -wq, H = 
(W/2)(q2 + p2) defines the discrete Hamiltonian system 

(q) (cos WT sin WT) (q) 
P -+ -sinwT COSWT p' 

(2) 

a rotation of the plane by an angle WT. The origin is an elliptic fixed point for 
this system. 

4. The Period Map 

Consider a periodic differential equation 

x = f(t, x), f(t + T, x) == f(t, x), T > O. (3) 

Let tP(t, ~) be the general solution; so, tP(O, ~) = ~. The mapping 1/1 : ~ -+ tP(T, ~) 
is called the period map (sometimes the Poincare map). If Equation (1) is defined 
for all x E IRm and the solutions for all t, 0 :=:;; t :=:;; T, then 1/1 defines a discrete 
dynamical system; and if the equation is Hamiltonian, then 1/1 defines a dis­
crete Hamiltonian system. By the same argument as above, a fixed point of 1/1 
is the initial condition of a periodic solution of period T, and a periodic point 
of period k is the initial condition of a periodic solution of period kr. 
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A natural qestion to ask is whether all diffeomorphisms and symplect­
omorphisms are time r-maps of autonomous equations or period maps of 
periodic systems. Later we shall show that time r-maps are much simpler than 
general diffeomorphisms but that period maps are essentially the same as 
diffeomorphisms. 

A diffeomorphism 1/1: IRm --+ IRm is isotopic to the identity through dijfeo­
morphisms if there exists a smooth function <1>: [0, r J x IRm --+ IRm such that for 
each t E [0, rJ the map <I>(t, .): IRm --+ IRm is a diffeomorphism and <1>(0, ~) == ~ 
and <I>(r, ~) == I/I(~) for all ~ E IRm. There is a similar definition where "diffeo­
morphism" and "m" are replaced by "symplectomorphism" and "2n" through­
out. The period map I/I(~) = ifJ(r, ~) of a periodic system is clearly isotopic to 
the identity through diffeomorphisms. In fact: 

Theorem 1. A necessary and sufficient condition for a dijfeomorphism 1/1: IRm --+ 

IRm to be isotopic to the identity through dijfeomorphisms is that 1/1 is the period 
map of a periodic system of the form (3). Also if 1/1 is isotopic to the identity 
through symplectomorphisms, then Equation (3) is Hamiltonian. 

PROOF. First a little trickery with smooth functions. The function a defined by 
a(t) = ° for t :=; ° and a(t) = exp( -l/t) for t > ° is a smooth function. (It is an 
easy argument to show that the right and left derivatives of a are zero at t = ° 
by l'Hopital's rule.) The function f3(t) = a(t - r/3)/(a(t - r/ 3) + a(2r/3 - t)) is 
smooth, and f3(t) == ° for t :=; r/ 3, and f3(t) == 1 for t ~ 2r/3. 

Let <1>: [0, rJ x IRm --+ IRm be the isotopy. Define 8(t,~) = <I>(f3(t), ~); so, 
8(t, .) is the identity map for ° :=; t :=; r/3 and is the diffeomorphism 1/1 for 
2r/3 :=; t :=; r. Let X(t, 11) be the inverse of8(t, ~); so, X(t, 8(t, m == ~. Now 

a,:: a,:: 
a; (t, ~) = a; (t, X(t, 8(t, ~))) = F(t, 8(t, m, 

where 

a8 
F(t, x) = Tt(t, X(t, x)). 

So 8(t, ~) is the general solution of x = F(t, x). Since 8 is constant in t for ° :=; t :=; r/3 and 2r/3 :=; t :=; r, F is identically zero for ° :=; t :=; r/3 and 2r/3 :=; 
t :=; r. Therefore, the r-periodic extension of F is smooth. Thus, 8 is the general 
solution of a r-periodic system, and 1/1 is a period map since I/I(~) = 8(r, ~). 

If <I> is symplectic, then F is Hamiltonian by Theorem IV.A.2. • 

For example, let I/I(x) = Ax + g(x), where g(O) = ag(O)/ax = 0; so the ori­
gin is a fixed point. If A has a logarithm, so A = exp B, then <I>(t, x) = 

exp(Bt) + tg(x) is an isotopy through diffeomorphisms near the origin. 
For a symplectic map you must be a little more careful. First, if I/I'(x) = 

x + g'(x), where g'(O) = ag'(O)/ax = 0, then by Theorem IV.C.2, 1/1: (q, p)--+ 
(Q, P), where q = as(p, Q)/ap, P = as(p, Q)/aQ, S(p, Q) = pTQ + s(p, Q), 



118 V. Introduction to the Geometric Theory of Hamiltonian Dynamical Systems 

where s is second order at the origin. Then S(t, p, Q) = pTQ + ts(p, Q) gener­
ates an isotopy to the identity through symplectomorphisms for t/J, <I>'(t, x) 
[i.e., <1>(1,') = t/J and <1>(0,') = identity]. Now if t/J(x) = Ax + g(x), write 
t/J(x) = A(x + g'(x)), and an isotopy for t/J is <I>(t, x) = exp(Bt)<I>'(t, x), where B 
is a Hamiltonian logarithm of A. 

5. The Convex Billiards Table 

Let r be a smooth, closed, convex curve in the plane. Imagine a point moving 
in the interior of r like a billiard ball on a table with boundary r. In the 
interior, the point moves in a straight line and is reflected off the boundary by 
Snell's law of reflection-the angle of incidence is equal to the angle of reflec­
tion. Let the curve r be parameterized by arc length, s, measured from a fixed 
point on the curve in the counterclockwise direction. Since the curve is closed, 
the parameter s can be considered as an angle. A contact of the moving point 
(the billiard ball) with the boundary curve r can be coordinatized by s, the 
point of contact, and a, the arigle of incidence. The angle of incidence a is 
measured by the sign convention show in Figure B.2; so, ° < a < n. Thus, the 
contacts are parameterized by the points (s, a) in the annulus A = r x (0, n). 
Define a map B: A -+ A which takes a contact (s, a) to the next contact (s', a') 
as shown in Figure B.3. Let t be the length of the path of the moving point 
between successive contacts (s, a) and (s', a'). Then dt = cos a ds - cos a' ds'. 
Since d 2t = 0, sin a da A ds = sin a' da' A ds' or de A ds = dc' A ds', where 
e = cos a and e' = cos a'. Thus, if we use the arc length s and the cosine of 
the angle of incidence, e = cos a, as coordinates, the billiards map B is area 
preserving and defines a discrete Hamiltonian system on the annulus r x 
(-1, 1). A periodic point of this map corresponds to a closed path of the 
billiard ball. 

s' 

Figure B.2. The billiard table. 
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Figure B.3. Crystal model. 

6. A Linear Crystal Model 

The following mechanical system was suggested as a model for a one­
dimensional crystal; see Nabaro (1967) for a discussion of the underlying 
physics. Consider an infinite wire bent into the shape of the sine curve 
{(x, y) E 1R2: y = (kI2n) sin (2nx)}, where k > 0 is simply a parameter. The 
wire is placed parallel to the ground, the x axis, so that the force of gravity acts 
in the negative y direction as shown in Figure B.3. On this wire there are a 
countable number of beads (atoms) which can slide freely without friction, but 
each is subjected to the force of gravity and a linear attractive force to its 
nearest neighbors. The attractive force is not proportional to the distance 
between the beads, but to the projection of the distance on the x axis. The 
problem is to find the equilibrium states of the system. 

Let (Xi' Y;), Yi = (kI2n) sin (2nxi) be the position of the ith bead, and so the 
sequence {x;} ~oo represents the state of the system. The physical assumptions 
imply that the total force on the ith bead, /;, is 

/; = (Xi- 1 - Xi) + (Xi+1 - x;) + k cos(2nxJ (4) 

The three terms in (4) are the forces on the ith bead due to the bead on the left, 
the bead on the right, and the force due to gravity, in that order. At an 
equilibrium state /;+1 = 0 or 

o = (Xi- 1 - x;) + (xi+1 - x;) + k cos(2nxJ 

Define the local energy or generating function by 

h(Xi' Xi+1) = ~(Xi+1 - x;f + 2~ sin(2nxi) 

(5) 

(6) 
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and the total energy by the formal sum 

00 

H = L h(Xi' Xi+l)· 
-00 

The formal condition for a critical point of H, VH = 0, gives 

-Dlh(Xi' xi+d + D2h(Xi- l , x;) = 0, 

-(Xi+l - x;) - k cos(2nxi) + (Xi - Xi-I) = 0, 

(7) 

(8) 

for all i. Here, and below, Di , i = 1, 2, denotes the partial derivative with 
respect to the ith argument. So a formal solution ofVH = ° is an equilibrium 
state. 

Consider h as a generating function defining an area-preserving mapping 
(see Theorem IV.C.2) T: !R x !R -+ !R x !R: (x, y) -+ (x', y'), where 

y = -Dlh(x, x') 
(9) 

y' = D2h(x, x'). 

From the form of h, it follows that if T(x, y) = (x', y'), then T(x + 1, y) = 
(x' + 1, y') and vice versa. So T is well defined when the first argument is 
defined modulo 1, or we can consider T as a map of §l x !R, where §l = !R/£:. 
It can be shown that T is one-to-one and onto. 

The interesting fact about T is that a T-orbit defines an equilibrium state 
for the crystal model. In fact we have: 

Theorem 2. {x;}~oo is an equilibrium state, i.e., satisfies (4), if and only if 
{(Xi' Yi)} ~oo is aT-orbit. 

PROOF. T(Xi' y;) = (X i + l , Yi+d for all i if and only if Yi = - DI h(Xi' Xi + l ) and 
Yi+1 = D2h(Xi' Xi+1) for all i if and only if -Dlh(Xi' xi+d = Yi = D2h(Xi- l , Xi) 

for all i if and only if {x;} ~oo satisfies (8) or {x;} ~oo is an equilibrium state. _ 

The last two examples are area-preserving mappings of the annulus § I X 

!R, where §l = !R/£:. The rich theory of these maps is the topic of Chapter X. 

C. The Flow Box Theorem and Local Integrals 

This section investigates the local flow and local integrals near a nonequilib­
rium point. Consider first an ordinary differential equation 

x = f(x), (1) 

where f is smooth on 0, an open set in !Rm, and let t/J(t, ~) be the solution of (1) 
such that ,p(O, ~) = ~. The analogous results for diffeomorphism will be devel-
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Figure c.l. The flow box. 

oped in the problems. A point rEO is an ordinary point for (1) if f(r) ;/= 0, 
otherwise r is a critical point, an equilibrium point, or a rest point. 

Theorem 1 (The Flow Box Theorem). Let rEO be an ordinary point for (1), 
then there exists a change of coordinates Y = t/J(x) defined near r such that in the 
new coordinates, Equations (1) define a parallel flow; in particular, the equa­
tions become 

Yl = 1, Yi = 0, i = 2, ... , m. (2) 

PROOF. Let r be the origin in [Rm. Since f(O) = a ;/= 0, one component of a is 
nonzero, say a l ;/= O. The solutions cross the hyperplane Xl = 0 transversely, 
and so the new coordinates will be the time from the crossing of this hyper­
plane and the n - 1 coordinates where the solution hits the hyperplane; see 
Figure c.l. That is, define the change of variables by 

X = tP(Yl,0,Y2,Y3, '" ,Yn)· 

Since tP(O, ~) = ~, otP(O, O)/ox = /, and so 

OX (0) = 
oY 

a l 0 0 

o 

an 0 1 

(3) 

(4) 

which is nonsingular since a l ;/= O. Thus, (3) defines a valid change of coordi­
nates near O. The first variable, Yl, is time; so, Yl = 1 and the variables Y2,"" 
Yn are initial conditions; so, Y2 = Y3 = ... = Yn = o. • 

A set of smooth functions Fl , ... , Fk defined on 0 c [Rm are independent at 
rEO if the vectors VFl (r), . .. , VFk(r) are linearly independent. 
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Corollary 2. Near an ordinary point, the system (1) has m - 1 independent 
integrals. 

PROOF. In the Y coordinates, Y2' ... ' Ym are constants of the motion and clearly 
independent. _ 

Assume that (1) admits an integral F(x), where F : 0 ~ IR is smooth and I is 
nondegenerate at rEO, i.e., VF(r) "# 0. 

Theorem 3. If (1) admits a nondegenerate integral F at rEO, where r is an 
ordinary point for (1), then the flow box coordinates given in Theorem 1 can be 
chosen so that F(y) = Y2. 

PROOF. Let y' be the coordinate system given by Theorem 1. Since F is an 
integral, F is independent of y~, and since F is nondegenerate of(O)/OYi "# 0, 
for some i = 2, . . . , m, say for i = 2. Change coordinates by Yi = Y; for i = 1,3, 
4, ... , mandY2 = F(y;, . .. ,y~). -

Consider a Hamiltonian system 

z = JVH(z) 
(5) 

or q = Hp ' P = - Hq , 

where z = (q, p) and H is a smooth function defined on the open set 0 C 1R2n. 

Theorem 4 (The Hamiltonian Flow Box Theorem). Let rEO c 1R2n be an 
ordinary point for (5); then there exist symplectic coordinates {y} defined near r 
such that the Hamiltonian becomes H(y) = Yn+l, and the equations of motion 
become 

oH 
)\ = -- = 1, 

°Yn+l 
Yi = ° for i = 2, ... , 2n. (6) 

PROOF. Again let r be the origin in 1R2n. Make a linear symplectic coordinates 
change so that JVH(O) = (1 , 0, . .. , O)-see the Problem Section. Let q = 
q(t, ~, ,,), p = p(t, ~, ,,) be the general solution of (5) with q(O, ~, ,,) = ~ and 
q(O, ~, ,,) = fl. For small values of t, these functions can be inverted to give 
~ = ~(t, q, p),,, = if(t, q, p). Since JVH(O) = (1,0, ... ,0), we can solve the equa­
tion ~ 1 (t, q, p) = 0 for t to give t = l(q, p). 

Define the new coordinates by 

Yl = l(q, p), Yn+1 = H(q, p), 

Yi = ~ (t(q, p), q, p), Yn+i = ifi(l(q, p), q, p), i = 2, . .. , n. 

By Theorems IV.A.2 and IV.A.3, for fixed t, {~i ~j} = {ifi' ifJ = 0 
{~i ' ifj} = ~ij · Now check that (7) is symplectic. Let 2 ~ i,j ~ n; then 

(7) 

and 
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The simplification from the second to last line to the last line comes from 
the identities oi/oqk = -(01.1 /0qk)/(o1.d ot) and at/OPk = -(o1.1 /opd/(01.1 /0t). 
In a similar way, {Yi' Yj} = 0 when n + 2 :s; i, j :s; 2n and {Yi' Yn+j} = Dij for 
i = 1, . . . , n. 

{y l' Y 1+n} = {t, H} = 1 since the time rate of change of t along a solution is 
1. Because 1.i and ifi are integrals and Y1+n = H, it follows that {Yi' Y1+n} = 0 
for i = 2, ... , 2n. 

Let 2 :s; i :s; n. Then 

{Y1 y.} = t ( Oi 0Yi _ at OYi) 
' I k=l Oqk OPk OPk Oqk 

_ t [Oi (01.i oi + O1.i) _ oi (01.i oi + O1.i)] (9) 
- k=l Oqk ot OPk OPk OPk ot Oqk Oqk 

= t [Oi O1.i _ oi O1.i)] = {1.1' 1.J = 0 
k=l Oqk OPk OPk Oqk o~dot . 

In a similar manner {Y1' yJ = 0 for i = n + 2, . . . , 2n. _ 

A set of smooth functions F1, ... , Fk defjined on 0 c 1R2n are in involution if 
{Fi' Fj} == o for 1 :s; i,j:S; k. 

Corollary 5. Near an ordinary point the Hamiltonian system (5) has n indepen­
dent integrals in involution. 

PROOF. In the coordinates of Theorem 3, the coordinates 111' . . . , 11n are inde­
pendent integrals in involution. -

Return to the ordinary equation (1) for the moment. The construction of 
the coordinate system of Theorem 1 requires the complete solution of the 
equations. In this case, m - 1 integrals are known. In many cases some but 
not all the integrals are known, in which case some simplification of the sys­
tem is possible. 
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Theorem 6. Assume that Equation (1) has k, 1 ::;; k < m, integrals that are in­
dependent at some point rEO c \R". Then locally the equations can be reduced 
to an m - k-dimensional system which depends on k parameters. Moreover, 
this reduction does not require the complete knowledge of the solutions as in 
Theorem 1. 

PROOF. Let r be the origin and Fl , ... , Fk be the integrals. Since they are 
independent, the Jacobian (8FdiJx) has a nonzero subdeterminant of size 
k x k; assume that it is the subdeterminant with 1 ::;; i, j ::;; k. Change vari­
ables by 

Yi = Fi(x) for i = 1, . . . , k, 

Yi = Xi for i = k + 1, . .. , n. 
(to) 

It is clear that this transformation has a nonsingular Jacobian at the origin 
and so defines a valid change of coordinates. Since Yl ' .. . ' Yk are integrals, the 
equations in the new coordinates are of the form 

for i = 1, .. . , k, 

Yi = gi(Yl , · · · ,Ym) fori = k + 1, . . . ,m. 
(11) 

The first k equations integrate to give Yi = lXi ' a constant, for i = 1, . .. , k. 
Substituting these constants into the remaining equations gives an m - k­
dimensional system with k parameters. _ 

Consider the Hamiltonian system (5) again. If H is independent of one 
coordinate, say qi' then Pi = iJH/iJqi = 0 or Pi is an integral. Similarly if H is 
independent of Pi' then qi is an integral. If H is independent of one coordinate, 
then it is called an ignorable coordinate, and its conjugate is an integral. 

Let qlbe ignorable; so, Pl is an integral, and Pl = IX, a constant. When the 
variable Pl is replaced by the parameter IX in (5), the equations in (5) are 
independent of q 1 and Pl . The equations for q2' . . . , q", P2' . .. , p" are the 
equations of a Hamiltonian system of n - 1 degrees of freedom which depend 
on a parameter IX. If these equations are solved explicitly in terms of t, these 
solutions can be substituted into the ql equation and ql can be determined by 
a single integration or quadrature. Thus, an ignorable coordinate reduces the 
equations to a system of equations of n - 1 degrees of freedom containing a 
parameter and a quadrature. 

In Hamiltonian system, an integral gives rise to an ignorable coordinate 
and many integrals in involution give rise to many ignorable coordinates. 

Theorem 7. Let Fl , . .. , Fk , 1 ::;; k ::;; n, be smooth functions on 0, which are in 
involution and independent at a point rEO c \R 2". Then there exist symplectic 
coordinates (e, 11) at r such that in these coordinates Fi = 11i for i = 1, ... , k. 

PROOF. This theorem is left as an exercise. Use induction on k, the number of 
functions. _ 
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Theorem 8. Assume that the Hamiltonian system (5) has k integrals, Fl , . . • , 

Fk , in involution which are independent at some point rEO. Then there exist 
symplectic coordinates e, '1 such that e l' ... , ek are ignorable. So the system can 
be reduced locally to a Hamiltonian system with n - k degrees of freedom 
depending on k parameters and k quadratures. 

For the N-body problem in Jacobi coordinates (see Section III.C) the three 
components of the center of mass g = (mlql + ... + mNqN)/M are ignorable, 
and the conjugate momenta are the three components of total linear momen­
tum, G = Pi + ... + PN' Jacobi coordinates effect a reduction in the number 
of degrees offreedom by 3. 

The planar Kepler problem admits the z component of angular momen­
tum as an integral. In polar coordinates r, (), R, e of Section III.C.6, () is an 
ignorable coordinate, and its conjugate momentum e, angular momentum, is 
an integral. 

D. Noether's Theorem and Reduction 

The last section discussed integrals in involution, but the classic three compo­
nents of angular momentum are not in involution. Also all the results are 
local results. A complete discussion of the general case where there are global 
integrals that are not in involution requires a lot of symplectic geometry that 
would require a long premature digression. Therefore, only the classical cases 
will be considered here. 

1. Symmetries Imply Integrals 

Let 1/11 be a Hamiltonian flow on 1R2n; so, i) for fixed t, the map 1/11: 1R2n -+ 1R2n is 
symplectic, ii) 1/10 = id, the identity of 1R2n, and iii) 1/11 0 I/Is = I/II+S for all t, s E IR. 
By theorem IV.2, I/I(t, e) = I/Ilm is the general solution of a Hamiltonian sys­
tem x = JVF(x), where F: 1R 2n -+ IR is smooth. 

Consider a Hamiltonian H(x). The 1/11 is a symplectic symmetry for the 
Hamiltonian H if 

H(x) = H(I/I(t, x» = H(I/II(x» 

for all x E 1R2n and all t E IR. 

(1) 

Theorem 1 (Noether's Theorem). Let 1/11 be a symplectic symmetry for the 
Hamiltonian (1). Then F is an integral for the Hamiltonian system with Hamil­
tonianH. 
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PROOF. Differentiate (1) with respect to t to get 

0= OH(~~, x». ot/l~: x) = OH(~~, x» . J . OF(~~, x» = {H, F} (t/I(t, x» . 

• 
Consider the N-body problem as discussed in Section I.C with coordi­

nates z = (ql, ... ,qN,Pl,,,,,PN) E 1R6N. The Hamiltonian (I.C.S) is invari­
ant under translations. That is, if bEIR3, then t/lt:(ql, . .. ,qN,Pl"",PN)-+ 
(ql + tb, .. ·,qN + tb,Pl,,,,,PN) is a symplectic symmetry for the N-body 
problem. The Hamiltonian which generates t/li is F = bT(Pl + ... + PN)' So 
by Noether's theorem, F = bT(Pl + ... + PN) is an integral for the N-body 
problem for all b, and so linear momentum, L = Pl + ... + PN is a inte­
gral. In general, translational invariance implies the conservation of linear 
momentum. 

Let t§ be the subgroup of Sp(6N, IR) consisting of all matrices of the form 
T = (A, . .. , A), where A E So(3, IR) (the special orthogonal group or group of 
three-dimensional rotations). Then the Hamiltonian H of the N-body prob­
lem, (I.C.S), has t§ as a symmetry group. That is, H(Tx) = H(x) for all T E t§. 

This simply means that the equations are invariant under a rotation of coor­
dinates. The algebra of Hamiltonian matrices, .91, for t§ is the set of all Hamil­
tonian matrices of the form B = (C, ... , C), where C is a 3 x 3 skew symmetric 
matrix. So eBt E t§, and H(x) = H(eBtx) for all x E 1R2n and t E IR. Thus, t/lt(x) = 
eBtx is a symplectic symmetry for the Hamiltonian of the N-body problem. 
The Hamiltonian which generates t/lt(x) = eBtx is F = L7=1 qr CPi, and so by 
Noether's theorem it is an integral for the N-body problem. If we take the 
three choices for C as 

l ~ ~ ~l l ~ ~ ~l l ~ 1 ~ ~l (2) 
o -1 0 -1 0 0 0 0 0 

then the corresponding integrals are the three components of angular mo­
mentum. So the fact that the Hamiltonian is invariant under all rotations 
implies the law of conservation of angular momentum. 

2. Reduction 
Symmetries give rise to further reductions. In the first example, the Hamil­
tonian of the N-body problem is invariant under translations, and so linear 
momentum is invariant. Holding linear momentum fixed, say equal zero, 
places three linear constraints on the system; so, the space where linear mo­
mentum is fixed is a 6N - 3-dimensional subspace of 1R6N. But two configura­
tions of the N bodies which are translations of one another can be identified, 
i.e., (ql'"'' qN, Pl,'" ,PN) and (ql + b, ... , qN + b,Pl"'" PN) can be identified, 
where b is any vector in 1R3. Making this identification reduces the dimension 



D. Noether's Theorem and Reduction 127 

by another three dimensions, making the total space 6N - 6 dimensional. 
This space is called the reduced space. 

The easiest way to do the reduction just discussed is to use the Jacobi 
coordinates given in (IV.B.2). The variable gN is the center of mass, and 
all the other position coordinates U2 , •.• , UN are relative coordinates; so, 
the identification given above gives (gN + b, U2' ..• ' UN' GN , V2 , ... , vN ) and 
(gN' U2 ,···, UN' GN , V2 ,···, VN) are equivalent. A representative of the equiva­
lence class is (0, u2 , ... , UN' GN , V2 , •.• , vN ), i.e., set the center of mass at the 
origin. Linear momentum, GN , is an integral. So the reduction discussed above 
is accomplished by setting gN = 0 and fixing GN , say zero. The problem is 
described by a Hamiltonian on an even-dimensional space, the reduced space. 
The Hamiltonian on the reduced space is (IV.B.13) with gN = GN = 0. Note 
that the problem is not Hamiltonian when just the integrals oflinear momen­
tum are fixed, but it is when these integrals are fixed and points are identified 
by the translational symmetry. 

Now consider the So(3, IR) symmetry which gives rise to the angular mo­
mentum integrals. There are three angular momentum integrals which are 
independent except at the origin. Consider the subset, M c 1R6N, of phase 
space where angular momentum is some fixed, nonzero vector V. This is a 
6N - 3-dimensional space (submanifold) which is invariant under the flow 
defined by the N-body problem. Not all rotations leave M fixed, only those 
that are rotations about V. That is, let rg' be the subgroup of rg, and hence of 
Sp(6N, IR), consisting of all matrices of the form T = (A, ... , A) where A E 

So(3, IR) and AV = V (rotations about V). rg' is the same as (isomorphic to) 
So(2, IR), rotations of the plane. This can be seen by changing coordinates so 
that V is along one of the coordinate axes. rg' and So(2, IR) are one dimen­
sional because they can be parameterized by the angle of rotation. 

Clearly, if T Erg', then T leaves M invariant; so, two points z, z' E M can be 
identified if Tz = z', i.e., if one configuration can be rotated into the other by a 
rotation about V. Let B be the identification space Mj _, where z_z' when 
z E Tz' for some T Erg'. It turns out that M is 6N - 3 dimensional, and B is 
6N - 4 dimensional. The interesting fact is that B is "symplectic," and the 
flow of the N-body problem is Hamiltonian on B, i.e., there are local coordi­
nate on B which are symplectic, and the equations of motion of the N-body 
problem are Hamiltonian. (Technically, B is a symplectic manifold.) 

The two can be done together. The N-body problem is a first-order system 
of differential equations in a 6N -dimensional space 1R6N. The first reduction of 
placing the center of mass at the origin and fixing linear momentum reduces 
the problem to a linear subspace of dimension 6N - 6. Fixing angular mo­
mentum reduces the problem to a 6N - 9-dimensional space, M. Identify­
ing configurations which differ by a rotation about the angular momentum 
reduces the problem to the reduced space B of dimension 6N - to. This 
last operation is classically called "the elimination of the node." The N-body 
problem of B is a time-independent Hamiltonian system on the symplectic 
space B. Two further reductions can be accomplished by holding the Hamil-
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toni an (energy) fixed and eliminating time to get a nonautonomous sytem of 
differential equations of order 6N - 12. The reduction of the N-body prob­
lem is classical, with the elimination of the node due to Jacobi. The general 
results about the symplectic nature of the reduced space is in Meyer (1973) 
and Marsden and Weinstein (1974). 

The proofs of all the facts about the reductions, symplectic manifolds, etc., 
would require a long digression, but a treating of a special case will whet the 
reader's interest. The reader is referred to the original articles or to Abraham 
and Marsden (1978) for the complete discussion. Let us consider the planar 
3-body problem. Recall from Section IV.B that the Hamiltonian of the 3-body 
problem in Jacobi coordinates with the center of mass at the origin and linear 
momentum equal to zero is 

where 

M2 = m3(m1 + m2} , 
m 1 + m2 + m3 

(3) 

(4) 

This effect the first reduction. Putting this Hamiltonian in polar coordinates 
as in (IV.C.8) gives 

(5) 

Since the Hamiltonian depends only on the difference of the two polar angles, 
make the symplectic change of coordinates 

<PI = (}2 - (}1' 

$1 = 202 + 0 1, 

so that (5) becomes 

H _ _ 1_ {R2 (2$1 - $2f} 1 {R2 ($2 - $1)2} mOml - 1+ + -- 2+ - --
2M1 rf 2M2 ri r 1 

(6) 

(7) 
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Note that the Hamiltonian is independent of </12; so </12 is an ignorable coordi­
nate. Therefore, its conjugate momentum ct>2 = O2 + 0 1, total angular mo­
mentum, is an integral. The reduction to the reduced space is done by holding 
ct>2 fixed and ignoring </12 . The Hamiltonian (7) has three degrees of freedom, 
(r1' r2, </11)' and one parameter ct>2· 

E. Periodic Solutions, Fixed Points, and Cross 
Sections 

In view of the results of the previous sections, it would seem that the next 
question to be considered is the nature of the flow near an equilibrium point. 
This is one of the central and difficult questions in the local geometric theory. 
It turns out that many of the questions about equilibrium points are very 
similar to questions about periodic solutions. This section will introduce this 
similarity. 

1. Equilibrium Points 

Consider first a general system 

x = f(x), (1) 

where f: 0 --+ IRm is smooth, and 0 is open in IRm. Let the general solution 
be </1(t, ~). An equilibrium solution </1(t, n is such that </1(t, n == f for all t. 
Obviously </1(t, n is an equilibrium solution if and only if fW) = O. So 
questions about the existence and uniqueness of equilibrium solutions are 
finite-dimensional questions. The eigenvalues of ofW)/ox are called the 
(characteristic) exponents of the equilibrium point. If of(~')/ox is nonsingular, 
or equivalently the exponents are all nonzero, then the equilibrium point is 
called elementary. 

Proposition 1. Elementary equilibrium points are isolated. 

PROOF. f(n = 0 and of(~')/ox is nonsingular; so, the implicit function theo­
rem applies to f; and there is neighborhood of ~' with no other zeros off.. 

The analysis of stability, bifurcations, etc., of equilibrium points starts with 
an analysis of the linearized equations. For this reason, one shifts the equilib­
rium point to the origin, and (1) is rewritten 

x = Ax + g(x), (2) 

where A = of(O)/ox, g(x) = f(x) - Ax; so, g(O) = 0 and og(O)/ox = O. The 
eigenvalues of A are the exponents. The reason the eigenvalues of A are called 
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exponents is that the linearized equations [e.g., g(x) == 0 in (2)J have solutions 
which contain terms like exp(A.t), where A. is an eigenvalue of A. 

2. Periodic Solutions 

A periodic solution is a solution, t/J(t, 0 , such that t/J(t + T, 0 == t/J(t, 0 for 
all t, where T is some nonzero constant. T is called a period, and the least 
positive T which satisfies that relation is called the period or the least period. 
In general, an equilibrium solution will not be considered as a periodic solu­
tion; however, some statements-like Lemma 2-have a simpler statement if 
equilibrium solutions are considered as periodic solutions. It is easy to see 
that if the solution is periodic and not an equilibrium solution, then the least 
period exists, and all periods are integer multiples of it. 

Lemma 2. A necessary and sufficient condition for t/J(t, 0 to be periodic with a 
period Tis 

(3) 

where T is nonzero. 

PROOF. This is a restatement of Lemma A.4. • 
This lemma shows that questions about the existence and uniqueness of 

periodic solutions are ultimately finite-dimensional questions. The analysis 
and topology of finite-dimensional spaces should be enough to answer all 
such questions. 

Let t/J(t, 0 be periodic with least period T. The matrix ot/J(T, O/o~ is called 
the monodromy matrix, and its eigenvalues are called the (characteristic) multi­
pliers of the periodic solution. It is tempting to use the implicit function theo­
rem on (3) to find a condition for local uniqueness of a periodic solution. To 
apply the implicit function theorem to (3), the matrix ot/J(T, O/o~ - I would 
have to be nonsingular, or + 1 would not be a multiplier. But this will never 
happen. 

Lemma 3. Periodic solutions of (1) are never isolated, and + 1 is always a 
multiplier. In fact, f( ~') is an eigenvector of the monodromy matrix correspond­
ing to the eigenvalue + 1. 

PROOF. Since (1) is autonomous, it defines a local dynamical system; so, a 
translate of a solution is a solution. Therefore, the periodic solution is not 
isolated. Differentiating the group relation t/J(r, t/J(t, ~')) = t/J(t + r, e') with re­
spect to ~ and setting t = 0 and r = T gives 
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Figure E.l. The cross section. 

~~ (T, ~')~(O, 0 = ~(T, 0, 

~~ (T, OfW) = f(~')· 
Since the periodic solution is not an equilibrium point,f(f) # O. 

131 

• 
Because of this lemma, the correct concept is "isolated periodic orbit." In 

order to overcome the difficulties implicit in Lemma 3, one introduces a cross 
section. Let rjJ(t, ~') be a periodic solution. A cross section to the periodic 
solution, or simply a section, is a hyperplane, ~, of codimension 1 through 
~' and transverse to f(~'). For example, ~ would be the hyperplane 
{x: aT(x - 0 = OJ, where a is a constant vector with aTf(~') # O. The peri­
odic solution starts on the section and, after a time T, returns to it. By the 
continuity of solutions with respect to initial conditions, nearby solutions do 
the same. See Figure E.l. So if ~ is close to ~' on~, there is a time Y(~) close to 
T such that rjJ(Y(~), ~) is on ~. Y(~) is called the first return time. The section 
map, or Poincare map, is defined as the map P: ~ --+ rjJ(Y(~), ~) which is a map 
from a neigl1borhood N of ~' in ~ into ~. 

Lemma 4. If the neighborhood N of ~' in ~ is sufficiently small, then the first 
retun time, Y: N --+ IR, and the Poincare map, P: N --+ ~, are smooth. 

PROOF. Let ~ = {x: aT(x - 0 = OJ, where aTf(~') # O. Considerthefunction 
g(t,~) = aT(rjJ(t,~) - ~'). Since g(T, n = 0 and og(T, o/a~ = aT~(T, 0 = 
a Tf(~') # 0, the implicit function theorem gives a smooth function Y(~) such 
that g(Y(~), ~) = O. 9 being zero defines ~ so that the first return time, Y, is 
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smooth. The Poincare map is smooth because it is the composition of two 
smooth maps. -

The periodic solution now appears as a fixed point of P; indeed, any fixed 
point, ~", of P is the initial condition for a periodic solution of period ff(~"), 
since (ff(~"), ~") would satisfy (3). A point C E N such that pkW') = ~" for 
some integer k > ° is called a periodic point of P of period k. The solution of 
(1) through such a periodic point will be periodic with period nearly kff(~"). 

The analysis of stability, bifurcations, etc., of fixed points starts with an 
analysis of the linearized equations. For this reason, one shifts the fixed point 
to the origin and writes the Poincare map 

P(y) = Ay + g(y), (4) 

where A = oP(O)/oy, g(y) = P(y) - Ay, so g(O) = 0, and og(O)/oy = o. The 
eigenvalues of A are the mulitpliers of the fixed point. The reason the eigen­
values, Ai, of A are called multipliers is that the linearized map [e.g., g(x) == ° 
in (4)] takes an eigenvector to Ai times itself. A fixed point is called elementary 
if none of its multipliers are equal to + 1. 

Lemma 5. If the multipliers of the periodic solution are 1, Az, ... , A.m, then the 
multipliers of the corresponding fixed point of the Poincare map are A.z, . .. , A.m. 

PROOF. Rotate and translate coordinates so that ~' = 0 and f(~') = 
(1,0, ... ,0); so, ~ is the hyperplane Xl = O. Let B = o,p(T, n/o~, the mono­
dromy matrix. By Lemma 2, fW) is an eigenvector of B corresponding to the 
eigenvalue + 1. In these coordinates, 

1 X x x x 

° B= 
A 

(5) 

o 
Clearly, the eigenvalues of Bare + 1 along with the eigenvalues of A. _ 

We also call the eigenvalues Az, ... , A.n the nontrivial multipliers of the 
periodic orbit. Recall that an orbit is the solution considered as a curve in IW, 
and so is unaffected by reparameterization. A periodic orbit of period T is 
isolated if there is a neighborhood L of it with no other periodic orbits in L 
with period near to T. There may be periodic solutions of much higher period 
near an isolated periodic orbit. A periodic orbit is isolated if and only if the 
corresponding fixed point of the Poincare map is an isolated fixed point. A 
periodic orbit is called elementary if none of its nontrivial multipliers are + 1. 

Proposition 6. Elementary fixed points and elementary periodic orbits are 
isolated. 
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y 

x 

Figure E.2. Phase portrait of the example. 

PROOF. Apply the implicit function theorem to the Poincare map. 

3. A Trivial Example 

Consider the system 
x = x + y + x(l - x2 _ y2), 

Y = -x + y + y(l - x2 _ y2), 

which in polar coordinates is 

f = r + r( 1 - r2), 

IJ = -1; 
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(6) 

(7) 

see Figure E.2. The origin is an elementary equilibrium point, and the unit 
circle is an elementary periodic orbit. To see the latter claim, consider the 
cross section () == 0 mod 2n. The first return time is 2n. The linearized equation 
about r = 1 is f = -1, and so the linearized Poincare map is r -+ r exp( - 2n). 
The multiplier of the fixed point is exp( - 2n). 

4. Systems with Integrals 

By Lemma 3, the monodromy matrix of a periodic solution has + 1 as a 
multiplier. If Equation (1) were Hamiltonian, the monodromy matrix would 
be symplectic by Theorem III.A.2, and so by Proposition II.C.1, the algebraic 
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multiplicity of the eigenvalue + 1 would be even and so at least 2. Actually, 
this is simply due to the fact that an autonomous Hamiltonian system has an 
integral. 

Throughout this subsection assume that Equation (1) admits an integral F, 
where F is a smooth map from (j) to IR, and assume that tP(t, n is a periodic 
solution of period T. Furthermore, assume that the integral F is nondegen­
erate on this periodic solution, i.e., VF(~') is nonzero. For a Hamiltonian 
system, the Hamiltonian, H, is always nondegenerate on a nonequilibrium 
solution because VH(~') = 0 would imply an equilibrium. 

Lemma 7. If F is nondegenerate on the periodic solution tP(t, n, then the 
multiplier + 1 has algebraic multiplicity at least 2. Moreover, the row vector 
of(~')lox is a left eigenvector of the monodromy matrix corresponding to the 
eigenvalue + 1. 

PROOF. Differentiating F(tP(t, m == F(~) with respect to ~ and setting ~ = f 
and t = T yields 

of(~') otP(T, n oFW) 

ox o( - ----ax' (8) 

which implies the second part of the lemma. Choose coordinates so that f( n 
is the column vector (1, 0, ... , Of and of(~')/ox is the row vector (0,1,0, ... ,0). 
Since f(~') is a right eigenvector and oFW)/ox is a left eigenvector, the mono­
dromy matrix B = otP(T, n/o~ has the form 

x x x 0 

0 1 0 0 0 

0 x x x ... x 
B= (9) 

0 x x x .. . x 

0 x x x x 

Expand by minors p(A) = det(B - AI). First expand along the first column to 
get p(A) = (1 - A) det(B' - AI), where B' is the (m - 1) x (m - 1) matrix ob­
tained from B by deleting the first row and column. Expand det(B' - AI) 
along the first row to get p(A) = (1 - A)2 det(B" - AI) = (1 - A)2q(A), where 
B" is the (m- 2) x (m - 2) matrix obtained from B by deleting the first two 
rows and columns. _ 

Again there is a good geometric reason for the degeneracy implied by this 
lemma. The periodic solution lies in an m - 1-dimensional level set of the 
integral, and typically in nearby level sets of the integral, there is a periodic 
orbit. So periodic orbits are not isolated. 
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F=e 

Figure E.3. Poincare map in an integral surface. 

Consider the Poincare map P: N ~~, where N is a neighborhood of ~' 
in ~. Let u be flow box coordinates given by Theorem IV.B.2 so that ~' 
corresponds to u = 0; Equations (1) are ul = 1, u2 = 0, ... , um = 0, and 
F(u) = u2 • In these coordinates, we may take ~ to be UI = o. Since U2 is the 
integral in these coordinates, P maps the level sets U 2 = constant into them­
selves; so, we can ignore the U2 component of P. Let e = U2; let ~e be the 
intersection of ~ and the level set F = e; and let YI = u3 , .. . , Ym-2 = Um be 
coordinates in ~e. Here e is considered as a parameter (the value of the inte­
gral). In these coordinates, the Poincare map P is a function of Y and the 
parameter e. So P(e, y) = (e, Q(e, y)), where for fixed e, Q(e, .) is a mapping of 
a neighborhood Ne of the origin in ~e into ~e . Q is called the Poincare map in 
an integral surface, see Figure E.3. The eigenvalues of oQ(O, O)/oy are called 
the multipliers of the fixed point in the integral surface or the nontrivial multi­
pliers. By the same argument as above, we have the following lemma. 

Lemma 8. If the multipliers of the periodic solution of a system with non­
degenerate integral are 1, 1, A.3, . .. , A.m, then the multipliers of the fixed point in 
the integral surface are A.3, . .. , A.m. 

Lemma 9. If the system is Hamiltonian, then the Poincare map in an integral 
surface is symplectic. 

PROOF. In this case, use the Hamiltonian flow box theorem (Theorem IV.A.2). 
In this case, H = 'II' and the equations are el = 1, ei = 0 for i = 2, . . . , nand 
iii = 0 for i = 1, .. . , n. The cross section is ~ I = 0, and the integral parameter 
is 'II = e. The Poincare map in an integral surface in these coordinates is in 
terms of the symplectic coordinates ~2 ' ... , ~n' '12' . .. , 'In on ~e. Since the 
total map x ~ </J(T, x) is symplectic (Theorem III.A.2), the map y ~ Q(e, y) is 
symplectic. _ 
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F=e 

Figure E.4. Cylinder of periodic solutions. 

If none of the nontrivial multipliers are 1, and the integral is nondegenerate 
on the periodic solution, then we will say that the periodic solution (or fixed 
point) is elementary. 

Theorem 10 (The Cylinder Theorem). An elementary periodic orbit of a system 
with integral lies in a smooth cylinder of periodic solutions parameterized by the 
integral F. (See Figure E.4.) 

PROOF. Apply the implicit function theorem to Q(e, y) - y = 0 to get a one­
parameter family of fixed points y*(e) in each integral surface F = e. _ 

F. The Stable Manifold Theorem 
In this section we will discuss some important theorems about the local struc­
ture of differential equations near equilibrium and diffeomorphisms near 
fixed points by introducing the concept of a hyperbolic point. These theorems 
are classical, and their proofs appear in many standard textbooks; so, we shall 
not prove them here. In the next section we carry forth the generalization 
to hyperbolic sets. In the last 20 years, the subject of hyperbolic dynamical 
systems has become a subject of its own. See the monographs by Nitecki 
(1971), Szlenk (1981), and Palis and de Melo (1980). Since Hamiltonian dy­
namics is more the study of elliptic points than hyperbolic points, we shall 
concentrate on the elliptic case and refer the reader to the literature for some 
of the proofs for the hyperbolic theorems. 

Let the equation 
x = f(x) (1) 

have an equilibrium point at x = p; so, f(p) = O. Let A = of(p)/ox; so, A is an 
m x m constant matrix. The eigenvalues of A are called the exponents of equi­
librium point p. The linearization of (1) about x = p is Y = Ay, where y = 
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x - p. We say that p is a hyperbolic equilibrium point for (1) if A has no 
eigenvalues with zero real part; so, all the eigenvalues have either positive real 
parts or negative real parts. Thus, the solutions of the linearized equation are 
sums of exponentially increasing and decreasing terms. The set of all solutions 
tending to zero is a linear subspace, as is the set of all solutions tending away 
from zero. The full nonlinear equations have similar sets, which is the subject 
of the following theorems. 

At first the results are local; so, one can shift the equilibrium point to the 
origin and write (1) in the form 

x = Ax + g(x), (2) 

where g(x) = f(x) - Ax; so, g(O) = Dg(O) = 0, and A is an m x m real con­
stant matrix with no eigenvalue with zero real part. Let fjJ(t, e) be the general 
solution of (2); so, fjJ(O, e) = e. Let s > 0 be given; then the local stable manifold 
IS 

'if"S(s) = {~ E IRm : IfjJ(t, ~)I < s for all t ~ OJ, 
and the local unstable manifold is 

'if"U(s) = g E IRm : IfjJ(t, e)1 < dor all t ::;; OJ. 

(3) 

(4) 

If the reader is not familiar with the definition of a manifold, simply read 
the remark following the statement of the theorem. 

Theorem 1 (The Stable Manifold Theorem for Differential Equations). Let A 
have d eigenvalues with negative real parts and m - d eigenvalues with positive 
real parts. Let g be as above. Then for s sufficiently small, 'if"S(s) and 'if"U(s) 
are smooth manifolds of dimensions d and m - d, respectively. If ~ E 'if"S(s) 
[respectively ~ E 'if"U(s)], then fjJ(t, ~) --+ 0 as t --+ +00 [respectively fjJ(t, ~) --+ 0 
as t --+ -00]. Actually, there is a smooth, near identity change of coordinates 
which takes the stable and unstable manifolds to (different) coordinate planes. 

PROOF. See Coddington and Levinson (1955), Hale (1972), or Hartman (1964) . 

• 
Remarks. By a linear change of coordinates, if necessary, we may assume that 

A=(~ ~). 
where B is a d x d matrix with eigenvalues with negative real parts, and 
C is an (m - d) x (m - d) matrix with positive real parts. Writing IRm = 
IRd X IRm-d, (z, w) E IRm = IRm-d; so, Equation (2) becomes 

i = Bz + h(z, w), 

w = Cw + k(z, w), 
(5) 

where h, k, and their first partials vanish at the origin. One proof of the 
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w 

z 

Figure F.l. Local stable and unstable manifolds. 

existence of the stable manifold establishes the existence of a change of coor­
dinates of the form e = z, '1 = w - u(z), which makes the e coordinate hy­
perplane invariant or at least locally invariant. The function u is shown to be 
smooth and small with u(O) = Du(O) = O. Thus, in the new coordinates, the 
local stable manifold is a piece of the d-dimensionallinear space '1 = O. In the 
original coordinates, the local stable manifold is the graph of the function u. 
Since u(O) = Du(O) = 0, the stable manifold is tangent to the d-dimensional 
linear space z = O. See Figure F.1. 

This is a local result; so, a natural question to ask is what happens to these 
manifolds. Now we shall show how to continue these manifolds. Assume f in 
(1) is globally defined and let the general solution t/J(t, e) of (1) be globally 
defined; so, t/J defines a dynamical system. The (global) stable manifold is 

1f'" = 1f"'(p) = {e E IRm: t/J(t, e) -+ p at t -+ +oo}, 

and the (global) unstable manifold is 

1f"" = 1f""(p) = {e E IRm: t/J(t, e) -+ p as t -+ -oo}. 

(6) 

(7) 

Theorem 2 (The Global Stable Manifold Theorem for Differential Equations). 
Let p by a hyperbolic equilibrium point with d exponents with negative real parts 
and m - d exponents with positive real parts. Then the stable manifold is an 
immersed d-dimensional submanifold. That is, there exists a smooth function 
r: IRd -+ IR" which is globally one-to-one, and Dr has rank d everywhere. Simi­
larly, the unstable manifold is an immersed m - d submanifold. 

PROOF. See Palis and de Melo (1980). • 
There are similar theorems for diffeomorphisms. Consider a diffeomor­

phism 
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(8) 

with a fixed point p. Let A = at/l(p)/ax; so, A is an m x m constant matrix. The 
eigenvalues of A are called the multipliers of p. The linearization of (8) about 
x = pis y ~ Ay, where y = x - p. We say that p is a hyperbolic fixed point if A 
has no eigenvalues with absolute value equal to 1. The set of all trajectories 
tending to zero is a linear subspace, as is the set of all solutions tending away 
from zero. 

The first theorem is local; so, shift the fixed point to the origin and consider 

x ~ <I>(x) = Ax + g(x), (9) 

where g is defined and smooth in a neighborhood of the origin in IRm with 
g(O) = 0, Dg(O) = O. Define the stable manifold as 

1f'"S(e) = {x E IRm : I <l>k(X) I < dor all k ~ O} 

and the unstable manifold similarly. 

(10) 

Theorem 3 (The Stable Manifold Theorem for Diffeomorphisms). Let A have 
d eigenvalues with absolute value less than 1 and m - d eigenvalues with abso­
lute value greater than 1. Let g be as above. Then for e sufficiently small, 1f'"S(e) 
and 1f'"U(e) are smooth manifolds of dimensions d and m - d, respectively. If 
~ E 1f'"S(e) [respectively ~ E 1f'"U(e)], then <l>km ~ 0 as k ~ +00 [respectively 
<l>k(~) ~ 0 as k ~ -00]. Actually there is a smooth, near identity change of 
coordinates which takes the stable and unstable manifolds to (different) coordi­
nate planes. 

Assume t/I in (8) is a global diffeomorphism; so, it defines a dynamical 
system. The (global) stable manifold is 

1f'"S = 1f'"S(p) = {~ E IRm: t/lk(~) ~ p as k ~ +oo}, 

and the (global) unstable manifold is similarly defined. 

(11) 

Theorem 4 (The Global Stable Manifold Theorem for Diffeomorphism). Let p 
be a hyperbolic fixed point for t/I with d multipliers with absolute value less than 
1 and m - d multiplies with absolute value greater than 1. Then the stable mani­
fold is an immersed d-dimensional submanifold. That is, there exists a smooth 
function r: IRd ~ IRn which is globally one-to-one, and Dr has rank d every­
where. Similarly, the unstable manifold is an immersed m - d submanifold. 

For the rest of this section let t/I in (8) be diffeomorphism of 1R2, p be a 
hyperbolic fixed point with one multiplier greater than 1 and one multiplier 
less than 1 so that the stable and unstable manifolds of p are smooth curves. A 
point q E 1f'"S(p) II 1f'"U(p), q #- p, is called a homoclinic point (homoclinic to 
p). Since q is in both the stable and unstable manifolds of p, t/lk(q) -+ p as 
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Figure F.2. Transverse intersection of stable and unstable manifolds. 

k -+ ±ro, the orbit of q is said to be doubly asymptotic to p. If the curves 1(/'S(p) 
and 1(/'U(p) are not tangent at q, the intersection is said to be transversal, and q 
is said to be a transversal homoclinic point. Henceforth, let q be a transversal 
homoclinic point, homoclinic to p. See Figure F.2. 

The stable and unstable manifolds are invariant, and so t/lk(q) E 1(/'S(p) n 
1(/'U(p) for all k, or the whole orbit of a homoclinic point consists of homo­
clinic points. In a neighborhood ofthe hyperbolic point p, the diffeomorphism 
t/I is well approximated by its linear part, and so it contracts in the stable 
manifold direction and expands in the unstable direction. This results in the 
following: 

Theorem 5 (Palis's Lambda Lemma). Let A be any interval in the unstable 
manifold with p in its interior. Let A be a small segment of the unstable manifold 
with q in its interior. Then for any e > 0 , there is a K such that for k ;:::: K, 
A is within the e neighborhood of t/lk(A). Moreover, if a E A, bE t/lk(A) and 
dist(a, b) < e, then the tangents to A and t/I(A)k are within e. 

PROOF. See Palis and de Melo (1980) and Figure F.3. • 
This theorem says that a small segment, A, of the unstable manifold is 

stretched out and that C1 approximates the whole unstable manifold by iter­
ates oft/l. 

Images of this small segment A are stretched out along the unstable mani­
fold until the image again intersects the stable manifold at r as shown in 
Figure F.4. So a homoclinic point begets another homoclinic point near the 
first. Repeating the argument you get: 

Theorem 6 (Poincare's Homoclinic Theorem). A transversal homoclinic point 
is the limit of transversal homoclinic points. 

PROOF. See Poincare (1899) and Figure F.4. • 
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if;k(A) 

A 

p 

Figure F.3. The lambda lemma. 

Figure F.4. The Poincare tangle. 

G. Hyperbolic Systems 

This section, like the last, contains an introduction to some general topics in 
dynamical systems that are well documented in the literature. Therefore, very 
few proofs will be given. 

1. The Shift Automorphism and Subshifts of Finite Type 

Let In = {t, 2, ... , n} and :E = :E(n) = x ~oc,In' that is, :E is the collection of 
all infinite bisequences on the symbols 1, 2, .. . , n. :E is called the sequence 
space. Thus, if s E:E, then s = ( . .. ,L1,So,Sl,S2,"')' or more simply written, 
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s = ... Ll so' S 1 S2 ... , where the zeroth position is to the left of the decimal 
point '. Define a distance function on ~ by d(s, r) = 11k, where k = 

1 + max{ljl: Si = ri for Iii::; j}; so, two elements of~ are close if they agree in 
a lot of positions around the decimal point. It can be shown that ~ is homeo­
morphic to the Cantor set. 

Let u : ~ --.. ~ be the shift map or shift automorphism defined by U(S)i = Si+1, 

i.e, U shifts the decimal point one place to the right. Clearly, U is a homeo­
morphism. The map u: ~ --.. ~ defines a dynamical system, called the full shift 
on n symbols. (It is not differentiable, but it is continuous.) As a dynamical 
system the map has many interesting properties, among which are those given 
in the Proposition 1. 

The shift on 2 symbols can be considered as flipping a fair coin and taking 
1 to mean heads and 2 to mean tails. Any infinite sequence of flipping of a coin 
is represented by an element of ~ and U can be thought of as the action of 
flipping the coin. 

Proposition 1. (i) u: 1: --..1: has periodic points of all periods. (ii) The periodic 
points are dense. (iii) u: 1: --.. ~ has a dense orbit. (iv) Given any two periodic 
points p, q E 1:, there is a point r E 1: with uk(r) --.. p as k --.. 00 and uk(r) --.. q as 
k --.. -00. Moreover, the set of such orbits is dense. 

Remarks. A dynamical system which has a dense orbit is called transitive. In 
(iv) if p =I- q, then r is called a heteroclinic point and if p = q, then r is called a 
homoclinic point. One speaks ofheteroclinic and homoclinic orbits also. 

PROOF. The proof of all these properties uses the same idea; so, all but one 
[part (ii)] will be an exercise. We show that there is a periodic point arbitrary 
close to any give point. To that end, let q E 1: and e > 0 be given. Let N be so 
large that liN < e and let s be the finite sequence q-Nq-N+1'" qo, ql'" qN' 
Construct a bi-infinite sequence r by concatenating an infinite number of 
times; so, r = ... sss ... (the decimal point is placed in one of the segments s to 
the right of qo). The points rand q agree on a block oflength at least N about 
the decimal point; so, d(r, q) ::; l i N < e. Shifting the decimal point 2N + 1 
places brings the sequence r back to itself; so, r is periodic with period 2N + 1. 
Thus, there is a periodic point, r, arbitrarily close to the arbitrary point q. • 

The shift automorphism has many interesting invariant sets, and one type 
of invariant set which has many nice properties is a subshift of finite type. A 
transition matrix is an n x n matrix K = {kij} with entries which are either 
o or 1. For any transition matrix K, define a subset of 1: by 1:(K) = 

{q E~: kqiqi+l = 1 for all i}. In other words, adjacent pairs of entries in a 
sequence q E ~(K) determine a nonzero entry in K. The transition matrix K 
serves as a litany of which values can follow which in a sequence q E ~(K) in 
the sense that qi+l can follow qi if and only if k qiqi + 1 = 1. In the case k qiqi + 1 = 1, 
we write as qi --.. qi+l for short. Alternately, the zeros in the transition matrix 
K rule out certain adjacent pairs in a sequence. For example, if n = 2 and 
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K = (? D, then ~(K) consists of all bi-infinite sequences which do not have 
two adjacent 1 'so In general, ~(K) is a closed invariant subset of ~, and 
a: ~(K) --. ~(K) is called a subshift of finite type. If all the entries of K are 1, 
then ~(K) = ~, and for emphasis, this is called the full shift. 

Subsequently we will need one particular subshift. Henceforth, let L = Ln 
be the transition matrix 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 
L= (1) 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 1 

That is, L has 1 's on the first superdiagonal as well as at the n, 1 and n, n 
position. Thus 1 --. 2, 2 --. 3, . . . , n - 1 --. nand n --. n, n --. 1. Let an overbar 
on a symbol, or sequence of symbols, mean that it is to be repeated infinitely 
often; so, 1.2345 = ... 111.234555 .... 

Proposition 2. Consider the dynamical system a : ~(L) --. ~(L). (i) It has a unique 
fixed point. (ii) It has periodic points of all periods greater than or equal to n. 
(iii) The periodic points and the points homoclinic to them are dense. (iv) There is 
an invariant subspace ~* c ~(L) for an such that an: ~* --. ~* is equivalent to 
a: ~(2) --. ~(2), the full shift on 2 symbols. 

PROOF. The fixed point is f = n.n. The point n.123 ... n is homo clinic to fA 
periodic point of period n is 12 .. . n· 12 . . . n, a periodic point of period n + 1 is 
12 ... nn- 12 ... nn, etc. 

Define ~* as those sequences r E ~(L) of the form .. . r-1rO· r1r2 ... , where.rj 

is either the sequence IX = 12 .. . n or p = nn . . . n. an shifts the decimal point by 
n positions and so moves the decimal point over a complete block. Define an 
map h from ~* to ~(2) by h: ... '-lrO ·r1r2 .. . --. ... L 1 S0 ' SlS2" " where Sj = 1 
if rj = IX, and Sj = 2 if rj = p. This map is a homeomorphism and takes orbits 
of ak: ~* --. ~* to orbits of a: ~(2) --. ~(2). This is the equivalence referred to 
~~~ . 
2. Hyperbolic Structures 

The main result discussed in this section is the Smale-Conley theorem which 
says that a homoclinic point begets an invariant set which is equivalent to the 
subshift of finite type a: ~(L) --. ~(L)-the precise statement is given in a sub-
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sequent subsection. But before this theorem is discussed, some preliminaries 
are necessary. Consider a diffeomorphism 

(2) 

To this dynamical system is associated a linear dynamical system, 
'1': IRm x IRm --+ IRm x IRm (the variational system) defined as follows: 

'I'(p, u) = (t/I(p), Dt/I(p)u). (3) 

Here IRm and its tangent space J;,lRm are identified-really'll: IRm x TlRm-+ 
IRm x TlRm. Write 

(4) 

Recall that 2'(lRm, IRm) is the space of linear maps from IRm into IRm (i.e., 
m x m matrices). Let A c IRm be a compact invariant set for t/I. A compact 
invariant set A c IRm has a hyperbolic structure or is a hyperbolic set or 
t/I admits an exponential dichotomy over A, if there are constants K and j1., 

o < j1. < 1, and a continuous mapping P: A --+ 2'(lRm, IRm) such that P(p) is a 
linear projection operator which satisfies 

p('I'k(p)) Y(p, k) = Y(p, k)P(p) (5) 

and 

II Y(p, k)P(p)ull ~ Kj1.k Ilull, pEA, k ~ 0, 

II Y(p, k)[I - P(p)]ull ~ Kj1.-k Il ull, pEA, k ~ O. 
(6) 

Define IE; = range(P(p)) and IE; = kernel(P(p)); then since P(p) is a pro­
jection, IRm = IE; $ IE;, range(P(p)) = kernel(I - P(p)), and kernel(P(p)) = 
range(l - P(p)). The splitting of the tangent space given by J;,lRm = IRm = 
IE; $ IE; is continuous in PEA. Formula (5) states that the linear map Y(p, k) 
preserves this splitting in that 

Y(p, k) : IE; --+ IE~, (7) 

where q = t/lk(p), and Formulas (6) states that the linear map ultimately con­
tracts vectors in IE; and expands vectors in IE;. 

3. Examples of Hyprholic Sets 

a. A hyperbolic fixed point, p, of t/I: IRm --+ IRm is a hyperbolic set. Let A = 
Dt/I(p); so, IRm = IE' $ lEu where A lIEs has eigenvalues with modulus less than 1, 
and A lIEu has eigenvalues with modulus greater than 1. The operator P(p) is 
the projection onto IEs, and (I - P(p)) is the projection onto lEU. The (unstable) 
stable manifold is tangent to (lEU) IE' at p. 'I'(p, u) = (p, Au). 

b. Thorn's toral example (see Figure G.1). Let A = n D, and so A-I = 
(31 11). A has eigenvalues (3 + y0)/2 > 1 and (3 - y0)/2 < 1 and so is hy-
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Figure OJ. Thorn's torus example. 

perbolic with a one-dimensional stable direction and a one-dimensional un­
stable direction. Since these eigenvalues are irrational, the slopes of the stable 
and unstable directions are irrational. 

Since A and A-1 have integer entries, they map the integer lattice 71. x 71. 
into itself and so A and A -1 can be considered as maps of the 2-torus 1["2 = 
[R 2/71.2 into itself. Call this map of the torus A. The fixed point at the origin 
becomes a hyperbolic fixed point for A, which by the same argument as found 
in Section I.B has a stable and unstable manifold, both of which are dense 
in the torus. These stable and unstable manifolds cross in a dense set; so, 
the homoclinic points are dense also. Let q be a fixed positive integer and 
Q = {(r:x/q, /3/q): 0 ::;; r:x, /3 ::;; q}. A maps Q into itself and so is a permutation 
of this finite set; so, some power of A fixes Q. Thus, all points with rational 
coordinates are periodic points, and the set of periodic points is dense. 

The whole manifold 1["2 has a hyperbolic structure under A. The projection 
P(p) = P is the projection onto the eigenspace of A corresponding to the 
eigenvalue (3 - )5)/2 < 1. A diffeomorphism of a manifold which has a hy­
perbolic structure everywhere is called an Anosov system, after the Russian 
mathematician who did much of the early studies of such systems. One of his 
main theorems is that a small perturbation of an Anosov system is equivalent 
to the original system, and so the geometry of the orbits is not affected much 
by small perturbations. This property is know as structural stability. See Palis 
and de Melo (1980) for more discussion of these ideas. 

c. A transversal homoclinic point (see Figure G.2). Let tjI: [Rm --+ [Rm have a 
hyperbolic fixed point at p, and let q be a transversal homoclinic point; so, the 
stable and unstable manifolds (curves) of p interesect in a nontrivial way at q. 
Let A be the closure of the orbit of q; so, A = {p} u {tjlk(q) : k E 71.} . A has a 
hyperbolic structure. At each point of the orbit of q, the space IE' is the tangent 
space to the stable manifold of p, and lEU is the tangent space to the unstable 
manifold of p. At P itself, IE' and lEU are as in example a. Under positive and 
negative iterations, the orbit of q gets close to the hyperbolic fixed point p. 

Careful estimation yields the inequalities in (5). 
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1E'(q) 

Figure G.2. Transversal homoclinic point. 

4. The Shadowing Lemma 

A bi-infinite sequence x = ( ... ,x-l,Xo,Xl , ... ), x E IRm is an a-pseudo orbit 
(for t/I) if Ilxk+l - t/I(xk) II ~ a for all k. That is, an a-pseudo orbit differs from 
an actual orbit by at most a jump of distance a at each point. A pseudo orbit 
x = ( ... , X- l , XO, Xl"") is p-shadowed by an orbit {t/lk(y)} if Ilxk - t/lk(y) II ~ 
p. One of the most striking theorems in the theory of hyperbolic systems is the 
shadowing lemma of Bowen and Anosov. (Some say the result was known to 
Lamount Cranston and Margo Lane.) 

Theorem 3 (The Shadowing Lemma). Let A c IRm be a compact invariant set 
for t/I: IRm ~ IRm which has a hyperbolic structure. Then for every p > 0, there is 
an a > 0 such that every a-pseudo orbit in A is p-shadowed by an orbit {t/lk(y)}. 
Moreover, there is a Po > 0 such that if 0 < p < Po, then the t/I-orbit is uniquely 
determined by the a-pseudo orbit. 

Remarks. An outline of a proof of the shadowing lemma will be given in the 
appendix to this chapter. If the reader knows a little about the implicit func­
tion theorem in a Banach space, the proof is quite simple. The proof is in­
cluded because the proof in Meyer and Sell (1987) contains a gap which was 
filled in a more complicated setting in Meyer and Sell (1989). 

5. The Conley-Smale Theorem 

The existence of a transverse homoclinic point for a planar diffeomorphism 
implies a certain amount of chaos in the dynamical system as is seen in 
Theorem 4. 
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Figure G.3. The Smale-Conley theorem. 

Theorem 4 (Conley- Smale). Let tjJ : jR2 ---+ jR2 be a diffeomorphism with a hyper­
bolic fixed point at p and let q be a transverse homoclinic point which is homo­
clinic to p. Then there is an invariant set r c jR2 and an n such that tjJ: r ---+ r is 
equivalent to <1: 1:(Ln} ---+ 1:(Ln}. 

PROOF IN OUTLINE. Refer to Figure G.3. As discussed above, the closure of 
the orbit of q, A = {p} u {tjJk(q): k E £'}, has a hyperbolic structure. Let /30 
be as given in the shadowing lemma. Let /3 be less than /30 and also 4/3 < 
dist(q, tjJk(q» for all k # O. Since tjJk(q) ---+ P and q # p, /3 can be taken positive. 
The disks of radius /3 about p and q do not intersect. Let a be given by the 
shadowing lemma corresponding to this /3, but further require that a is less 
than /3. Draw disks of radius a/2 about p and call it D. Draw disks of radius 
a/2 about all points of the orbit of q which lie outside D. a may have to be 
contracted slightly so that all the disks are disjoint. 

Let r be the first point on the backward orbit of q which lies in D; so, 
r = tjJ-k(q), k > 0, rED, and tjJ(r) ¢ D. Let the forward orbit of r be denoted by 
ri = tjJi-l(r); so, r1 = r. Let n be such that rn is the first point on the forward 
orbit of r in D; so, r1, rn E D, and ri ¢ D for i = 2,3, .. . , n - 1. See Figure G.3. 

Let L = Ln be the n x n matrix given in (1) and 1:(L) the subshift defined 
by it. An element s E 1:(L) will be used to define an a-pseudo-orbit, and so 
by the shadowing lemma, a tjJ-orbit. The pseudo-orbit corresponding to s = 
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.. . Ll so· Sl ... is pes) = {rsJ = ... , rs_" rso' rs" .... This encoding gives only 
one option: if the pseudo-orbit is at rn , it can either jump to r1 or skip in place, 
i.e., rn may be followed by rn itself. Since rl> rn, and rn+1 are all within the disk D 
which has radius a12, this jump is at most a jump by a distance a. Every other 
point ri , i i= n, on the pseudo-orbit must be followed by ri +1 = ljJ(rJ, and so 
there is no jump there. 

By the shadowing lemma, there is a unique orbit {1jJ(y)} which {J-shadows 
the pseudo-orbit pes). Let h(s) = y; so, h: !:O(L) -+ /R 2• It follows from the proof 
of the shadowing lemma that h is continuous. To see that h is one-to-one, 
let h(s) = y and h(s') = y', where s i= s'. Since sand s' are different in some 
entry, and in particular one must be at q for some j, say pest = q, and the 
other is not, p(s')j i= q. By construction, dist(p(s)j, p(s')) > 4{J, and so 
dist(h(s)j, h(s')) > 2{J, and so h(s) i= h(s'). Thus, h is a continuous, one-to-one 
mapping of a compact Hausdorff space and, thus, is a homeomorphism. 

Let s E !:O(L) and h(s) = y. By the above construction, the ljJ-orbit of ljJ(y) 
and h(cr(s)) are {J-shadows of each other, and so by uniqueness are equal, thus 
IjJ 0 h = h 0 cr, and IjJ and cr are equivalent. _ 

H. Further Reading 

The subject of hyperbolic dynamical systems has been the object of a great 
deal of study, especially in the last 20 years. Some standard references for the 
local theory (the stable manifold theorem, etc.) are Coddington and Levinson 
(1955), Hale (1972), or Hartman (1964). Some basic references for the global 
theory are Nitecki (1972), Szlenk (1981), and Palis and de Melo (1980). Palis 
and de Melo (1980) is by far the easiest to read since it gives a good presenta­
tion of the basic geometric ideas behind the proofs. Szlenk (1981) is well 
written and contains a wealth of material. Nitecki (1972) is dated, and some­
times the proofs are a little sketchy. 

Siegel and Moser (1971) has some of the material on the local theory of 
Hamiltonian systems. Their approach is very analytic and the text is a well 
written. Arnold (1978) is a lively introduction to the geometric theory with 
lots of intuition. However, Arnold's book lacks details at critical points in 
the development. Abraham and Marsden (1978) has a great deal on sym­
plectic geometry, which makes it hard to read. (The book is well written­
the material is just hard.) It does not cover the more basic material as 
given in this chapter. Those who like to read tough books should read 
Wintner (1941). It still contains a lot of information that cannot be found 
anywhere else. 

The material on the shadowing lemma and the Smale-Conley theorem is 
taken from Meyer and Sell (1989). The complete theorem on reduction can be 
found in Meyer (1973). 
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Appendix. Proof of Shadowing Lemma 

Use the notation of Section G.1t can be shown that there is no loss of general­
ity in assuming that K = 1 because this can be accomplished by renorming. 
Henceforth, assume that K = 1. Moreover, assume that all orbits of '" are 
bounded. There is no loss of generality in these two assumptions- see Prob­
lems Section. 

First, reformulate the theorem using some ideas from functional analysis 
- those unfamiliar with functional analysis may wish to skip to the next 
chapter. Let 2 be the space of all bounded bi-infinite sequences x = 
( ... , X-I' Xo, Xl" " )' X E IRm, with norm Ilxll = sUPklxkl, where 1'1 is the norm 
in IRm. (2, 11'11) is a Banach space-it is essentially too ' Define ff2 ~ 2 by 
ff(Xk)k = "'(xk-d. A fixed point of ff is a ",-orbit since ff(x) = X means Xk = 
"'(Xk- l ) for all k. X E 2 is an a-pseudo-orbit, if IIff(x) - xII :::;; a and X E 2 
p-shadows an orbit y E 2 if IIx - yll :::;; p. Thus, the shadowing lemma says 
that an almost fixed point for ff in a hyperbolic set is close to a true fixed point. 

Let &l(a) denote the set of a-pseudo-orbits of", in A. The reformulated 
shadowing lemma is: For every p > 0, there is an a > ° such that if X E &l(a), 
then ff has a fixed point y in a p neighborhood of x. This formulation sug­
gests the use of the implicit function theorem in a Banach space with esti­
mates. Thus, some estimates on the derivative of ff are necessary. 

Since 2 is a linear space, it is its own tangent space, and so its tangent 
bundle is 2 x 2 . By using the splitting of the tangent spaces over A, there 
follows a splitting of the tangent bundle of &l(a) in the form 

2 x &l(a) = !/ Ef> OIl, (1) 

where 
!/ = U !/(x), !/(X) = EB IES(Xi), 

x i 

OIl = U OII(x), OII(x) = EB 1E"(xJ 
(2) 

x i 

What this means is that if X E &l(a) and W E2, then there is a unique decom­
position W = U Ef> v with U E !/(x) and U E OII(x). Indeed, one has Ui = P(xJwi 
and Vi = (I - P(X;))Wi ' Since the projector P is uniformly bounded on the 
compact set A, the norm II . II I defined by 

IIwlI ' = IIuli + IIvll (3) 

is equivalent to the original norm 11'11. The equivalence of the two norms 
means there is a constant K I > ° such that 

Ki l II wil' < IIwil < KI IIwII '· (4) 

For simplicity, define ~(x) = ff(x) - X; so, seek a zero of~. The function 
~ is differentiable with derivative D~(x) : 2 ~ 2, which is a linear map for 
each X E 2 and is given by 

(D~(X)W)i = D"'(Xi-dwi- 1 - Wi = Y(X i- l , I)Wi- 1 - Wi' (5) 
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Lemma 1. There is an rx' > 0 and a K 2 such that 

IID~(x)1I < K2 and IID~(xrlll < K2 (6) 

for all x E 8i(rx'). 

PROOF. The first estimate is trivial because Dt/I is uniformly bounded on the 
compact set A. In order to verify the second inequality, it suffices to show that 
D~ has a uniform lower bound for all x E 8i(rx'). This will be verified by using 
the equivalent norm IIwll' = lIull + Ilvll· 

The first step is to show that there is an a > 0 such that 

allull ~ IID~(x)ull, u E 9'(x), 

allvll ~ IID~(x)vll, v E OU(x), 
(7) 

provided x E 8i(rx') and rx' is sufficiently small. Using (G.6) with K = 1 and (5) 
and x E 8i(rx) and u E 9'(x), it follows that 

I(D~(x)u)d = IDt/I(xi-dui- 1 - uil ~ Iud - ID~(x)Ui-ll 
(8) 

~ Iud -Itlui-ll ~ luil- Ililuli. 
Hence, I(D~(x)u)d + Ililull ~ IUil, which implies IID~(x)ull ~ (1 - 1l)lIull. 
Similarly if v E OU(x), then 

I(D~(x)v)d = IDt/I(Xi-1)Vi-l - vd ~ ID~(x)Vi-ll -Ivd 

~ 1l-1Ivi_11 - Ivd ~ 1l-1Ivi_ll - Ilvll· 
(9) 

Hence, I(D~(x)u)d + Ilvll ~ 1l-1Ivi_ll, which implies IID~(x)vll ~ (1l-1 - 1) Ilvll . 
Thus, (7) is established. 

The next step is to show that there is a constant K3 > 0 such that for every 
e > 0 there is an rx > 0 satisfying 

IID~(x)ull + IID~(x)vll ~ IID~(x)wll' + K 3ellwll' (10) 
for all x E 8i(rx). Since the projector P is continuous for e > 0, there is an 
rx = rx(e) so that IIP(x1) - P(x 2 )11 ~ e whenever IXI - x 2 1 ~ rx. If x E 8i(rx), 
then 1t/I(Xi-l) - xii ~ rx for all i and, consequently, 

for all i. 
Now using (5) and (G.5) 

(D~(X)U)i = Y(Xi- l , l)Ui-l - Ui 

= Y(Xi- 1, I)P(Xi- 1)Wi- 1 - P(x;)wi 

= P(t/I(xi-d) Y(Xi- l , l)wi - 1 - P(x;)wi 

= P(x;) [Y(Xi - 1 , 1)Wi - 1 - wa 
+ [P(t/I(Xi- 1)) - P(xi)] Y(Xi- 1, l)Wi-1 

= P(x;)(D~(X)W)i + [P(t/I(X i- 1)) - P(x;)] Y(Xi- l , l)wi - l . 

(11) 

(12) 
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This with (7) gives 

IID~{x)ull :::; sup IP{xJ{D~{x)w)d + K 4 e Ilwll, (13) 
i 

where K4 = sup{ II Y{xo, 1) II: Xo E A}. Similarly, one obtains 

IID~{x)vll :::; sup 1[1 - P{xi)]{D~{x)w)il + K4ellwll. (14) 
i 

By adding these last two inequalities and using (3) and (4), one gets (to) with 
K3 = 2K4K 1 . The inequalities(7) and (ll) imply 

By fixing e so that 0 < K3e < a and setting rx.' = ex{e), one obtains 

(a - K 3 e)llwll' :::; IID~{x)wll' for x E aJ{rx.'), 

which completes the proof of the lemma. 

(IS) 

(16) 

• 
The hyperbolic structure is stable under perturbation and so can be ex­

tended to a neighborhood of A. So by the above, the inequalities in (7) can be 
extended to a neighborhood of aJ{ex'). That is, there is a b' > 0 and a K4 such 
that 

(17) 

for all x E !l' with dist{x, aJ{ex')) :::; b'. 
The following version of the inverse function theorem with estimate can be 

found in Hartman (1964). 

Theorem 2 (The Inverse Function Theorem). Let !![ be a Banach space, B6{xO) 
the ball of radius b about Xo, and .Yt': B6(xO) ~!![ a C1 function with Yo = 
.Yt'{xo). Assume that D.Yt'{x) has a bounded inverse with 

IID.Yt'{x) II :::; K and II D.Yt' 1 (x) II :::; K (18) 

for all x E B6{XO). where K is a constant. Let p = b/K2 and (J = b/K. There 
exists a domain 0, with Bp{xo) C 0 C B6{xO), such that .Yt' is one-to-one on O. 
Moreover, BAyo) c .Yt'{O). In particular, for every y E BAyo), there is a unique 
x E 0 with y = .Yt'{x), and the mapping x = .Yt'-l{y) is continuous on B,,{Yo). 

Apply this version of the inverse function theorem to the function ~. For 
13 > 0 define 

ex = min{f3/2K4' ex'), b = min{f3, b'). (19) 

Let x be any fixed ex-pseudo-orbit and Yo = ~(x). Then Ilyo II = 11~{x)11 :::; ex. If 
x' E B6{x), then Ilx - x' II < b :::; boo Hence, (17) holds for all x' E B6{X). Let 
(J = b/K4 be given by Theorem 2. Then (J = 2ex, and consequently, 0 E B,,{Yo). 
By Theorem 2, there is ayE B6{x) with ~(y) = 0, i.e" y is a ",-orbit. Further­
more, II y - x II < b :::; 13; so, y is a f3-shadow of x. 
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If Po = Do/K~, then Theorem 2 says that '§ is one-to-one on Bbo(xo) for 
x E ~(cx'). Thus, the distance between zeros of'§ is at least Po, and this proves 
the uniqueness part of the shadowing lemma. _ 

A dynamical system fjJ: X -+ X, where (X, d) is a metric space, is expan­
sive, if there is a constant I] > 0 such that if u i= v, then for some n E 71, 
d(r(u), fjJn(v)) ~ 1]. By the uniformity of the above estimate on the distance 
between zeros of '§, one has that if x and x' are distinct !/I-orbits in 11, then 
Ilx - x' II ~ Po. This implies: 

Corollary 3. A dynamical system on a hyperbolic set is expansive. 

Problems 

1. Let {tA} be a smooth dynamical system, i.e., {¢,} satisfies (A.4). Prove that ¢(t, ~) = 
¢,(~) is the general solution of an autonomous differential equation. 

2. Let IjJ be a diffeomorphism of IRm; so, it defines a discrete dynamical system. 
A non-lixed-point is called an ordinary point. So p E IRm is an ordinary point if 
ljJ(p) of. p. Prove that there are local coordinates x at an ordinary point p and 
coordinates y at q = ljJ(p) such that in these local coordinates YI = XI' ... , 

Ym = xm· (This is the analog of the flow box theorem for discrete systems.) 

3. Let IjJ be as in Problem 2. Let p be a fixed point p ofljJ. The eigenvalues of oljJ(p)/ox 
are called the (characteristic) multipliers of p. If all the multipliers are different from 
+ 1, then p is called an elementary fixed point of 1jJ. Prove that elementary fixed 
points are isolated. 

4. a. Let 0 < a < b and ~ E IRm be given. Show that there is a smooth non-negative 
function y: IRm -> IR which is identically + 1 on the ball Ilx - (II :.,:; a and identi­
cally zero for Ilx - ~II ~ b. 

b. Let 0 be any closed set in IRm. Show that there exists a smooth, non-negative 
function .,: IRm -> IR which is zero exactly on O. 

5. Let H(ql, ... ,qN,PI, ... ,PN)' qi, Pi E 1R3, be invariant under translation; so, 
H(ql + s, ... ,qN + S,PI"",PN) = H(ql, ... ,qN,PI"",PN) for all s E 1R3. Show 
that total linear momentum, L = LPi, is an integral. This is another consequence 
of the general Noether theorem. 

6. An m x m nonsingular matrix T such that T2 = I is a discrete symmetry of (or a 
reflection for) x = f(x) if and only if (Tx) = - Tf(x) for all x E IRm. The equation is 
also called a reversible system in this case. 
a. Prove: If T is a discrete symmetry of(1), then ¢(t, n) == T¢( - t, ~) where ¢(t, ~) 

is the general solution of x = f(x). 
b. Consider the 2 x 2 case and let T = diag(1, -1). What does f(Tx) = - Tf(x) 

mean about that the parity of fl and f2? Show that Part a means that a reflec­
tion of a solution in the x I axis is a solution. 

7. Let T be a discrete symmetry of Equation (D.l). Let FIX = {x E IRm: Tx = x}. 
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Show that if ¢J(t) is a solution of (1) with ¢J(O) E FIX and ¢J(,) E FIX for some 
, =I 0, then ¢J is 2'-periodic. 

8. Let "§ be a matrix Lie group, i.e., "§ is a closed subgroup of the general group 
GI(m, IR). (See the problems at the end of Chapter II.) "§ is a symmetry group for 
x = f(x) if Tf(x) = f(Tx) for al T E "§ and x E IRm. 
a. Prove: If "§ is a symmetry group for (1), then ¢J(t, n) ~ T¢J(t, ~), where ¢J is the 

general solution of x = f(x) . 
b. Consider the 2 x 2 case where "§ is SO(2, IR) the group of rotations of the plane 

(i.e., orthogonal matrices with determinant + 1). In polar coordinates (r, O), 
x = f(x) becomes f = R(r, 0), tJ = err, 0). Prove that the symmetry condition 
implies Rand e are independent of O. 

9. Now let x = f(x) be Hamiltonian with Hamiltonian H: 1R2n ---> IR; so, f(x) = 
JVH(x). A matrix Tis antisymplectic if TT JT = -J. An antisymplectic matrix T 
such that T2 = I is a discrete symplectic symmetry for H if H(Tx) ~ H(x). 
a. Prove: A discrete symplectic symmetry of the Hamiltonian is a discrete symme­

try of the equation x = f(x) . 
b. Consider a general Newtonian system as discussed in (I.B.4) of the form 

H(x, p) = !pTM- Ip + F(x) where x, p E IRm and M is a nonsingular, symmetric 
matrix. Define T = diag(l, - I); so, T2 = I, show that Tis anti symplectic and 
H(T(x, p)) = H(x, pl. 

c. Consider the restricted 3-body problem as discussed in (I.C.4). Let T = 
diag(l, -1, -1, 1); show H(T(x, y)) = H(x, y) where H is the Hamiltonian of 
the restricted 3-body problem (1.C.9). 

d. What is FIX of Problem 7 for these two examples? 

10. Use Problems 7 and 9. 
a. Show that a solution of the restricted problem which crosses the XI axis (the 

line of syzygy) at a time t I and later at a time t 2 is of period 2(t 2 - t d. 
b. Show that the above criterion is X2 = YI = 0 at times tl and t2 in rectangular 

coordinates, and 0 = nn (n an integer), R = 0 in polar coordinates. 

11. Let "§ be a matrix Lie group of symplectic matrices, i.e., "§ is a subgroup of the 
symplectic group Sp(n, IR). Let x = f(x) be Hamiltonian with Hamiltonian H. "§ is 
a symmetry group for the Hamiltonian H if H(Tx) = H(x) for all T E "§. Prove: A 
symmetry group for the Hamiltonian H is a symmetry group for the equations of 
motion. 

12. Prove that the tangent spaces to points in a hyperbolic set can be renormed 
so that the constant K in (G.9) can be taken as 1. [Hint: If WE J;,A, A hyper­
bolic, then W = u + v, U E IE; and v E IE;. Define the norm II'II~ in J;,A by 
Il wll~ = max(llullp, Il vllp), where Ilulip = sup{K-IllkIIY(p, k)ull: k;;:: O} and Ilvllp = 
sup{K- Illk II Y(p, k)vll: k::s; O}]. 

13. Prove that the closure of the orbit of a transverse homoclinic point is a hyperbolic 
set. (For differential equationists only.) 

14. Prove that the inequalities (G.5) and (G.6) defining a hyperbolic structure on a 
compact invariant set A can be extended to a neighborhood of A. [This requires a 
contracting mapping proof. Model your proof on the prooffor a hyperbolic struc­
ture being stable under small perturbations. See Szlenk (1981).] 



CHAPTER VI 

Continuation of Periodic Solutions 

In the last chapter, some local results about periodic solutions of Hamiltonian 
systems were presented. The systems contain a parameter, and the conditions 
under which a periodic solution can be continued in the parameter were 
discussed. Since Poincare used these ideas extensively, it has become known 
as Poincare's continuation method. By Lemma V.E.2, a solution r/>(t, e') of an 
autonomous differential equation is T-periodic if and only if r/>(T, 0 = C 
where r/> is the general solution. This is a finite-dimensional problem since r/> 
is a function defined in a domain of IRm+l into IRm. Thus, periodic solutions 
can be found by the finite-dimensional methods, i.e., the finite-dimensional 
implicit function theorem, the finite-dimensional fixed point theorems, the 
finite-dimensional degree theory, etc. This chapter will present results which 
depend only on the finite-dimensional implicit function theorem. Chapter X 
will present a treatment of fixed point methods as they apply to Hamiltonian 
systems. In this chapter the periodic solutions vary continuously with the 
parameter ("can be continued"), but Chapter VII will discuss the bifurcations 
of periodic solutions. 

After some elementary general results a variety of families of periodic solu­
tions are given in the 3-body problem and the restricted problem. The first 
result is a simple proof of the Lyapunov Center Theorem with applications to 
the five libration points in the restricted problem. Then in the next three sec­
tions, the circular orbits of Kepler's problem are continued into the restricted 
problem when one mass is small (Poincare solutions), when the infinitesimal 
is near a primary (Hill's solution), and when the infinitesimal is near infinity 
(comet solutions). Lastly, a general theorem on the continuation of periodic 
solutions from the restricted problem to the fu1l3-body problem is given. 
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Assume that the differential equations depend on some parameters; so, 
consider 

x = f(x, v), (1) 

where f: 0 x Q -+ [Rm is smooth, 0 is open in [Rm, and Q is open in [Rk. Let ~' 
be an equilibrium point when v = Vi [f(~/, v') = 0], a continuation of this 
equilibrium point is a smooth function u(v) defined for v near Vi such that 
u(v') = ~/, and u(v) is an equilibrium point for all v [f(u(v), v) = 0]. The gen­
eral solution fjJ(t, ~, v) is smooth in the parameter v also. Let the solution 
fjJ(t, ~', Vi) be T-periodic. A continuation of this periodic solution is a pair of 
smooth functions, u(v), r(v), defined for v near Vi such that u(v') = ~/, r(v') = T, 
and fjJ(t, u(v), v) is r(v)-periodic. One also says that the periodic solution can 
be continued. This means that the solution persists when the parameters 
are varied, and the periodic solution does not change very much with the 
parameters. 

Recall (see Section V.E) that an equilibrium point ~' for (1) when v = Vi 
[f(~/, Vi) = 0] is elementary if fJf(~/, V')/fJ~ is nonsingular, i.e., if zero is not an 
exponent. The solution fjJ(t, ~/, Vi) is T-periodic if and only if fjJ(T, ~/, Vi) = ~/. 

This periodic solution is elementary if + 1 is an eigenvalue of the monodromy 
matrix fJfjJ(T, ~/, V')/fJ~ with multiplicity 1 for a general autonomous differen­
tial equation and of multiplicity 2 for a system with a nondegenerate integral 
(e.g., a Hamiltonian system). Recall that the eigenvalues of fJfjJ(T, ~/, V')/fJ~ are 
called the multipliers (of the periodic solution). Drop one + 1 multiplier for a 
general equation, and drop two + 1 multipliers from the list of multipliers to 
get the nontrivial multipliers. 

Proposition 1. An elementary equilibrium point or an elementary periodic 
solution or an elementary periodic solution in a system with a nondegenerate 
integral can be continued. 

PROOF. For equilibrium points, apply the implicit function theorem to 
f(x, v) = O. By assumption, f(~/, Vi) = 0, and fJf(~/, v')/fJx is nonsingular; so, 
the implicit function theorem asserts the existence of the function u(v) such 
that u(v') = ~' and f(u(v), v) == O. 

Since the existence of the first return time, and the Poincare map depended 
on the implicit function theorem these functions depend smoothly on the 
parameter v. For the rest of the proposition, apply the implicit function theo­
rem to P(x, v) - x = 0, where P(x, v) is the Poincare map of the cross section 
to the periodic solution when v = v'. 

Similarly, if the system has an integral, I(x, v), then the construction of the 
Poincare map in an integral surface depends smoothly on v. Again apply the 
implicit function theorem to the map Q(x, v) - x = 0, where Q(x, v) is the 
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Poincare map in the integral surface of the cross section to the periodic solu­
tion when v = v'. _ 

There is a similar definition of continuation and a similar lemma for fixed 
points. 

Corollary 2. The exponents of an elementary equilibrium point, and the multi­
pliers of an elementary periodic solution (with or without nondegenerate inte­
gral) vary continuously with the parameter v. 

PROOF. For equilibrium points, the implicit function theorem was applied of 
f(x, v) = 0 to get a function u(v) such that u(v') = ~' and f(u(v), v) == O. The 
exponents of the equilibrium u(v) are the eigenvalues of of(u(v), v)/x. This 
matrix varies smoothly with the parameter v, and so its eigenvalues vary 
continuously with the parameter v. (See Problems Section for an example 
where the eigenvalues are not smooth in a parameter.) The other parts of the 
theorem are proved using the same idea applied to the Poincare map. _ 

Corollary 3. A small perturbation of an elliptic (respectively a hyperbolic) 
periodic orbit of a Hamiltonian system of two degrees of freedom is elliptic 
(respectively hyperbolic). 

PROOF. If the system has two degrees of freedom, then a periodic solution has 
as multipliers + 1, + 1, A, I = A -1, and so the multipliers lie either on the real 
axis or the unit circle. If the periodic solution is hyperbolic, then A and A -1 lie 
on the real axis and are not 0 or ± 1. A small change cannot make these 
eigenvalues lie on the unit circle or take the value 0 or ± 1. Thus, a small 
change in a hyperbolic periodic solution is hyperbolic. A similar argument 
holds for elliptic periodic solutions. _ 

B. Lyapunov's Center Theorem 

An immediate consequence of the discussion in the previous section is the 
following celebrated theorem. 

Theorem 1 (The Lyapunov Center Theorem). Assume that a system with a non-
degenerate integral has an equilibrium point with exponents ± wi, A3 , . .. , Am' 
where iw # 0 is pure imaginary. If Aj/ iw is never an integer for j = 3, ... , m, 
then there exists a one-parameter family of periodic orbits emanating from 
the equilibrium point. Moreover, when approaching the equilibrium point along 
the family, the periods tend to 2rr./w and the nontrivial multipliers tend to 
exp(2rr.A)W),j = 3, .. . , m. 
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Remark. The Hamiltonian is always a nondegenerate integral for a non­
constant periodic solution. 

PROOF. Say that x = 0 is the equilibrium point, and the equation is 

x = Ax + g(x), (1) 

where g(O) = og(O)/ox = O. Since we seek periodic solution near the origin, 
scale by x -+ BX where e is to be considered as a small parameter. The equa­
tions become 

x = Ax + O(B), (2) 

and when e = 0, the system is linear. Since this linear system has exponents 
±wi, it has a periodic solution of period 2n/w of the form exp(At)a, where a is 
a fixed nonzero vector. The multipliers of this periodic solution are the eigen­
values of exp(A2n/w), or 1, 1, exp(2nAj/w). By assumption, the nontrivial 
multipliers are not + 1, and so this periodic solution is elementary. From 
Proposition A.l, there is a periodic solution of the form exp(At)a + O(B). In 
the unscaled coordinates, the solution is of the form e exp(At)a + O(BZ), and 
the result follows. • 

1. Applications to the Euler and Lagrange Libration Points 

In Section II.G, the linearized equations at the five libration (equilibrium) 
points of the restricted 3-body problem were analyzed. The eigenvalues at the 
three collinear lib ration points of Euler were shown to be a pair of real eigen­
values and a pair of pure imaginary eigenvalues. Thus, Lyapunov's theorem 
implies that there is a one-parameter family of periodic solutions emanating 
from each of these libration points. 

By symmetry we may assume that 0 < 11 :::;; t. At the equilateral triangle 
libration points of Lagrange, the characteristic equation of the linearized sys­
tem was found to be 

where 11 is the mass ratio parameter. The roots of (3) satisfy 

AZ = t( -1 ± Jl - 2711(1 - 11)), 

(3) 

(4) 

which implies that for 0 < 11 < 111 = (1 - .)69/9)/2 ~ 0.0385, the eigenvalues 
are distinct pure imaginary numbers ±W1i, ±wzi, with 0 < Wz < WI. Since 
iwz/iw1 is less than 1 in modulus, Lyapunov's theorem implies that there is a 
family of periodic orbits emanating from 24 with period approaching 2n/w1 
for all 11, 0 < 11 < 111. This family is called the short period family. 

Define Ilr to be the value of 11 for which wdwz = r. If 0 < 11 < 111 and 
11 "# Iln' n = 1, 2, ... , then Lyapunov's theorem implies that there is a family 
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of periodic orbits emanating from !t'4 with period approaching 2rc/W2 ' This 
family is called the long period family. 

The mass ratios jJ.r satisfies 

1 1 { 16r2 }1/2 
jJ.r = 2" - 2" 1 - 27(r2 + 1)2 ' 

(5) 

so, o· ·· < jJ.3 < jJ.2 < jJ.l · 

C. Poincare's Orbits 

The essence of the continuation method is that the problem contains a pa­
rameter, and for one value of the parameter, there is a periodic solution whose 
multipliers can be computed. The restricted 3-body problem has a parameter, 
jJ., the mass ratio parameter, and when jJ. = 0, the problem is just the Kepler 
problem in rotating coordinates. The Kepler problem has many periodic 
solutions, but they all have their multipliers equal to + 1 in fixed coordinates, 
whereas the circular orbits have nontrivial multipliers in rotating coordi­
nates. Thus, the circular solutions of the Kepler problem can be continued 
into the restricted problem for small values of jJ.. 

The reason that all the multipliers are + 1 for the Kepler problem in fixed 
coordinates is that all the periodic solutions in any energy level have the same 
period and so are not isolated in an energy level (see Proposition V.E.6). 

The Hamiltonian of the restricted problem (1.C.9) is 

H = II yll2 _ x T Ky _ ~ _ 1 - jJ., 

2 dl d2 
(1) 

where di = (Xl - 1 + jJ.)2 + xL d~ = (Xl + jJ.)2 + x~, and K = (~l l,). Recall 
that X T Ky is just angular momentum. Consider jJ. as a small parameter; so, the 
Hamiltonian is of the form 

(2) 

Be careful of the O(jJ.) term because it has terms which go to infinity near 
the primaries; therefore, a neighborhood of the primaries must be excluded. 
When jJ. = 0, this is the Kepler problem in rotating coordinates. Put this 
problem in polar coordinates (see Section IV.C) to get (when jJ. = 0) 

H=~(R2+ 02)_0_~, 
2 r2 r 

. 0 2 1 
r=R, R= - - -r3 r2' 

. 0 
() = 2" - 1, 

r 

(3) 

(4) 
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0, angular momentum, is an integral; so, let 0 = c be a fixed constant. For 
c # 1, the circular orbit R = 0, r = CZ is a periodic solution with period 
12nc3/(1 - c3 )1 (this is the time for () to increase by 2n). Linearizing the rand R 
equations about this solution gives 

r=R, (5) 

which has solutions of the form exp( ± it/c3 ), and so the nontrivial multipliers 
of the circular orbits are exp( ± i2n/(1 - c3 )) which are not + 1, provided 
1/(1 - c3 ) is not an integer. Thus, we have proved: 

Theorem 1 (Poincare). If c # 1 and 1/(1 - c3 ) is not an integer, then the 
circular orbits of the Kepler problem in rotating coordinates with angular 
momentum c can be continued into the restricted problem for small values of Jl. 
These orbits are elliptic. 

The rotating coordinates used here rotate counterclockwise, and so in 
fixed coordinates the primaries rotate clockwise. If c < 0, then (j < 0, and 
1/(1 - c3 ) is never an integer. Orbits with these angular momentum rotate 
clockwise in either coordinate system and so are called retrograde orbits. 

If c > 0, c # 1, and 1/(1 - c3 ) is not an integer, then in the fixed coordi­
nates, these orbits rotate counterclockwise and so are called direct orbits. The 
circular orbits of the Kepler problem when 1/(1 - c3 ) is an integer, say k, 
undergo a bifurcation when Jl # 0, but this is too lengthy a problem to be 
discussed here. 

D. Hill's Orbits 

Another way to introduce a small parameter is to consider the case when the 
infinitesimal particle is very near one of the primaries. This is usually referred 
to as Hill's problem because he extensively investigated the motion of the 
moon, which to a first approximation is like this problem. 

Consider the restricted problem where one primary is at the origin, i.e., 
replace Xl by Xl - Jl and yz by Yz + Jl; so, the Hamiltonian (C.1) becomes 

II y liz T Jl 1 - Jl Z 
H= - --x Ky--- -- -Jl 

2 dl dz ' 
(1) 

where di = (Xl - W + x~, d~ = xi + x~. Introduce a scale parameter 6 by 
changing coordinates by X = 6z~, Y = 6-11], which is a symplectic change of 
coordinates with multiplier 6-1. In the scaling, all constant terms will be 
dropped from the Hamiltonian because they do not affect the equations of 
motion. Note that if !IeI1 is approximately 1, then Ilxll is about 6z, or IIxll 
is very small when 6 is small. Thus, 6 is a measure of the distance of the 
infinitesimal particle from the primary at the origin and so will be consid-
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ered as the small parameter. We fix the mass ratio parameter, J.l, as arbitrary 
(i.e., not small), and for simplicity we set e2 = 1 - jl, e > O. The Hamiltonian 
becomes 

3 [1 (2 ( 2) 1J 5) H=-0+e 2 R +7 -r: +O(e, (2) 

The dominant term is the Hamiltonian of the Kepler problem, and the next 
most important term is the rotational term; so, this formula says that when 
the infinitesimal is close to the primary that has mass e2 = 1 - J.l the main 
force on it is the gravitational force of the primary that has mass e2 = 1 - J.l. 
The next most important term is the Coriolis term. 

Kepler's third law says that the period of a circular orbit varies with the 
radius to the 3/2 power; so, time should be scaled by t ~ e- 3t and H ~ e3 H, 
and the Hamiltonian is 

Introduce polar coordinates as before; so, 

r= R, 

. 0 
() = 2" - e\ 

r 

(3) 

(4) 

(5) 

In the equations in (5) the terms of order e4 have been omitted. Omitting these 
terms gives a system where 0 is an integral. The two solutions, 0 = ± e, 
R = 0, r = 1, are periodic solutions of (5) of period 2n/(e + e3 ). Linearizing 
the rand R equations about this solution gives 

r= R, (6) 

Equations (6) have solutions of the form exp( ± iet), and so the nontrivial multi­
pliers of the circular orbits of (5) are exp( ± ie2n/(e + e3 )) = + 1 ± e3 2ni/c + 
0(e6 ). 

Consider the period map in a level surface of the Hamiltonian about this 
circular orbit. Let u be the coordinate in this surface, with u = 0, correspond­
ing to the circular orbit when e = O. From the above, the period map has a 
fixed point at the origin up to terms of order e3 and is the identity up to terms 
of order e2 , and at e3 there is a term whose Jacobian has eigenvalues ±2ni/e. 
That is, the period map is of the form P(u) = u + e3p(u) + 0(e4 ), where 
p(O) = 0, and op(O)/ou has eigenvalues ±2ni/e; so, in particular, op(O)/ou is 
nonsingular. Apply the implicit function theorem to G(u, e) = (P(u) - u)/e3 = 
p(u) + O(e). Since G(O,O) = 0 and oG(O, O)/ou = op(O)/ou, there is a smooth 
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function u(e) such that G(u(e), e) = 0 for all e sufficiently small. Thus, the two 
solutions can be continued from the equations in (5) to the full equations, 
where the 0(e4 ) terms are included. These solutions are elliptic also. 

In the scaled variables, these solutions have r ~ 1 and period T ~ 2n. In 
the original unsealed variables, the periodic solution has Ilxll ~ e3 with period 
T ~ e- 3 . 

Theorem 1. There exist two one-parameter families of nearly circular elliptic 
periodic solutions of the restricted 3-body problem which encircle a primary for 
all values of the mass ratio parameter. These orbits tend to the primary. 

E. Comets 

Another way to introduce a small parameter is to consider orbits that are 
close to infinity. In the Hamiltonian of the restricted problem (C.1), scale the 
variables by x -+ e- 2 x, y -+ ey; this is symplectic with multiplier e. The Hamil­
tonian becomes 

H TK 3 {IIYI12 1} O( 5) = -x y+e - 2- -llxll + e. (1) 

Now e small means that the infinitesimal is near infinity, and (1) says that near 
infinity the Coriolis force dominates, and the next most important force looks 
like a Kepler problem with both primaries at the origin. Again change to 
polar coordinates to get 

(2) 

(3) 

As before, the terms of order e5 have been dropped from the equations in (3), 
and to this order of approximation, e is a integral. A pair of circular periodic 
solutions of (3) are e = ± 1, R = 0, r = 1, which are periodic of period 
2n/(1 =+= e3 ). Linearizing the rand R equations about these solutions gives 

(4) 

Equations (4) have solutions of the form exp{ ± ie3t), and so the nontrivial 
multipliers of the circular orbits of (3) are exp{±ie3 2n/{1 =+= e3 » = +1 ± 
e3 2ni + 0{e6 ). Repeat the argument given in the last section to continue these 
solutions into the restricted problem. 
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Theorem 1. There exist two one-parameter families of nearly circular large 
elliptic periodic solutions of the restricted 3-body problem for all values of the 
mass ratio parameter. These orbits tend to infinity. 

F. Continuation from the Restricted 
to the Full Problem 

In this chapter, four classes of periodic solutions of the restricted problem 
have been established: Lyapunov solutions at the lib ration points, Poincare's 
orbits of the first kind, Hill lunar orbits, and comet orbits. All of these families 
are elementary, and most are elliptic. In this section, these solutions and 
more will be continued into the full 3-body problem, where one of the three 
particles has small mass. 

Periodic solutions of the N-body problem are never elementary because 
the N -body problem has many symmetries and integrals. As was shown in 
Section V.E, an integral for the system implies + 1 as a multiplier of a periodic 
solution. In fact, the multiplicity of + 1 as a multiplier of a periodic solution is 
at least 8 in the planar N-body problem and at least 12 in space. The only way 
around this problem is to exploit the symmetries and integrals themselves and 
to go directly to the reduced space as discussed in Section V.D. 

A.solution of the N-body problem will be called a periodic solution if its 
projection on the reduced space is periodic. Note that it need not be periodic 
in phase space; in fact, it is not usually. A periodic solution of the N-body 
problem will be called an elementary periodic solution, if its projection on the 
reduced space is periodic and the multiplicity of the multiplier + 1 of the 
periodic solution on the reduced space is exactly 2, i.e., it is elementary on the 
reduced space. 

The main result of this section is the following general theorem. 

Theorem 1 (Hadjidemetriou). Any elementary periodic solution of the planar 
restricted 3-body problem whose period is not a multiple of 2n can be continued 
into the full 3-body problem with one small mass. 

The proof is an easy consequence of two procedures that have previously 
been discussed: the scaling of Section IV.DJ and the reduction in Section 
V.D. These facts will be recalled now before the formal proof of this theorem 
is given. 

Recall the scaling given in Section IV.D.3, consider the planar 3-body 
problem in rotating coordinates with one small particle, m3 = B2. The Hamil­
tonian is then of the form 

IIv3112 T 2 B2m 
H3 = - 2 2 - u3 KV3 - .L II _ II + H2 , 

B ,;1 ui u3 
(1) 

where H2 is the Hamiltonian of the 2-body problem in rotating coordinates. B 
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is a small parameter which measures the smallness of one mass. A small mass 
should make a small perturbation on the other particles; thus, s should mea­
sure the smallness of the mass and how close the two finite particles' orbits are 
to circular. To accomplish this, use one variable that represents the deviation 
from a circular orbit. 

Let Z = (u I , U2, VI' V2); so, H2 is a function of the 8-vector Z. A circular 
solution of the 2-body problem is a critical point of the Hamiltonian of the 
2-body problem in rotating coordinates, i.e., H2. Let Z* = (ai, a2, bl , b2) be 
such a critical point (later we will specify Z*). By Taylor's theorem 

H 2(Z) = H 2 (Z*) + t(Z - Z*fS(Z - Z*) + O(IIZ - Z*11 3 ), (2) 

where S is the Hessian of H2 at Z*. Since the equations of motion do not 
depend on constants, drop the constant term in (2). Change variables by 
Z - Z* = sU, U3 = ~, V3 = S211, which gives a symplectic change of variables 
with multiplier S-2. The Hamiltonian becomes 

H3 = G + tuTSU + O(s), 

G = 1111112 _ ~TKI1- ± mi 
2 i=l II~ - adl 

(3) 

Gin (3) is the Hamiltonian of the restricted 3-body problem if we take ml = Jl, 
m2 = 1 - Jl, al = (1 - Jl, 0), a2 = (- Jl, 0). (Since it is necessary to discuss 
several different Hamiltonians in the same section, our usual convention of 
naming all Hamiltonians H will lead to mass confusion.) The quadratic term 
above is simply the linearized equations about the circular solutions of the 
2-body problem in rotating coordinates. Thus, to first order in s, the Hamil­
tonian of the full 3-body problem decouples into the sum of the Hamiltonian 
for the restricted problem and the Hamiltonian of the linearized equations 
about the circular solution. 

Now look at this problem on the reduced space. Let U = (qj' q2' PI' P2) 
and M = S2 + ml + m2 = S2 + 1 (total mass); so, Ui = ai - sqi' and Vi = 
-miKai - SPi' The center of mass C, linear momentum L, and angular 
momentum A in these coordinates are 

C = {S2~ - s(mlql + m2q2)}/M, 

L = S211 - S(PI + P2)' (4) 

A = S2~TKI1 - (a j - sqlfK(m1Ka1 + spd - (a2 - sq2fK(m2Ka2 + SP2)' 

Note that when s = 0, these three qualities depend only on the variables of the 
2-body problem, U = (ql' q2' PI' P2)' and are independent of the variables of 
the restricted problem, ~, 11. So when s = 0, the reduction is on the 2-body 
problem alone. 

Look at the reduction of the 2-body problem in rotating coordinates with 
masses Jl and 1 - Jl, and let v = Jl(1 - Jl). Fixing the center of mass at the 
origin and ignoring linear momentum is done by moving to Jacobi coordi-
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nates which will be denoted by (a, p); see Section IV.B.l6 but replace (u, v) 
with (a, 13) to give 

T = 111311 2 
_ aTKf3 _ _ v_ . 

2v Iiall 
Put this problem in polar coordinates (see Section IV.C) to get 

T = ~(R2 + 0 2
) - 0 -~, 

2v r2 r 

R . 0 2 V 
r= - , R= - - -

v vr3 r2' 

. 0 
0= - -1 

vr2 ' 

(5) 

(6) 

(7) 

The reduction to the reduced space is done by holding the angular momen­
tum, 0, fixed and ignoring the angle 0 (mod out the rotational symmetry). The 
distance between the primaries has been chosen as 1; so, the relative equilib­
rium must have r = 1; therefore, 0 = v. The linearization about this critical 
point is 

r = R/v, R = -vr. (8) 

This linear equation is a harmonic oscillator with frequency 1 and comes from 
the Hamiltonian S = R2/V + vr2. 

In summary, the Hamiltonian of the 3-body problem on the reduced space 
whent: = Ois 

(9) 

PROOF OF THEOREM 1. Let e = </J(t), 1] = I/!(t) be a T-periodic solution of the 
restricted problem with multipliers 1, 1, ., .-1. By assumption, • t= 1 and 
T t= k2rc, where k is an integer. Now e = </J(t), '1 = I/!(t), r = 0, R = ° is a T­
periodic solution of the system whose Hamiltonian is HR , i.e., the Hamil­
tonian of the 3-body problem on the reduced space with t: = 0. The multi­
pliers of this periodic solution are 1, 1, ., .-1, exp(iT), and exp( - iT). Since T 
is not a multiple of 2rc, exp( ± iT) t= 1, and so this solution is elementary. By 
Proposition A.l, this solution can be continued into the full problem with 
t: t= 0, but small. _ 

G. Some Elliptic Orbits 

All of the multipliers of the elliptic solutions of the Kepler problem in either 
fixed or rotating coordinates are + 1 because they are not isolated in an 
energy level; see Proposition V.E.6. Thus, there is no hope of using the 
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methods used previously; however, the restricted problem has a symmetry 
which when exploited properly proves that some elliptic orbits can be con­
tinued from the Kepler problem into the restricted problem. The main idea 
is given in the following lemma. 

Lemma 1. A solution of the restricted 3-body problem (C.l) which crosses the 
line of syzygy (the Xl axis) orthogonally at a time t = 0 and later at a time 
t = T/2 > 0 is T-periodic and symmetric with respect to the line of syzygy. 

PROOF. This is an easy consequence of the exercises following Chapter V. • 

That is, if x = tjJ(t), Y = t/!(t) is a solution of the restricted problem such that 
x 2 (0) = YI (0) = x 2 (T/2) = YI (T/2) = 0, where T> 0, then this solution is T­
periodic and symmetric in the x 1 axis. 

In Delaunay coordinates (t, g, L, G) (see Section IV.E), an orthogonal 
crossing of the line of syzygy at a time to is 

g(to) = mn, n, m integers. (1) 

These equations will be solved using the implicit function theorem to yield the 
following theorem. 

Theorem 2. Let m, k be relatively prime integers and T = 2nm. Then the elliptic 
T-periodic solution of the Kepler problem in rotating coordinates (IV.E.3) which 
satisfies 

t(O) = n, g(O) = n, (2) 

and does not go through x = (1,0) can be continued into the restricted problem 
for Jl small. This periodic solution is symmetric with respect to the line of 
syzygy. 

PROOF. The Hamiltonian of the restriced 3-body problem in Delaunay ele­
ments for small Jl is 

1 
H = - - - G + O(IJ) 2L2 r' 

and the equations of motion are 

t = I/L 3 + O(Jl), 

g = - 1 + O(Jl), 

L= 0 + O(Jl), 

G = 0 + O(Jl). 

(3) 

(4) 

Let L6 = m/k, and let t(t, A, Jl), g(t, A, Jl), L(t, A, Jl), and G(t, A, Jl) be the solu­
tion which goes through t = n, g = n, L = A, G = anything at t = 0; so, it is a 
solution with an orthogonal crossing of the line of syzygy at t = O. 

From (4) t(t, A, 0) = t/A3 + n, g(t, A, 0) = -t + n. Thus, t(T/2, Lo, 0) = 
(1 + k)n and g(T/2, Lo, 0) = (1 - m)n, and so when Jl = 0, this solution has 
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another orthogonal crossing at time T/2 = mn. Also 

det (at/at ot/OA) = (k/m - 3n(k4/m)1/3) 0 (5) 
og/ot og/oA t=T/2,L=Lo,!I=O -1 0 #- . 

Thus, the theorem follows by the implicit function theorem. _ 

It is not too hard to show that for a fixed m and k, only a finite number 
of such elliptic orbits pass through the singularity at the other primary, x = 

(1, 0). This rules out a finite number of collision orbits and a finite number of 
G's. 

It is only a little more difficult to establish the existence of symmetric 
elliptic periodic solutions near a primary as in Section D [see Arenstorf 
(1968)]. It is also easy to show the existence of symmetric elliptic periodic 
solutions near infinity as in Section E [see Meyer (1981a)J. 

H. Further Reading 

Poincare was interested in the existence of periodic solutions in celestial 
mechanics. One of the reasons he gave for his interest was that he felt that, 
typically, periodic solutions were dense in Hamiltonian systems. The first 
volume of Poincare (1899) contains much of his work on the subject and the 
foundations of his continuation method. Poincare's work was carried on by 
Moulton and his students. Moulton (1920) contains most of the work of this 
school. 

Most of Poincare's and Moulton's work is concerned with continuing cir­
cular solutions. Arensdorf (1963, 1968) showed how to continue symmetric 
periodic solutions. Barrar (1965) uses Delaunay elements to greatly simplify 
much ofthe earlier work. Barrar's paper is a little gem. 

The simple proof of Lyapunov's center theorem was taken from Markus 
and Meyer (1980). The proof that periodic solutions can be continued from 
the restricted to the full problem was taken from Meyer (1981b). This last 
paper has many more theorems proven by the continuation method on the 
existence of periodic solutions in the N-body problem. 

Problems 

1. Consider a periodic system of equations of the form x = f(t, x, v) where v is a 
parameter, and f is T-periodic in t, f(t + T, x, v) = f(t, x, v). Let ¢>(t, ~, v) be the 
general solution, ¢>(O, ~, v) = ~. 
a. Show that ¢>(t, ~' , v') is T-periodic if and only if ¢>(T, ~', v') = ~'. 

b. A T-periodic solution ¢>(t, ~', v') can be continued if there is a smooth function 
~(v) such that ~(v') = ~', and ¢>(T, ~(v'), v') is T-periodic. The multipliers of the 
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T-periodic solution ljJ(t, ~', v') are the eigenvalues of aljJ(T, C v')/a~ . Show that a 
T-periodic solution can be continued if all of its multipliers are different from 
+1. 

2. Consider the classical Duffing's equation x + x + yx3 = A cos O1t or X = Y = 
aH/ay, Y = -x - yx3 + A cos O1t = -aH/ax, where H = t(y2 + x 2 ) + yx4/4 -
Ax cos O1t. Show that if 1/01 #- 0, ± 1, ± 2, ± 3, ... , then for small forcing, A, and 
small nonlinearity, y, there is a small periodic solution of the forced Duffing's 
equation with the same period as the external forcing, T = 2n/01. In the classical 
literature this solution is sometimes referred to as the harmonic. (Hint: Set the 
parameters y and A to zero, then the equation is linear and solvable. Note that zero 
is a T-periodic solution.) 

3. Show that the eigenvalues of(~ c/) are continuous in 11 but not smooth in 11. 

4. Hill's lunar problem is defined by the Hamiltonian 

H = IIyl12 _ xTKy _ _ 1_ + (3xi _ Ilx112) 
2 Ilxll ' 

where x, y E [R2. Show that it has two equilibrium points on the X 2 axis. Linearize 
the equations of motion about these equilibrium points, and discuss how Lyapunov's 
center and the stable manifold theorem apply. 

5. Show that the scaling used in Section D to obtain Hill's orbits for the restricted 
problem works for Hill's lunar problem (Problem 4) also. Why doesn't the scaling 
for comets work? 

6. Prove Lemma G.l, and verify that (G.1) is the condition for an orthogonal crossing 
ofthe line of syzygy in Delaunay elements. 



CHAPTER VII 

Perturbation Theory and Normal Forms 

Perturbation theory is one of the few ways that one can bridge the gap be­
tween the behavior of a real nonlinear system and its linear approximation. 
Because the theory of linear systems is so much simpler, investigators are 
tempted to fit the problem at hand to a linear model without proper justifica­
tion. Such a linear model may lead to quantitative as well as qualitative 
errors. On the other hand, so little is known about the general behavior of a 
nonlinear system that some sort of approximation has to be made. 

Many interesting problems can be formulated as a system of equations 
which depend on a small parameter, e, with the property that when e = 0 the 
system is linear, or at least integrable. This chapter develops a very powerful 
and general method for handling the formal aspects of perturbations of linear 
and integrable systems, and the next three chapters contain several rigorous 
results which depend on these formal considerations. 

A. The Method of Lie Transforms 

One of the most general methods of mathematics is to simplify a problem by a 
change of variables. The method of Lie transforms developed by Deprit (1969) 
and extended by Kamel (1970) and Henrard (1970a, b, c) is a general proce­
dure to change variables in a system of equations which depend on a small 
parameter. Deprit's original method was for Hamiltonian systems only, but 
the extensions by Kamel and Henrard handle non-Hamiltonian equations. 
Only the Hamiltonian case will be treated here. 

168 
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1. Generating a Near Identity Symplectic Change of Variables 

The general idea of this method is to generate a symplectic change of variables 
depending on a small parameter as the general solution of a Hamiltonian 
system of differential equations; see Theorem IY.A.2. X(e, y) is said to be a 
near identity symplectic change l'Jf variables (or transformation) if X is sym­
plectic for each fixed e and is of the form X(e, y) = y + O(e), i.e., X(O, y) = y. 
Since X(O, y) = y, oX(e, y)/oy is nonsingular for small e so by the inverse func­
tion theorem, the map y ~ X(e, y) has a differentiable inverse for small e. Both 
X and its inverse are symplectic for fixed e. 

Consider the nonautonomous Hamiltonian system 

dx 
de = JVW(e, x) (1) 

and the initial condition 

x(O) = y, (2) 

where W is smooth. The basic theory of differential equations asserts that the 
general solution of this problem is a smooth function X(e, y) such that X 
(0, y) == y, and by Theorem IV.A.2, the function X is symplectic for fixed e. 
That is, the differential equation (1) and the initial condition (2) define a near 
identity symplectic change of variables. 

Conversely, let X(e, y) be a near identity symplectic change of variables; 
so, there is an inverse function Y(e, x) such that X(e, Y(e, x)) == x and 
Y(e, X(e, y)) == y where defined- Y is symplectic too. Differentiating 
Y(e, X(e, y)) == y with repect to e yields (oY(e, X(e, y))/ox)(oX(e, y)/oe) + 
oy(e, X(e, y))/oe == 0 or oX(e, y)/oe == - [Y(e, X(e, y))/oxr 1 oY(e, X(e, y))/oe. 
This means that X(e, y) is the general solution of dx/de = U(e, x), where 
U(e, x) = -[Y(e, x)/oxrl oY(e, x)/oe. By Theorem IV.A.2, this equation is 
Hamiltonian; so, there is a function W(e, x) such that U(e, x) = JVW(e, x). 
This proves: 

Lemma 1. X(e, y) is a near identity symplectic change of variables if and only if 
it is the general solution of a Hamiltonian differential equation of the form (1) 
satisfying initial condition (2). 

A Hamiltonian system of equations generates symplectic transformations 
directly, which is in contrast to the symplectic transformations given by the 
generating functions in Theorem IV.C.2, where the new and old variables are 
mixed in a strange way. 
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2. The Forward Algorithm 

Let X(e, y), Y(e, x), and W(e, x) be as above; so, X(e, y) is the solution of (1) 
satisfying (2). Think of x = X(e, y) as a change of variables x -+ y which de­
pends on a parameter. Throughout this chapter, when we change variables, 
we will not change the parameter e. 

Let H(e, x) be a Hamiltonian and G(e, y) == H(e, X(e, y»; so, G is the Hamil­
tonian H in the new coordinates. We will call G the Lie transform of H 
(generated by W). Sometimes H will be denoted by H * and G by H*, and 
sometimes G will be denoted by .!e(W)H to show that G is the Lie transform 
of H generated by W. Let the function H = H *' G = H*, and Wall have series 
expansions in the small parameter e. The forward algorithm of the method of 
Lie transforms is a recursive set of formulas that relate the terms in these 
various series expansions. 

In particular let 

00 (e i
) H(e, x) = H *(e, x) = ifo iT H?(x), (3) 

00 (e i
) . G(e, y) = H*(e, y) = ifo iT Hb(y), (4) 

00 (e i
) W(e, x) =.L ~ W/+1 (x). 

1=0 l. 
(5) 

The method of Lie transforms introduces a double indexed array {Hj}, i, 
j = 0, 1, ... which agree with the definitions given in (3) and (4) when either i or 
j is zero. The other terms are intermediary terms introduced to facilitate the 
computation. 

Theorem 2. Using the notation given above, the functions {Hj}, i = 1, 2, ... , 
j = 0, 1, .. . satisfy the recursive identities 

H i Hi-l ~ (j) {H i - 1 ur } 
j = j+l + kf-O k j-k, nk+l • (6) 

Remarks. The above formulas contain the standard binomial coefficient 

(.) ., ] J. 
k = k!(j - k)!' 

Note that since the transformation generated by W is a near identity transfor­
mation, the first term in H * and H* is the same, namely, Hg. Also note that 
the first term in the expansion for W starts with WI ' This convention imparts 
some nice properties to the formulas in (6). Each term in (6) has indices sum­
ming to i + j, and each term on the right-hand side has upper index i - 1 (i.e., 
is in one column to the left). 



A. The Method of Lie Transforms 171 

In order to construct the change of variables X(e, y), note that X is the 
transform of the identity function or X(e, y) = 2(W)(id), where id(x) = x. 

The interdependence of the functions {HJ} can easily be understood by 
considering the Lie triangle 

! 

! ! 
(7) 

! ! ! 

The coefficients of the expansion of the old function H * are in the left column, 
and those of the new function H* are on the diagonal. Formula (6) states that 
to calculate any element in the Lie triangle, you need the entries in the column 
one step to the left and up. 

For example, to compute the series expansion for H* through terms of 
order e2 , you first compute HA by the formula 

which gives the term of order e, and then you compute 

H~ = H~ + {H~, Wd + {Hg, W2}, 

H~ = H~ + {HA, Wd. 

Then H*(e, x) = Hg(x) + Hb(x)e + H~(x)(e2/2) + ... . 

(8) 

(9) 

The computer age has made long formulas obsolete by favoring algo­
rithms. Here is the simple algorithm to compute H* through terms in emaxorder. 

Here HJ = H(j, i). 

input: maxorder, (H(row, 0) do row = 0 to maxorder), 
(W(k) do k = 1 to maxorder); 

output: (H(O, col) for col = 1 to maxorder); 
algorithm: lie-transform; 

do row = 1 to max order; 
do col = 1 to row; 

H(row - col, col) = H(row - col + 1, col - 1) + 
row-col (row - COl) kf:O k {H(row - col - k, col - 1), W(k + 1)}; 

end do; 
end do; 

end algorithm; 
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PROOF OF THEOREM 2. Recall that H*(e, y) = G(e, y) = H(e, X(e, y)), where 
X(e, y) is the general solution of(3). Define the differential operator ~ = ~w by 

of 
~F(e, x) = &(e, x) + {F, W}(e, x), (to) 

so that 

d ( I) I - F(e, x) = ~F(e, x) . 
de x=X(e,y) x=X(e,y) 

(11) 

Define new functions by HO = H, Hi = ~Hi-l, i ~ 1. Let these functions 
have series expansions 

(12) 

so, 

. ~ (e k
) . 1 H'(e, x) = ~ f. k' Hl.- (x) 

k-O • 

= k~l Cke~-:)!) m-l(x) + L~o (~~) H~-l, s~ (~) w.+1} (13) 

= j~ (~)( HJ;l + Jo (D{Hj~L ~+d). 
So the functions Hj are related by (6). It remains to show that H* = G has the 
expansion (4). By Taylor's theorem and (11) 

00 (en) dn I 
G(e, y) = nf:o n! den G(e, y) e=O 

= f (e:)~(H(e, X)I ) 
n=O n. de x=X(e,y) e=O 

= f (e:) (~nH(e, x) I ) 
n=O n. x=X(e,y) e=O 

00 (en) 
= L 1 Ho(x). 

n=O l. • 

3. The Remainder Function 

Assume now that the Hamiltonian, and hence the equations, is a time-depen­
dent Hamiltonian, i.e., consider 

x = JVH(e, t, x), (14) 

where H has an expansion 
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00 (e i
) H(e, t, x) = H*(e, t, x) =.L 1" H?(t, x). 

.=0 I. 
(15) 

Make a symplectic change of coordinates, x = X(e, t, y), which transforms 
(14) to the Hamiltonian differential equation 

y = JVG(e, t, y) + JVR(e, t, y) = JVK(e, t, y), (16) 

where G(e, t, y) = H*(e, t, y) = H(e, t, X(e, t, y» is the Lie transform of H, R is 
the remainder function, and K = G + R is the new Hamiltonian. Let G, R, 
and K have series expansions of the form 

00 (e i
) . G(e, t, y) = ifo if Ho(t, y), 00 (e i

) . R(e, t, y) =.L 1" Ro(t, y), 
.=0 I. 

(17) 

K(e, t, y) = ito (~)K~(t, y). 

Let the symplectic change of variables X(e, t, y) be the general solution of the 
Hamiltonian system of equations 

dx/de = JVW(e, t, x), x(O) = y, (18) 

where W(e, x) is a Hamiltonian function with a series expansion of the form 

00 (e i
) W(e, t, x) =.L 1" It/+1 (t, x). 

.=0 I. 
(19) 

The variable t is simply a parameter in (19), and so the function G = H* 
can be computed by Formulas (6) in Theorem 2 using the Lie triangle as a 
guide. The remainder term, R, needs further consideration. 

Theorem 3. Using the notation of this subsection, the remainder function is 
given by 

R(e, t, y) = - t 2'w(007}s, t, y) ds. (20) 

PROOF. Making the symplectic change of variable x = X(e, t, y) in (14) directly 
gives 

( oX )-1 (OX )-10X Y = oy (e, t, y) JVxH(e, t, X(e, t, y) - oy (e, t, y) Tt(e, t, y). (21) 

By the discussion in Section IV.A the first term on the right-hand side of (21) is 
JVG,andso 

( OX )-10X 
JV R(e, t, y) = - oy (e, t, y) Tt (e, t, y). (22) 

A(e) = oX(e, t, y)/oy is the fundamental matrix solution of the variational 
equation; i.e., it is the matrix solution of 



174 VII. Perturbation Theory and Normal Forms 

dA (02W ) de = J OX2 (e, t, X(e, t, y» A, A(O) = I. (23) 

Differentiating oX(e, t, y)/oe = JVW(e, t, X(e, t, y» with respect to t shows 
that B(e) = oX(e, t, y)/ot satisfies 

dB (02W ) 02W 
de = J ox2 (e, t, X(e, t, y» B + J oxot (e, t, X(e, t, y». (24) 

Since X(O, t, y) == y, B(O) = 0, and so, by the variation of constants formula, 

r" 02W 
B(e) = J 0 A(e)A(sfl J oxot (e, t, X(e, t, y)) ds; (25) 

therefore, 

( oX )-IOX 
JVR(e, t, y) = - oy (e, t, y) Tt(e, t, y) = -A(efIB(e) 

r" 02W 
= - J 0 A(S)-l J oxot (s, t, X (s, t, y» ds 

r" 02W 
= - Jo JA(sf oxot (s, t, X(s, t, y» ds (26) 

o r"OW 
= -J oy Jo Tt(s, t, X(s, t, y» ds 

o r" (OW) = -J oy Jo 2w Tt (s, t, y) ds. 

In the above, the fact that A is symplectic is used to make the substitution 
A-IJ=JAT • • 

Thus, to compute the remainder function, first compute the transform of 
-oW/ot, and then integrate it. That is, let S*(e, t, x) = ~::<ei/i!)S?(t, x), where 
S?(t, x) = - OJ!V;-l (t, x)/ot. Compute the Lie transform of S* by the previous 
algorithms to get 2w(S) = S*(e, t, x) = L (ei/i!)S~(t, x). Then R~ = S~-l. 

For example, to compute the series expansion for K = G + R, the new 
Hamiltonian, through terms of order e2, set Kg = Hg, then compute Kb by 
the formulas 

RI __ OWl 
0- ot' Kb = HJ + Rb, (27) 

which gives the term of order e, and then compute 

HI = Hg + {Hr, Wd + {Hg, W2}, HJ = HI + {HJ, Wd, 
(28) 

2 oW2 {OWl } Ro = - at - at' WI , K~ = HJ + R~. 

Then K*(e, x) = Kg(x) + K5(x)e + KMx)(e2/2) + .... 
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B. The Perturbation Algorithm 

In many of the cases of interest, the Hamiltonian is given, and the change of 
variables is sought to simplify it. When the Hamiltonian, and hence the equa­
tions, is in sufficiently simple form, it is said to be in "normal form," an expres­
sion whose meaning will be discussed in detail later. 

1. An Example: Duffing's Equation 

In Section IV.C.2 the Hamiltonian of Duffing's equation was given as 

(1) 

in rectangular coordinates, (q, p); and in action-angle variables, (], ,p), it was 
given as 

H = ] + ~]2(3 + 4 cos 2,p + cos 4,p). (2) 

This Hamiltonian is analytic in rectangular coordinates, and so has the 
d'Alembert character. Consider y as a small parameter by setting B = ylS; so, 
H(B, ], ,p) = H*(B, ], ,p) = Hg(I, ,p) + BH?(I, ,p), where 

Hg =], H? = ]2(3 + 4 cos 2,p + cos 4,p). (3) 

By Formula (A.S), 

(4) 
so, 

oW: 
HJ = ]2(3 + 4 cos 2,p + cos 4,p) - O,p1. (5) 

Choose W = W1 so that HJ contains as few terms as possible (one definition 
of "normal form"). For the transformation generated by W to be analytic in 
rectangular coordinates, W must be a Poisson series with the d'Alembert 
character. Thus, the simplest form for H? is 

(6) 

which is done by taking W to be 

W1 = ]2(2 sin 2,p + (1/4)sin(4,p). (7) 
With this W, the Hamiltonian in the new coordinates, (J, 0) would be 

3y 2 2 
H*(B, J, 0) = J + 8J + O(y ). (S) 

and the equations of motion would be 
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(9) 

In these coordinates, up to terms O(y2), the solutions move on circles J = 
constant with uniform angular frequency -1 - (3y/4)J. 

Let us do this simple example again, but this time in complex coordinates 
z = q + ip, z = q - ip. This change of variables is symplectic with multiplier 
2i; so, the Hamiltonian becomes 

H is real in the rectangular coordinates (q, p), because H is conjugated by 
interchanging z and Z, i.e., H(z, z) = H(z, z). This is the reality condition for 
these variables. Let e = y/32 and 

Hg = izz, (11) 

so Equation (4) with W = WI becomes 

(12) 

Try W = azazP, then (z ilW/ilz + z ilW/ilz)/2 = (ct - [3)azazP /2; so, all the 
terms in H? can be eliminated except those with ct = [3. That is, if we take 

W = - i(Z4/2 + 4z3z - 4zz3 + z4/2), (13) 

then 

(14) 

Notice that both Wand H* satisfy the reality condition and so are real func­
tions in the original coordinates q, p. The two methods of solving the problem 
(action-angle variables and complex variables) give the same results when 
written in rectangular coordinates. 

2. The General Algorithm 

The main Lie transform algorithm starts with a given Hamiltonian which 
depends on a small parameter, e, and constructs a change of variables so that 
the Hamiltonian in the new variables is simple. The algorithm is built around 
the following observation. 

Consider first a time-independent Hamiltonian, H*(e, x), with series ex­
pansion as given in Equation (A.3); so, all the H? are known. Assume that all 
the entries in the Lie triangle are known down to the Nth row; so, the HJ are 
known for i + j .::;; N, and assume that the W; are knwon for i .::;; N. Let L~, 
i + j .::;; N, be computed from the same initial Hamiltonian, but with UI , ••. , 

UN, where Ui = W; for i = 1,2, ... , N - 1 and UN = O. Then 
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HJ = L~ for i + j < N, 

HJ = L~ + {Hg, WN } for i + j = N. 
(15) 

This is easily seen from the recursive formulas in Theorem A.2. Recall the 
remark that the sum of all the indices must add to the row number; so, WN 

does not affect the terms in the first N - 1 rows. The second equation in (15) 
follows from a simple induction across the Nth row. 

From this observation, the algorithm is as follows. Assume all the rows in 
the Lie triangle have been computed down to the (N - 1)st row, that WI' . .. ' 
WN - 1 have been determined, and that the diagonal terms HJ, . . . , H~-l are in 
"normal form," i.e., simple in some sense. Now it is time to compute WN so 
that H~ is in normal form. Step 1: Compute the Nth row from the formulas in 
Theorem A.2 assuming that WN = 0, and call these terms L~, i + j = N. Step 2: 
Solve the equation H~ = L~ + {Hg, WN } for WN and H~, so that H~ is in 
"normal form" or simple. Step 3: Add {Hg, WN } to each term in the Nth row, 
i.e., calculate HJ = L~ + {Hg , WN } for all i + j = N. Repeat. 

The general algorithm to put a Hamiltonian in normal form up to em.xorder 

is given below. Here HJ = HU, i). 

input: maxorder, (H(row, 0) for row = ° to maxorder); 
output: (H(O, col), W(col) for col = 1 to maxorder); 
algorithm: normalization; 

do row = 1 to maxorder; 
W(row) = 0; 
do col = 1 to row; 

H(row - col, col) = H(row - col + 1, col - 1) + 
row-col (row - COl) 
k~O k {H(row - col- k, col - 1), W(k + I)}; 

end do; 
solve Htemp = H(O, row) + {H(O, 0), W temp}; 
W(row)'- Wtemp; 
do col = 1 to row; 

H(row - col, col) = H(row - col, col) + {H(O, 0), W temp}; 
end do; 

end do; 
end algorithm; 

Of course the definition of normal form and simple depend on the problem 
at hand. It depends on the equation H~ = L~ + {Hg, WN }, which in turn 
depends on Hg. This equation is called the Lie equation. 

3. The General Perturbation Theorem 

The algorithm can be used to prove a general theorem which includes almost 
all applications. Use the notation of Section A. 



178 VII. Perturbation Theory and Normal Forms 

Theorem 1. Let {&n~o, {.,qJ~I' and {9I!J~1 be sequences of linear spaces of 
smooth functions defined on a common domain 0 in 1R2n with the following 
properties: 

(i) .,qi c PJi , i = 1,2, ... 
(ii) HP E PJi , i = 0, 1,2, ... 

(iii) {PJi ,91J c PJi+j' i,j = 0, 1,2, ... 
(iv) for any DE PJi, i = 1,2, ... , there exists BE .,qi and C E 9li such that 

B = D + {Hg, C}. (16) 

Then there exists a W with a formal Hamiltonian of the form (A.S) with W; E 

9I!i' i = 1, 2, .. . , which generates a near identity symplectic change of variables 
x --+ y such that the Hamiltonian in the new variables has a series expansion 
given by (A.4) with Hb E .,qi' i = 1,2, .... 

Remarks. The Lie equation (16) is the heart of a perturbation problem. Hg 
defines the unperturbed system when e = 0, so it is supposed to be well under­
stood. For example, it might be the harmonic oscillator or the 2-body prob­
lem. !F = {Hg, .} is a linear operator on the functions. One must analyze this 
operator to determine in what linear spaces Equation (16) is solvable. 
Roughly speaking, the Hamiltonian (A.3) starts with terms in the PJ-spaces 
(HP E gIli), and the equation in normal form has terms in the .,q-space (Hb E .,q;). 
The .,q-spaces are smaller than the PJ-spaces (.,qi c gil;). So the normal form 
is "simpler." The transformation is generated by a Hamiltonian differential 
equation with Hamiltonian W in the 9I!-spaces (W; E 9I!;). D is an old term, B is 
a new term, and C is a generator. 

PROOF. Use induction on the rows of the Lie triangle. Induction Hypothesis 
In: LetHJ E gIli+jforO:::;; i + j:::;; nand W; E 9I!i,Hb E .,qifor 1:::;; i:::;; n. 

10 is true by assumption, and so assume In-I' By Equation (A.6) 

H~-1 = H~ + :t: (n ~ 1) {H~-I-k' ~+1} + {Hg, w,.}. (17) 

The last term is singled out because it is the only term that contains an 
element, w,., which is not covered by the induction hypothesis or the hypothe­
sis of the theorem. All the other terms are in PJn by I n - 1 and (iii). Thus, 

H~-1 = U + {Hg, w,.}, (18) 

where LIE gIln is known. A simple induction on the columns of the Lie triangle 
using Equation (A.6) shows that 

H~-s = V + {Hg, w,.}, (19) 

where L S E PJn for s = . 1,2, . .. , n, and so 

H~ = L" + {Hg, w,.}. (20) 

By (iv), solve (20) for w,. E 9ln and H'O E .,qi' Thus, In is true. • 
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The theorem given above is formal in the sense that the convergence of the 
various series is not discussed. In interesting cases the series diverge, but 
useful information can be obtained in the first few terms of the normal form. 
One can stop the process at any order N to obtain a W which is a polynomial 
in e and so converges. From the proof given above, it is clear that the terms in 
the series for H* up to order N are unaffected by the termination. Thus, the 
more useful form of theorem 1 is: 

Corollary 2. Let N ~ 1 be given, and let {&';}f=o, {~;}f=l' and {9I!.}f=1 be se­
quences of linear spaces of smooth functions defined on a common domain 0 in 
1R2n with the following properties: 

(i) ~i c £1Ji , i = 1,2, ... , N, 
(ii) HiO E &'i' i = 0, 1,2, ... , N, 

(iii) {&'i' 9I!j} C &'i+j' i + j = 0, 1,2, ... , N, 
(iv) for any D E &'i' i = 1,2, ... , N, there exists B E ~i and C E 9I!i such that 

B = D + {Hg, C}. 

Then there exists a polynomial W, 

N-l (e i) 
W(e, x) =.L ""1 W;+l (x), 

.=0 I. 

(21) 

(22) 

with W; E 9I!i' i = 1, 2, ... , N, such that the change of variables x = X(e, y), 
where X(e, y) is the general solution of dx/de = JVW(e, x), x(o) = y, transforms 
the convergent Hamiltonian 

(23) 

to the convergent Hamiltonian 

N (e i
) H(e, x) = H*(e, x) = i~ if H&(x) + O(e N +1 ), (24) 

with H& E ~i' i = 1,2, ... , N. 

4. The Nonautonomous Case 

In the nonautonomous case, the algorithm is slightly different. The remainder 
function, 9I!(e, t, y), is the indefinite integral of S*(e, t, y), where S*(e, t, y) = 

-2"w(8W/8t) (s, t, y), the Lie transform of -8W/8t. One constructs two Lie 
triangles, one for the Hamiltonian and one for the function S*. Since R is the 
indefinite integral of S*, if you want the new Hamiltonian up to terms of order 
eN, then you need all the Lie triangle for H* down to the Nth row, but only 
down to the (N - 1)st for S*. One simply works down the two triangles 
together, but with the S triangle one row behind. 
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Assume that all the entries in the Lie triangle for H are known down to the 
Nth row (Hj, i + j ::s; N) and that all the entries in the Lie triangle for S are 
known down to the (N - 1)st row (Sj, i + j ::s; N - 1) using the Wi for i ::s; N. 
Let L~, i + j ::s; N, be computed from the same Hamiltonian; so, L? = H? for 
all i, but with Ui , ... , UN' where Ui = Wi for i = 1,2, ... , N - 1 and UN = 0. 
Let ~~ be the terms in the Lie triangle for the remainder using the U;'s. Then 

Hj = L~ for i + j < N, S! = Q~ for i + j < N - 1, 
J J ~~ 

i i oJ¥" .. 
Hj=L~+{Hg,WN} fori+j=N, Sj = Qj - Tt for I + ] = N - 1. 

This is easily seen from the recursive formulas in Theorem A.2. 
From this observation, the algorithm is as follows. Assume that all the 

rows in the Lie triangle for H have been computed down to the (N - 1)st row, 
that all the rows in the Lie triangle for S have been computed down to the 
(N - 2)nd row and that Wi' ... ' WN - i have been determined, and that the K6, 
... , K~-i are in "normal form," i.e., simple in some sense. Now it is time to 
compute WN so that Hg is in normal form. Step 1 : Compute the Nth row for H 
and the (N - 1)st row for the remainder assuming that WN = 0, and call these 
terms L~, i + j = N, and il j, i + j = N - 1, respectively. Step 2: Solve the 
equation Hg = L~ + ~~-i + {Hg, WN} - aWN/at for WN and Hg so that Hg 
is in "normal form" or simple. Step 3: Add {Hg, WN} to each term in the Nth 
row for H, and add aWN/at to each term in the (N - 1)st row for~. Repeat. 

The nonautonomous version of Theorem 1 is: 

Theorem 3. Let {.'?in~o, {~i}~i' and {9lJ~l be sequences of linear spaces of 
smooth functions defined on a common domain 0 in [Ri X [R2". Let iii be the 
space of all derivatives of functions in 9li . Assume the following: 

(i) ~i c PJi , i = 1,2, ... , 
(ii) H? E PJi , i = 0, 1,2, .. . , 

(iii) {PJi , 9lj} C PJi+j and {PJi , 9lj} C PJi+j,for i,j = 0, 1,2, ... , 
(iv) for any D E PJi , i = 1,2, ... , there exists B E ~i and C E ~i such that 

{ 0 } OC 
B=D+ Ho,C -at. (26) 

Then there exists a W with a formal Hamiltonian of the form (A.5) with Wi E ~i' 
i = 1, 2, ... , which generates a near identity symplectic change of variables 
x -+ y such that the Hamiltonian in the new variables has a series expansion 
given by Equation (A.4) with H~ E ~i' i = 1,2, .... 

5. Duffing's Equation Revisited 

Consider the Hamiltonian (2) of Duffing's equation as written in action-angle 
variables. The operator {Hg, C} = oC/orP is very simple to understand. Equa­
tion (26) becomes 
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ac 
B = D + a¢J' (27) 

If D is a finite Poisson series with d' Alembert character, then by taking B to be 
the term of D which is independent ofthe angle ¢J and C = J (B - D) d¢J, Band 
C satisfy Equation (27). This leads us to the following definitions of the spaces. 

Let :?J>i be the space of all finite Poisson series with d' Alembert character 
corresponding to homogeneous polynomials of degree 2i + 2 in rectangular 
coordinates. So an element in:?J>i is of the form /i+l times a finite Fourier series 
in ¢J. Let fli be the space of all polynomials of the form A/i+I, where A is a 
constant. Let 9li be the subspace of:?J>i of Poisson series without a term inde­
pendent of ¢J. So :?J>i = fli E!J 9li• Since the Poisson bracket of homogeneous 
polynomials of degree 2i + 2 and degree 2j + 2 is a polynomial of degree 
2(i + j) + 2, and since symplectic changes of coordinates preserve Poisson 
brackets, we have {:?J>i, 9lJ c :!J>;+j' Thus, by Corollary 3, there exists a formal, 
symplectic transformation which transforms the Hamiltonian of Duffing's 
equation into the form 

(28) 

and the equations of motion become 

(29) 

Thus, formally, the solutions move on circles with a uniform frequency 
w(e, J), which depends on e and J . By the theorems of Poincare (1885) and 
Russman (1959) the series converges in this simple case. 

5. Uniqueness of Normal Forms 

One of the important special cases where Theorem 1 applies is when the 
operator L = {Hg, . }: :?J>i --. :?J>i is simple, i.e., when :?J>i = Qi E!J 9li, Qi = kernel 
(L i ), and 9l i = range(L;). In this case, the Lie equation (16) has a unique solu­
tion. This is not enough to assure uniqueness of the normal form. One needs 
one extra condition. 

Theorem 4. Let {:?J>i}f';O be squences oj linear spaces oj smooth Junctions de­
Jined on a common domain 0 in 1R2n. Let L = {Hg, . }: :?J>i --. :!J>; be simple; so, 
:?J>i = fli E!J 9li, fli = kernel(L;), and 9li = range(L;). Assume 

(i) H? E :?J>i' i = 0, 1,2, .. . , 
(ii) {:?J>i' &J} c :!J>;+j' i,j = 0, 1,2, .... 

Then there exists a W with a Jormal expansion oj the Jorm (A.5) with Jti E 9li , 

i = 1,2, ... , such that W generates a near identity symplectic change oj vari-
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abies x ~ y which transforms the Hamiltonian H*(e, x) with the formal series 
expansion given in Equation (A.3) to the Hamiltonian H*(e, y) with the formal 
series expansion given by Equation (A.4) with Hb E fli' i = 1,2, .... Moreover, 
if 

(iii) {fli' fl j } = 0, i,j = 1,2, ... , 

then the terms in the normal form are unique. 

Remark. All the obvious remarks about the time-dependent cases hold here 
also. The normal form is unique, but the transformation taking the equation 
need not be unique. Clearly, this theorem applies to the Duffing example. We 
shall not need this theorem in our development. See Liu (1985) for a proof or 
see Problems Section. 

C. Normal Form at an Equilibrium 

Consider an analytic Hamiltonian, H, which has an equilibrium point at the 
origin in 1R 2n, and assume that the Hamiltonian is zero at the origin. Then H 
has a Taylor series expansion of the form 

00 

H(x) = H#(x) = L Hi(x), (1) 
i=O 

where Hi is a homogeneous polynomial in x of degree i + 2; so, Ho(x) = tx T 

Sx, where S is a 2n x 2n real symmetric matrix, and A = JS is a Hamiltonian 
matrix. The linearized equations about the critical point x = ° are 

x = Ax = JSx = JVHo(x), (2) 

and the general solution of (2) is ¢J(t, ~) = exp(At)~. A traditional analysis is to 
solve (2) by linear algebra techniques and then hope that the solutions of the 
nonlinear problem are not too dissimilar from the solutions of the linear 
equation. In many cases this hope is unjustifiable. The next best thing is to put 
the equations in normal form and to study the solutions of the normal form 
equations. This too has its pitfalls. 

1. The Classical Case 

The matrix A is simple if it has 2n linearly independent eigenvectors which 
may be real or complex. The matrix A being simple is equivalent to A being 
similar to a diagonal matrix by a real or complex similarity transformation. 
This is why A is sometimes said to be diagonalizable. The classical theorem on 
normal forms is: 
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Theorem 1. Let A be simple. Then there exists a formal, symplectic change of 
variables, 

x = X(y) = Y + ... , 

which transforms the Hamiltonian (1) to 

where Hi is a homogeneous polynomial of degree i + 2 such that 

Hi(eAty) == Hi(y), 

for all i = 0, 1, ... , all y E 1R2n, and all t E IR. 

(3) 

(4) 

(5) 

Remark. Formula (5) is the classical definition of normal form for a Hamil­
tonian near an equilibrium point with a simple linear part. Formula (5) says 
that Hi is an integral for the linear system (2); so, by Theorem I.A.l, (5) is 
equivalent to 

(6) 

for all i. 

PROOF. In order to study the solutions near the origin, scale the variables by 
x -4 ex. This is a symplectic transformation with multiplier e2; so, the Hamil­
tonian becomes 

H(e, x) = H.(e, x) = it (~)H?(X)' (7) 

where H? = i!Hi • Since we are working formally, we can set e = 1 at the end, 
or we can rescale by x -4 e- l x. 

Let Pi be the linear space of all real homogeneous polynomials of degree 
i + 2; so, H? E Pi. Since A is simple, A has 2n linearly independent eigen­
vectors SI' ... ' S2n corresponding to the eigenvalues AI'.· . ' A2n. The Si are row 
eigenvectors; so, SiA = Aisi. Let 2r of the eigenvalues be complex, and number 
them so that Ai = In+i for i = 1, ... , r. Choose the eigenvectors so that Si = sn+i 
for i = 1, .. . , r. The other eigenvalues and eigenvectors are real. Let K E 1';; so, 
K is a homogeneous polynomial of degree i + 2. Since the s/s are indepen­
dent, K may be written in the form 

K = LXm,m2 .. . m2JSIX)m'(S2xt2 ... (S2nX)m2n, (8) 

where the sum is over all m l + ... + m2n = i + 2. So the monomials in 

B = {(SI X)m'(S2x)m2 ... (s2nx)m2n: m l + ... + m2n = i + 2} (9) 

span Pi. It is also clear that they are independent; so, form a basis for Pi. The 
coefficients in (8) may be complex but must satisfy the reality condition that 
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interchanging the subscripts mi and mn+i for i = 1, ... , r in the x's is the same 
as conjugation. 

Now let L = Li: Pi -+ Pi be the linear operator of Theorem BA as it applies 
to Hamiltonian systems, that is, define L by LG = {Hg, G} = -(oGjox)Ax; 
so, 

L«S1 X)m1(S2X)m, ... (S2nXr,n) 

= -(m1A1 + 00. + m2nA2n)ml(S1X)ml(S2Xr' 00. (S2nXr'n. 
(10) 

So the elements of B are eigenvectors of L and the eigenvalues are (m1 A1 + 
... + m2n A2n ), m1 + ... + m2n = i + 2. Thus, we can define L-invariant sub-
spaces 

%; = span«s1 Xr1(S2Xr' 00' (S2nX)m,n: m1 + 00. + m2n = i + 2, 

m1 A1 + ... + m2nA2n = 0), 

B£i = span«s1xr1(S2Xr' 00. (S2nX)m,n: m1 + 00. + m2n = i + 2, 

m1A1 + 00. + m2nA2n =1= 0). 

(11) 

(12) 

In summary, %; = kernel(L), B£i = range(L), and Pi = $'i EB B£i' Thus, this 
classical theorem follows from the first part of Theorem BA because we have 
shown that the operators Li: Pi - Pi are simple. However, the extra condition 
(iii) in Theorem BA is not satisfied in general; so, the normal form may not be 
unique. • 

BirkhofT(1927) considered a special case of the above. 

Corollary 2. Assume that the quadratic part of (1) is of the form 

n 

Ho(x) = L AiXiXn+i, (13) 
i=1 

where the A;'S are independent over the integers, i.e., there is no nontrivial rela­
tion of the form 

n 

L kiAi = 0, (14) 
i=1 

where the k/s are integers. Then there exists a formal, symplectic change 
of variables x = X(y) = Y + . 00 which transforms the Hamiltonian (1) to the 
Hamiltonian (4), where Hi(y) is a homogeneous polynomial of degree i + 1 in 
the n products Y1Yn+1, 00., YnY2n' So, H#(Y1,oo"Y2n) = H#(Y1Yn+1,·oo,YnY2n) 
where H# is a function of n variables. Moreover, in this case, the normal form 
is unique. 

Remark. Formally the equations of motion for the system in normal form are 

Yi = Yn+iDiH #(Y1Yn+1,oo·,YnY2n), 

Yi+n = -YnDiH #(Y1Yn+1,oo·,YnY2n)· 
(15) 
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Here Di stands for the partial derivative with respect to the ith variable. In 
this form, the system of equations have n formal integrals in involution, 
11 = Y1Yn+l, · .. ,In = YnY2n' 

In the case when the Aj = iWj are pure imaginary and the Yi are the complex 
coordinates discussed in Lemma II.D.6, then we can switch to action-angle 
variables by Yi = JIJ2ei~;, Yn+i = JIJ2e-i~;. The Hamiltonian in normal 
form is a function of the action variables only; so, the Hamiltonian is 
Ht (I 1, .. . ,In), and the equations of motion are 

(16) 

Here Wi(I1" ' " In) = ± Wi + .. " and the sign is determined by the cases in 
Lemma ILD.6. Setting the action variables equal to nonzero constants, 11 = 
C1, . .. , In = Cn' defines an invariant set which is an n-torus with n angular 
coordinates fiJ1' ... , fiJn' On each torus the angular frequencies wi(I1' ... ,In), are 
constant, and so, define a linear flow on the torus as discussed in I.B.5. The 
frequencies vary from torus to torus in general. 

Notation. For this proof and subsequent discussions, some notation is useful. 
Let ~ = z!n denote the set of a1l2n-tuples of non-negative integers; so, k E ~ 
means k = (k 1, ... ,k2n ), ki ~ 0, ki an integer. Let Ikl = k1 + ... + k2n- If x E 

[R2n and k E ~, then define Xk = X~1 X~2 ••• X~~" . 

PROOF. The linear part is clearly simple. Let Hi(y) = L hkl, where the sum 
is over k E ~, Ikl = i + 2. The general solution of the linear system is Yi = 
Yi,O exp(A;t), Yi+n = Yi+n.O exp( - Ait) for i = 1, . .. , n. Formula (5) implies that 
'ihk exp t{(k1 - kn+l)A1 + ... + (kn - k2n)An}yk is constant in t, and this 
implies that {(k1 - kn+l)A1 + ... + (kn - k2n )} An = 0. But since the A;'S are 
independent over the integers, this implies k1 = kn+l' . . . , kn = k 2n . That is, 
Hi is a function of the products Y1Yn+1,"" YnY2n only. 

By the remark above, the kernel consists of those functions which depend 
only on 11 , ••• , In and not on the angles in action-angle variables. Therefore, 
the extra condition (iii) of Theorem B.4 holds, and the normal form is unique . 

• 
Remark. If the condition (14) only holds for kis with Ik11 + .. . + Iknl :$; N, 
then the terms in the Hamiltonian up to the terms of order N can be put in 
normal form, and these terms are unique. 

2. The General Equilibria 

Recently there has been a lot of progress on normal forms in the case when A 
is not simple, and the research goes on. In the 1970s, the question of the 
stability of the Lagrange triangular point 2'4 was studied intensely. For 
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Hamiltonian systems, it is not enough to look at the linearized system alone 
because the higher-order terms in the normalized equations can effect the 
stability (see the discussion in Chapter VIII). The matrix of the linearization 
of the equations at .P4 when Il = III is not simple as was seen in Section II.G. 
The normal form for this case, and other similar cases was carried out by the 
Russian school; see Sokol'skij (1978). First Kummer (1976, 1978) and then 
Cushman, Deprit, and Mosak (1983) used group representation theory. Rep­
resentation theory is very helpful in understanding the general case, but there 
are simpler ways to understand the basic ideas and examples. In Meyer 
(1984b) a theorem like theorem 1 above was given for non-Hamiltonian sys­
tems but A was replaced by AT in (5); so, the terms in the normal form are 
invariant under the flow exp(AT t). A far better proof can be found in Elphick 
et al. (1987), which is what we will present here. 

The proof of Theorem 1 rested on the fact that for a simple matrix, A, [R2n is 
the direct sum of the range and kernel of A, and this held true for the operator 
L = {Hg, .} defined on homogeneous polynomials as well. The method of 
Elphick et al. is based on the following simple lemma in linear algebra known 
as the Fredholm alternative and an inner product defined on homogeneous 
polynomials given after the lemma. 

Lemma 3. Let W be a finite-dimensional inner product space with inner product. 
Let A: W -+ W be a linear transformation, and A* its adjoint [so (Ax, y) = 
(x, A * y) for all x, YEW]. Then W = R EEl K* where R is the range of A and K* 
is the kernel of A*. 

PROOF. Let x E R; so, there is a u E W such that Au = x. Let y E K*; so, A*y = 

O. Since 0 = (u, 0) = (u, A*y) = (Au, y) = (y, x), it follows that Rand K are 
orthogonal subspaces. Let K be the kernel of A. In a finite-dimensional 
space, dim W = dim R + dim K and dim K = dim K*. Since Rand K* are 
orthogonal, dim(R + K*) = dim R + dim K* = dim W; so, W = REEl K*. • 

Let f!J = f!Ji be the linear space of all homogeneous polynomials of degree i 
in 2n variables x E [R2n. So if P E f!J, then 

P(x) = L Pk Xk = L Pklk2 ... k2nx~l X~2 ... x~~n. 
Ikl=i Ikl=i 

Define P(O) to be the differential operator 
Ok 

P(o) = L Pk-k' 
Ikl=i ox 

where we have introduced the notation 

Ok Okl Ok2 

OXk - OX~l OX~2 

(17) 

(18) 

(19) 

Let Q E &!, Q(x) = L qhxh be another homogeneous polynomial, and de­
fine an inner product <., . > on f!J by 
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<P, Q) = P(o)Q(x). (20) 

To see that this is indeed an inner product, note that OkXh/OXk = 0 if k # hand 
OkXh/OXk = k! = k1 !k2 ! " 'k2n !ifk = h;so, 

(21) 

Let A = JS be a Hamiltonian matrix where S is a symmetric matrix of the 
quadratic Hamiltonian HO; so, HO(x) = txTSx. From Corollary B.3 and the 
proof of Theorem C.1, the operator of importance is LA: (llJ --+ (llJ, where 

{ O} oP d AI I LAP= Ho,P = -TAx= -d P(e x) . 
uX t 1=0 

(22) 

Lemma 4. Let A: [R2n --+ [R2n be as above and A T its transpose (so A T is the 
adjoint of A with respect to the standard inner product in JR2n). Then for all P, 
QEr!Ji, 

<P(x), Q(Ax» = <P(AT x), Q(x» (23) 

and 

<P, LAQ) = <LATP, Q). (24) 

That is, the adjoint of LA with respect to <', .) is LAT. 

PROOF. Equation (23) follows from (22) because (22) implies <P(x), Q(eAlx» = 
<P(eATlx), Q(x». Differentiating this last expression with respect to t and 
setting t = 0 gives (24). 

Let y = Ax (yi = LjA~xj) and F(y) = F(Ax). Since of(y)/ox j = 
Li(oF(y)/oyi)(oyi/ox j) = Li(oF(y)/oyi)A~, it follows that a/ox = AT%y. 
<P(x), Q(Ax» = P(ox)Q(Ax) = P(AToy)Q(y) = <P(AT y), Q(y». • 

Theorem 5. Let A be a Hamiltonian matrix. Then there exists a formal, 
symplectic change of variables, x = X(y) = Y + " ', which transforms the 
Hamiltonian (1) to 

00 

H# (y) = L Hi(y), 
i=O 

where Hi is a homogeneous polynomial of degree i + 2 such that 

Hi(eAT,y) == Hi(y), 

for all i = 0, 1, ... , all y E [R2n, and all t E JR. 

(25) 

(26) 

Remark. Let Hl(x) = H~(x) = txTRx be the quadratic Hamiltonian for the 
adjoint linear equation; so, AT = J R. Then (26) is equivalent to 

(27) 

for i = 1,2, ... . 
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PROOF. By Corollary B.3, we must solve Equations (B.25) or LAC + D = B, 
where DE Pi = f!JJ is given, and C E Qi = f!JJ, and DE Qi = kernel(LAT). By 
Lemma 4, we can write D = B - G, where BE kernel(LAT); so, {B, H~} = 0, 
and G E range(LA); so, G = LAC, C E f!JJ. With these choices, Equation (B.25) 
is solved. Verification of the rest of the hypothesis in Corollary B.3 is just as in 
the proof of Theorem 1. • 

Theorem 1 is a corollary of this theorem because when A is simple, it is 
diagonalizable, and so, its own adjoint. We proved Theorem 1 separately 
because the proof is constructive. 

3. Examples of Normal Forms in the Nonsimple Case 

Consider the Hamiltonian system (1), where n = 1 and x = (q, p). Let 

Ho(q, p) = tp2, HJ(q, p) = tq2, 

A=(~~). AT=G~)' 
(28) 

Since exp(A T t) = (~ 1 ~ t). (24) implies that the higher-order terms in the 

normal form are independent of p, or Hi = Hi(p, .). Thus, the Hamiltonian in 
normal form is tp2 + G(q), which is the Hamiltonian for the second-order 
equation ij + g(q) = 0, where g(q) = oG(q)/oq. 

Now consider a Hamiltonian system with two degrees of freedom with a 
linearized system with repeated pure imaginary roots that are nonsimple. In 
Section II.D, the normal form for the quadratic part of such a Hamiltonian 
was given as 

Ho = W(~2'11 - ~1'12) + tt5(~I + ~D, (29) 

where w #- 0 and 15 = ± 1. The linearized equations are 

~1 0 W 0 0 ~1 

~2 -w 0 0 0 ~2 

~1 -15 0 0 w '11 
(30) 

~2 0 -15 -w 0 '12 

The transpose of (30) is defined by the Hamiltonian 

HJ = W(~2'11 - ~1'12) - tt5('1I + '1D, (31) 

and the transposed equations are 

~1 0 -w -15 0 ~1 

e2 w 0 0 -15 ~2 

~1 0 0 0 -w '11 
(32) 

~2 0 0 W 0 '12 
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Sokol'skij (1978) suggested changing to polar coordinates (see Section IV.C.6) 
to make the transposed equations simple. That is, he changed coordinates by 

'11 = r cos (J, 

'12 = r sin (J, 

In these coordinates, 

H'6 = -wE> + t<5r2, 

and the transposed equations are 

;- = 0, iJ = w, 

R = (el'11 + e2'12)!r, 

E> = '11e2 - '12el· 

R = <5r, 

(33) 

(34) 

(35) 

By (26) and (27), the higher-order terms in the normal form are independent of 
(JandRandsodependonlyonr2 = '1i + '1~andE> = '11e2 - '12el· 

Thus, the theory ofthe normal form in this case depends on three qualities 

r l = e2'11 - el '11' r 2 = t(ei + eD, r3 = t('1I + '1~). (36) 

The Hamiltonian Ho = wr. + r 2 and the higher-order terms in the normal 
form are functions of r. and r3 only. This is known as Sokol'skij's normal 
form. 

D. Normal Form at.P4 

Recall that in Section II.G we showed that the linearization of the restricted 
3-body problem at the Lagrange triangular point 24 had two pairs of pure 
imaginary eigenvalues, ±iw., ±iw2, when 0 < J1. < J1.1 = t(l - )69!9), and 
that there are symplectic coordinates so that the quadratic part of the Hamil­
tonian is 

(1) 

where I. , 12, <Pl , <P2 are action-angle variables. 
Recall that in Section V.E.6 we defined J1.r to be the value of J1. for which 

wt/w2 = r, and that 0··· < J1.3 < J1.2 < J1. •• When 0 < J1. < J1.., and J1. =f J1.2' J1.3 
then, by Corollary C.2, the Hamiltonian ofthe restricted 3-body problem can 
be normalized through the fourth-order terms; so, the Hamiltonian becomes 

H = wl/. - w 2/ 2 + t(Alt + 2BI./2 + eli) + .. .. (2) 

After six months of hand calculations, Deprit and Deprit-Bartholome 
computed: 

A _ 1 2 (81 - 696wi + 124(1) 
- 72 w 2 (1 - 2wi)2(l - 5wi) , 

1 w. w 2 (43 + 64wiwD 
B = - 6 (1 _ 2wi)(1 - 2wD(l - 5wi)(1 _ 5wD' (3) 

C(Wl' ( 2) = A(W2' w.). 
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Meyer and Schmidt (1986a) computed the normal form through terms of 
sixth order by machine. The results are too lengthy to reproduce here. It 
did serve as an independent check of the calculations of Deprit and Deprit­
Bartholome. In Section II.G, the quadratic part of the Hamiltonian of the 
restricted 3-body problem at 24 for I-l = 1-l1 was brought into normal form by 
a linear symplectic change of coordinates. In these coordinates, the quadratic 
part of the Hamiltonian is of the form 

Ho = w(e2111 - ~1112) + 1(~i + ~i) = wr1 + r2, (4) 

where w = ,J2/2 and (j = + 1. 
The normal form for the Hamiltonian of the restricted 3-body problem at 

24 for I-l = 1-l1 is of the form 

H = wr1 + r2 + crl + 2dr1 r3 + r; + ... 

= W(~2111 - ~1112) + 1(~i + ~i) (5) 

where c, d, and e are constants. As another related problem, consider a qua­
dratic Hamiltonian Q(y, e) which depends on a parameter e, which for e = 0 is 
Ho· That is, Q(y, e) = Qo(Y) + eQ1 (y) + "', where Qo = Ho in (C.29). Then 
this Hamiltonian can be brought into normal form to an order so that Q1' 
Q2,'" depend only on r 1 and r 3 • [see Schmidt (1990) for the calculations.] 

The quadratic part of the Hamiltonian of the restricted 3-body problem at 
the Lagrange triangular point, 2 4 , for values of the mass ratio parameter 
I-l = 1-l1 + e can be brought into normal form by a linear symplectic change of 
coordinates. The normal form up to order 4 looks like 

Q = wr1 + r2 + e{ar1 + br3 } + ... 

= W(e2111 - ~1112) + 1(ei + ei) 
+ e{a(e2111 - e1112) + 1b(111 + 112)} + .... 

Schmidt (1990) calculated that 

a = 3,J2169/16, b = 3169/8. 

E. Normal Forms for Periodic Systems 
and Diffeomorphisms 

(6) 

(7) 

This section contains a series of reductions which reduce the study of the 
normal forms for symplectomorphisms to the study of normal forms of peri­
odic systems. Then as examples, the normal forms for symplectomorphisms of 
the plane are given in preparation for the study of generic bifurcations of fixed 
points given in the Chapter VIII. 
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1. The Reduction 

The study of a neighborhood of a periodic solution of an autonomous, 
Hamiltonian system was reduced to the study of the Poincare map in an 
energy surface by the discussion in Section V.E. This Poincare map is a 
symplectomorphism with a fixed point corresponding to the periodic orbit. 

Let the origin be a fixed point for the symplectomorphism 

'P(x) = rx + I/I(x), (1) 

where r is a 2n x 2n symplectic matrix, and 1/1 is higher order, i.e., 1/1(0) = 
ol/l(O)jox = O. By Theorem V.B.1 and the discussion following that theorem, if 
r has a logarithm, then (1) is the period map of a periodic Hamiltonian 
system. Since 'P2(X) = r2x + ... , and r 2 always has a logarithm, if 'I' is not a 
period map, then '1'2 is. Except for one example given at the end of this 
chapter, only the case when r has a real logarithm will be treated here. 

Given a periodic system, by the Floquet-Lyapunov theorem (see Theorem 
II.E.3 and the discussion following it), there is a linear, symplectic, periodic 
change of variables which makes the linear part of the Hamiltonian equations 
constant in t. Thus, the study of symplectomorphisms near a fixed point is 
equivalent to studying a 2n-periodic Hamiltonian system of the form 

00 

H(t, x) = H#(t, x) = L Hi(t, x), (2) 
i=O 

where Hi is a homogeneous polynomial in x of degree i + 2 with 2n-periodic 
coefficients, and Ho(x) = 1x TSX where S is a 2n x 2n constant, real, symmet­
ric matrix, and A = JS is a constant, real, Hamiltonian matrix. The linearized 
equations about the critical point x = 0 are 

x = Ax = JSx = JV Ho(x), 

and the general solution of(3) is ¢J(t, ~) = exp(At)~ . 

2. The General Periodic Case 

(3) 

In this subsection, the generalization of the general normal form given in 
Section C.2 is extended to periodic systems. As before, we consider the peri­
odic system (2) but no longer assume that the linear system is simple. First let 
us consider the generalization of Theorem c.s. 

Consider the 2n-periodic equations 

x=AOOx+fi~ ~ 

x = A(t)x, 

Y = -A(tfy· 

(S) 

(6) 

Equation (S) is the homogeneous equation corresponding to the nonhomo­
geneous equation (4), and (6) is the adjoint equation of(S). 
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Lemma 1. The nonhomogeneous equation (4) has a 2n-periodic solution rjJ(t) if 
and only if 

I2" yT(S)j(S) ds = 0, (7) 

jor a1l2n-periodic solutions y(t) oj the adjoint equation (6). 

PROOF. Let x(t, xo) be the solution of (4) with x(O, xo) = Xo' Then 

x(t, xo) = X(t)xo + I X(t) yT(S)j(S) ds, (8) 

where X(t) and Y(t) are the fundamental matrix solutions of (5) and (6), 
respectively, because X- 1 = yT. The solution is 2n-periodic if and only if 
x(t, xo) = xo, or 

Bxo = g, 
(9) 

9 = I2" X(2n)yT(s)j(s) ds. B = I - X(2n), 

By Lemma C.3, the linear equation Bxo = 9 has a solution if and only if 
v T 9 = ° for all v with BT v = 0. That is, there is a 2n periodic solution if and 
only if 

f2" 

o V T X(2n) yT (s)j(s) ds = ° for all v with X(2n)T v = v. (to) 

But if X(2nfv = v, then the integral in (10) is H"vTyT(S)j(S) ds = 0. But 
X(2nf v = v if and only if Y(2n)v = v and if and only if y(s)v is a 2n-periodic 
solution of (6). • 

Consider the periodic Hamiltonian system (2). Scale by x --+ ex as in the 
proof of Theorem C.1, and use the same notation for the scaled Hamiltonian. 
By Theorem C.3 we must define spaces &>;, .P2;, and ~; with .P2; c &>;, H? E &>;, 

H~ E .P2;, W; E ~;. The Lie equation to be solved in this case is 

(11) 

where D is given in @I;, and we are to find E E .P2; and C E ~;. 

Let B be the adjoint of A, i.e., the transpose in the real case. Define K(x) = 
txTRx, where B = JR; so, K is the Hamiltonian of the adjoint linear system. 
Let &>; be the space of polynomials in x with coefficients which are smooth 
2n-periodic functions of t. Let Y = {Hg, .}: &>i --+ @I;, and let J = {K, .}: @Ii 

--+ &>;. !F is the adjoint of Y if we use the metric defined by Elphick et al. that 
was used in Section C.2. Therefore, given D, (11) has a unique 2n-periodic 
solution, C, where E is a 2n-periodic solution of the homogeneous, adjoint 
equation 
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(12) 

Characterizing the 2n-periodic solutions of (12) characterizes the normal 
form. Expand the elements of £!J>i in Fourier series. Let E = d(x)e irnt, and sub­
stitute into (12) to get 

0= {K,e} + imd. (13) 

Thus, one characterization of the normal form is in terms of the eigen­
vectors of f = {K, .}: ~ -.~. That is, f2i has a basis of the form {d(x)e irnt : 
d is an eigenvector of f corresponding to the eigenvalue im}. 

Theorem 2. Let HO(x) = Ho(x) = (1/2)x TSX , where A = JS is an arbitary, con­
stant Hamiltonian matrix, and let B be the adjoint of A. Then there exists a 
formal, symplectic, 2n-periodic change of variables x = X(t, y) = Y + ... which 
transforms the Hamiltonian (2) to the Hamiltonian system 

00 

H#(t, y) = L Hi(t, y), (14) 
i=O 

where 

. iJHi 

{H', K} + at = 0 for i = 1,2, 3, ... , (15) 

or equivalently, 

(16) 

Corollary 3. Let A be simple and have eigenvalues AI' ... , An' - AI' .. . , - An' 
Assume that AI' .. . , An and i are independent over the integers, i.e. there is no 
relation of the form kl Al + ... + knAn = mi, where k 1 , ... , kn and m are inte­
gers. Then there exists a formal, symplectic, 2n-periodic change of variables 
x = X(t, y) = y + .. . which transforms the Hamiltonian (2) to an autonomous 
Hamiltonian system 

00 

H#(y) = L Hi(y), 

where HO = Ho, and 

or equvivalently, 

Hi(eAty) == Hi(y) 

for all i = 0, 1,2, ... , Y E 1R2n, t E IR. 

i=O 
(17) 

(18) 

(19) 

PROOF. Let A = B = diag(A1 , .. . , -An). A typical term in the normal form 
given by Theorem 2 is ofthe form h(t, x) = hkeirntxk. Applying (16) to this term 
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gives hk exp{im + (k 1 - kn+1)A1 + ... + (kn - k2n )An}t = 0. By the assump­
tion on the independence, this can only hold if m = 0, kl = kn+l' ... , kn = k2n · 
Thus, the Hamiltonian is in the normal form of Birkhoff as described in 
Corollary C.2. • 

Corollary 4. Let r be simple and have a real logarithm. Then there exists a 
formal, near identity, symplectic change of variables x ~ y such that in the new 
coordinates the symplectomorphism in (1) is of the form 

~(y) = ry + tfo(y), (20) 

where 

(21) 

PROOF. Let r = exp(21tA). Since r is simple, so is A, and therefore it can be 
taken as its own adjoint. Then by the reduction given above, the map (1) is 
the period map of a system of Hamiltonian differential equations. Assume 
that the symplectic change of coordinates has been made so that the Hamil­
tonian is in normal form, and let the equations in these coordinates be y = 
Ay + f(t, y). Condition (16) implies f(t, eAtx) = eA1(0, x), and this implies 
f(t, rx) = rf(t, x). Let ~(t, 1'/) be a solution of this equation with ~(O, 1'/) = 1'/. 
Define W, 1'/) = r ~(t, r-11'/), so ~(O, 1'/) = ((0,1'/) = 1'/. e = r {A~ + f(t, ~)} = 
Ar~ + rf(t,~) = Ar~ + f(t, r~) = A( + f(t, O. By the uniqueness theorem 
for ordinary differential equations, ~(t, 1'/) = W, 1'/) = r~(t, rl'/); so, the period 
map satisfies (21). • 

3. General Hyperbolic and Elliptic Points 

Consider as examples the case when n = 1; so, 'II in (1) is a symplectomorph­
ism of the plane with a fixed point at the origin. 

First, consider the case when r has eigenvalues p" p,-l, where 0< p, < 
1, i.e., the origin is a hyperbolic fixed point. By Lemma II.E.I0, there are 
symplectic coordinates, say x, so that 

r = (~ p,~l). 
Let 21t1X = In p,; so, 

r = exp(~ ~IX) 21t and A = (~ ~IX). 
By the discussion give above, the symplectomorphism 'II is the period map of 
the 21t-periodic system (2) with Ho(x) = IXX1X2 . By Corollary 3, there is a 
formal, 21t-periodic, symplectic change of variables, x ~ y, which transforms 
(2) to the autonomous system (17) with (19) holding. Since the solution of the 
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linear system is YI(t) = YIOe at, Y2(t) = Y20e-at, the condition (19) implies that 
the Hamiltonian (17) is a function of the product YIY2 only. Let H#(y) = 
K#(YIY2) = IXYIY2 + K(YIY2)· By the above discussion, the normal form for 
(1) is the time 2n-map of the autonomous system whose Hamiltonian is K#. 
The equations defined by K# are 

YI = YI(IX + k(YIY2)), 
(22) 

Y2 = - Y2(1X + k(YlY2)), 

where k is the derivative of K. Equations (22) have YIY2 as an integral, and so 
the equations are solvable, and the solution is 

YI (t) = YIO exp(1X + k(YIY2))t, 

Y2(t) = Y20 exp[ -(IX + k(YIY2))t]. 

Thus, the normal form for (1) in this case is 

,¥(y) = ( YI9(YIY2L), 
Y2g(YIY2) 

(23) 

(24) 

where 9 has a formal expansion g(u) = flU + .... If a symplectomorphism is in 
this form, then the origin is called a general hyperbolic point. This map takes 
the hyperbolas YIY2 = constant into themselves. In this case, the transforma­
tion to normal form converges by a classical theorem of Moser (1956). 

Next consider the case when A has eigenvalues A. = IX + Pi, I = IX - Pi, 
where 1X2 + p2 = 1, P =f. 0, i.e., the origin is an elliptic fixed point. By Corol­
lary II.D.9 there are symplectic coordinates, say x, so that 

r= (~ ~). 
Let 

(Wi r = exp 2n ° _OWi) and A = (~i _OWi) 

in either case. Assume that W is not an integer, i.e., A. is not a root of unity. 
By the discussion given above, the symplectomorphism '¥ is the period map 
of the 2n-periodic system (2) with Ho(x) = iWX I X 2 • By Corollary 3, there is 
a formal, 2n-periodic, symplectic change of variables, x -+ Y, which trans­
forms (2) to the autonomous system (17) satisfying (19). Equation (19) implies 
that the Hamiltonian is a function of YIY2 only. Let H#(y) = K#(YIY2) = 
iWYIY2 + iK(YIY2). By the above discussion, the normal form for (1) is the 
time 2n-map of the autonomous system whose Hamiltonian is K #. Change to 
action-angle variables (1, r/J); so, the Hamiltonian becomes H#(I, r/J) = K#(1) 
= wI + K(I). The equations defined by K# are 

j = 0, 

~ = -w - k(I), 
(25) 
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where k is the derivative of K. Equations (25) have I as an integral, and so the 
equations are solvable, and the solution is 

I(t) = 10 , 

,p(t) = ,po + (-w + k(1o))t. 
(26) 

Thus, the normal form for (1) in action-angle variable in this case is 

'I'(I,,p) = (,p +Ig(I)). (27) 

where g has a formal expansion g(1) = - w + pl .. .. If a symplectomorphism 
is in this form with P i= 0, then the origin is called a general elliptic point, or 'I' 
is called a twist map. The map (27) takes circles into circles and rotates each 
circle by an amount g(1). 

4. Higher Resonance in the Planar Case 

Let us consider the case when n = 1, and the symplectomorphism 'I' has an 
elliptic fixed point whose multiplier is a root of unity. Theorem 2 and Corol­
lary 4 apply as well. 

Let r have eigenvalues A. = (X + Pi, I = (X - Pi, where A. is a kth root of 
unity; so, A. k = 1, k > 2, and A. = exp(h2ni/k), where h is an integer. The origin 
is called a k-resonance elliptic point in this case. By Corollary II.D.9, there are 
symplectic coordinates, say x, so that 

then 

( hi/k r = exp 2n 0 

r = (A. ~). o A. ' 

and 

Since A is diagonal, it is its own adjoint. By the discussion given above, the 
symplectomorphism 'I' is the period map of the 2n-periodic system (2) with 
Ho(x) = (hi/k)(Xl x 2), where the reality condition is Xl = x 2. The normal form 
for the Hamiltonian is given by Theorem 2. 

Let h(t, x) be a typical term in the normal form expansion; so, 

The term h satisfies (16) ifand only if 

(hi/k)(ml - m2) + si = 0; 

so it is in the normal form ifit is of the form 

where r = (ml - m2)h/k, and m, ml , m2, and r are integers. 

(28) 

(29) 

(30) 
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In action-angle coordinates (I, fjJ), HO(I, fjJ) = (h/k)I, and the solution of the 
linear system is 1= 10' fjJ = fjJo - (h/k)t. Thus, H#(t, I, fjJ) is a function of I and 
(kfjJ + ht); so, let H#(t, I, r/J) = K#(I, kfjJ + ht) = (h/k)I + K(I, kr/J + ht). 

The lowest-order terms in (28) which contain t, the new terms, are x1e-hit 
and x~ehit. In action-angle coordinates these terms are like Ik/2 cos(kfjJ + ht) 
and Ik/2 sin(kr/J + ht). Thus, the normalized Hamiltonian is a function of I and 
(kfjJ + ht) only, and it is of the form 

H#(t, I, fjJ) = (h/k)I + aI2 + bI3 + ... + Ik /2{ex cos(kr/J + ht) 

+ f3 sin(kr/J + ht)} + ... . 
(31) 

The equations of motion are 

j = Ik/2 { - ex sin(kr/J + ht) + f3 cos(kfjJ + ht)} + ... , 
. ~~ 

r/J = -(h/k) - 2aI _ ... - (k/2)I(k-2)/2{ex cos(kfjJ + ht) + f3 sin(kr/J + ht)} + .... 

By a rotation, r/J ~ r/J + 15; the first sin term can be absorbed into the cos term, 
so there is no loss in generality in assuming that f3 = ° in (31) and (32). Hence­
forth, we will assume this rotation has been made, and so, f3 = 0. 

Note that in the ~ equation in (32), there are two nonlinear terms. When 
k > 4, the term which contains the angle is of higher order in I, whereas for 
k = 3 it is lower order. When k = 4, the two terms are both of order II. We 
shall see in Chapters VIII that the cases when k = 3 or 4 must be treated 
separately. 

The 2n-map is then of the form 

I = 10 - exn/2 sin(kfjJo) + ... , 
r/J = fjJo - (2nh/k) - 4nalo + exnkI(k-2)/2 cos(kr/Jo) + .... 

(33) 

5. Normal Forms when Multipliers Are ± 1 

Consider the case where the multiplier is + 1 first. Since in this subsection no 
trigonometric functions will be used, assume that the periodic systems are 
periodic with period 1. If r has the eigenvalue + 1, then either r is the iden­
tity, and A is the zero matrix, or there are symplectic coordinates such that 
r = (6 11) and A = (8 =t 1). In the first case, when r = I and A = 0, Theorem 
2 gives no information, and this is because the situation is highly degenerate 
and nongeneric. 

Therefore, consider the case when r = (6 D and A = (8 6); so, the adjoint 
of A is B = (? 8) and exp Bt = (! ?). Let x = (u, v). Condition (16) of Theorem 
2 is Hi(u, v + ut, t) == Hi(U, v, 0). This condition and the fact that Hi must be 
periodic in t implies that Hi(u, v, t) = Ki(U). Thus, the normal form is 

(34) 

and the equations of motion are 
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Ii = v + ... , 

aK v = - - (u) = -f3u2 + ... au 

(35) 

The period map is not so easy to compute and is not so simple. Fortunately, in 
applications, the critical information occurs at a very low order. By using the 
Lie transform methods discussed in the Problems Section one finds that the 
period map is 

u = uo + vo - (f3/12)(6u~ + 4uvoo + v~) + ... , 
v = Vo - (f313)(3u~ + 3uovo + v~) + .... 

(36) 

Now consider the case when r has eigenvalue - 1. In this case r = ((l ~l) 
or e;l ~n Consider the case when r = ((l ~l) first since it has a realloga­
rithm, r = exp 2nA, A = (-?/2 II}). This is almost the same as the higher­
order resonance considered in the previous subsection. Condition (21) of 
Corollary 4 implies that the normal form in this case is simply an odd func­
tion. That is, <D(y) = - Y + </J(y) is in normal form when </J( - y) = - </J(y). 

Now consider the case when r = COl =D. We shall make two changes of 
coordinates to bring this case to normal form. First, instead of the usual 
uniform scaling, scale by Xl -+I>XIX2 -+e2X2 so that the map (1) becomes 
'P(x) = -x + O(e). This nonuniform scaling moves the off diagonal term to 
the higher-order terms, and now the lead term is the same as discussed in the 
last paragraph. Thus, there is a symplectic change of coordinates z = R(x) 
such that in the new coordinates, z, the map (1) is odd, i.e., R 0 'P 0 R-I(z) = 
8(z) = rz + ... is odd. 

Write 8(z) = - A(z) = - {Qz + (z)}, where Q = (6 D. Now Q is of the 
form discussed above, and so, there is a symplectic change of coordinates 
y = S(z) which puts A in the normal form given by the time I-map of a 
Hamiltonian system of the form (34), where now K(u) is even. Since A is odd, 
the transformation S can be made odd also; see the Problems Section. Thus, 
So A 0 S-l = 0 is in the normal form given by the time I-map of a Hamil­
tonian system of the form 

(37) 

Using the method discussed in the Problems Section gives 0: (uo , vo) -+ (u, v), 
where 

u = Uo + Vo - (f3/ I20)(IOug + IOu~vo + 5uov~ + vg) + .. . , 
v = Vo - (f313)(4ug + 6u~vo + 4uov~ + vg) + .... 

(38) 

Combining these changes of coordinates and using the fact that S is odd, it 
follows that (S 0 R) 0 'P 0 (S 0 R)-l = - 0 . That is, in the new coordinates, the 
map is just the negative of (38), or the normal form for the map is 

u = -Uo - Vo + (f3/ I20)(IOug + IOu~vo + 5uov~ + vg) + ... , 

v = - Vo + (f313)(4ug + 6u~vo + 4uov~ + vg) + .... 
(39) 
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F. Further Reading 

Volume II of Poincare (1899) contains a great many results from the nine­
teenth century on perturbation theory and the beginnings of normal forms. 
Birkhoff (1927) contains the normal forms for equilibrium points for autono­
mous and periodic systems in the case when the linear system is simple. The 
theory of Lie trnasforms can be found in Deprit (1969) and Henrard (1970a, b, 
c). 

Normal forms at an equilibrium when the linear system is not simple is a 
current research problem. It starts with the Russian school; see Sokol'skij 
(1978). Kummer (1976, 1978) and Cushman, Deprit, and Mosak (1983) used 
group representation theory to find the normal forms in this case. Theorem 
C.5 is found in Meyer (1984b), but the proof comes from Elphick et al. (1987). 

Problems 

1. a. The normal forms for a Hamiltonian system with leading term Hg(q, p) = p2/2 is 
H*(q, p) = p2/2 + Q(q); see (C.28). This normal form also appears in Section E.5 
when the case of multipliers equal to + 1 is discussed. Carefully draw the phase 
portrait for the system with Hamiltonian H(q, p) = p2/2 + flq3 when fl = + 1 
and -1. Also see Section E.5. 

b. In Section E.5 when the multiplier -1 is discussed, the normal form was 
H*(q, p) = p2/2 + Q(q) with Q even. Carefully draw the phase portrait for the 
system with Hamiltonian H(q, p) = p2/2 + flq4 when fl = + 1 and - 1. 

2. a. Compute the next term in the normal form of the unforced Dulling equation (B.l) 
by hand. Recall that Hg, H?, HJ, and WI are given in Section B.1. [Hint: To get 
the next term you do not have to compute all of Hf , HJ and W2 • HJ is the term 
which is independent of ¢J in m + {HJ, Wd . Show that {HJ, Wd has no term 
independent of ¢J. Now m = Hg + {H? , Wd + {Hg, W2}. Since HJ = 0, you 
need to compute the term independent of ¢J in {HJ , WI }.] 

b. Using Macsyma, Reduce, Scratchpad, etc., find the first four terms in the 
normal form for the unforced Dulling equation. [Answer: H* = ] + e(3)'/8)]2 + 
(e 2 /2)(17)'2 /32)]3 + (e 3 /6)(5725)'3 / 1024)]4 + .... ] 

3. The Hamiltonian for Dulling's equation is ofthe form (q2 + p2)/2 + P(p) where Pis 
an even polynomial. 
a. Show that such a Hamiltonian in action-angle variables is a Poisson series with 

only cosine terms. 
b. Show that the Poisson bracket of two Poisson series, one of which is a cosine 

series and the other of which is a sine series, is always a cosine series. 
c. Let HJ and W; be from the normalization of such a Hamiltonian with an even 

potential. Show that Hj can always be taken as a cosine series and W; as a sine 
series. [Hint: Define the spaces ~i' fi i , and f71i of Theorem B.1.] 

4. Consider a Hamiltonian differential equation of the form x = eF#(e, t, x) = 
eFI (t , x) + e2 F2 (t, x) + .. . , where F is T-periodic in t. Show that there is a formal 
symplectic series expansion x = X(e, t, y) = Y + .. . which is T-periodic in t and 
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transforms the equation to the autonomous Hamiltonian system x = eF#(x) = 
eFI(x) + e2 F2(X) + ... . Show that FI(X) = (l i T) g FI Cr, x) dr, i.e., FI is the average 
of FI over a period. This is called the method of averaging; see Bogoliubov and 
Mitropolskii (1961). [Hint: Use Theorem E.2 and remember Fg = 0.] 

5. Use the notation of the previous problem. Show that if FI(O = 0 and iJFI(~)liJx 
is nonsingular, then the equation x = eF#(e, t, x) has a T-periodic solution lfo(t) = 
~ + O(e). 

6. Analyze the forced Dulling's equation, x + x = e{(jx + yx 3 + A cos t} = 0, three 
different ways, and show that the seemingly different methods give the same 
intrinsic results. The parameter (j is called the detuning and is a measure of the 
difference between the natural frequency and the external forcing frequency. Re­
member that a one-degree-of-freedom autonomous system has a phase portait 
given by the level lines of the Hamiltonian. 
a. Write the system in action-angle coordinates, and compute the first term in the 

normal form, FJ, as was done for Dulling's equation. Analyze the truncated 
equation by drawing the level lines of the Hamiltonian. (See Section VI.II.B.) 

b. Write the system in complex coordinates and compute the first term in the 
normal form, FJ, as was done for Dulling's equation in Section B. Analyze the 
equation as in a. 

c. Make the "van der Pol" change of coordinates 

C) = (~:~: t ;~: :)(~) 
and then compute the first average of the equations via Problems 4 and 5. 
Analyze the equations. See McGehee and Meyer (1974). 

7. Consider a Hamiltonian of two degrees of freedom of the form C.1, x E [R4. Let 
Ho(x) be the Hamiltonian of two harmonic oscillators. Change to action-angle 
variables (l1,/2,lfol , lfo2) and let Ho=wl/l +w2/2. Use theorem C.l to show 
that the terms in the normal form are of the form alf/2 W2 cos(rlfol + Slfo2) or 
blf/2/'1'2 sin(rlfol + Slfo2)' a and b constants, if and only if rW I + SW2 = 0, and the 
terms have the d' Alembert character. See Henrard (1970b). 

8. Consider a Hamiltonian H(x) with general solution lfo(t, ~). Observe that the ith 
component of lfo is the Lie transform of Xi' i.e., lfoi(t, 0 = 2'H(XJ(~), where e is 
replaced by t. 
a. Show that lfoi(t, ~) = [Xi + {Xl ' H}t + {{Xl' H}, H}t2/2 + " ']x=~ ' 
b. Using Macsyma, Reduce, etc., write a simple function to compute the time 1 

maps given in Equations (E.36) and (E.38). (Make sure that you compute the 
time series far enough to pick up all the quadratic and cubic terms in the initial 
conditions.) 

9. Prove Theorem B.4, the uniqueness theorem. [Hint: Show that if the normal form is 
not unique then there are two different Hamiltonian Hand K which are both in 
normal form and a generating function W carrying one into the other. Show that 
the terms in the series expansion for W must lie in the kernel fl i • Then show that this 
implies that W == 0.] 



CHAPTER VIII 

Bifurcations of Periodic Orbits 

This chapter and Chapter IX use the theory of normal forms developed in 
Chapter VI. They contain an introduction to generic bifurcation theory and 
its applications. Bifurcation theory has grown into a vast subject with a large 
literature; so, this chapter can only present the basics of the theory. The pri­
mary focus of this chapter is the study of periodic solutions-their existence 
and evolution. Periodic solutions abound in Hamiltonian systems. In fact, a 
famous Poincare conjecture is that periodic solutions are dense in a generic 
Hamiltonian system, a point that was established in the C1 case by Pugh and 
Robinson (1977). 

A. Bifurcations of Periodic Solutions and Points 

Recall that in Section V.E the study of periodic solutions of a Hamiltonian 
system was reduced to the study of one-parameter family of symplectic 
maps-the Poincare map in an integral surface. The integral surface is in a 
level set of the Hamiltonian, and the parameter is the value of the Hamil­
tonian on that level set. If the Hamiltonian has n degrees of freedom, then the 
phase space is 2n dimensional, and the section in the integral surface has 
dimension 2n - 2. This effects a reduction of dimension by 2. 

A fixed point of the Poincare map corresponds to a periodic solution of the 
Hamiltonian system. The questions answered in this section are: (1) When can 
a fixed point be continued? (2) What typically happens when you cannot con­
tinue a fixed point? (3) Are there other periodic points near a fixed point? 
However, to keep the notation simple, the discussion will be limited to sym­
plectic maps of two dimensions which depend on one parameter. This corre-

201 
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sponds to a two-degree-of-freedom autonomous system or a one-degree-of­
freedom periodic system. In two dimensions, a map is symplectic if and only if 
it is area preserving; so, henceforth that term will be used. A warning should 
be given: the proper generalization of the theory presented below would be to 
symplectic maps, not just volume-preserving maps. 

Even the restriction to area-preserving maps is not enough for a complete 
classification because the number of types of bifurcations is manifold. There­
fore, only the "generic case" will be considered in this section. The word 
"generic" can be given a precise mathematical meaning in the context ofbifur­
cation theory, but here only the intuitive meaning will be given in order to 
avoid a long mathematical digression. Consider the set of all smooth area­
preserving mappings depending on some parameter; then a subset of that set 
is generic if it has two properties: (1) it is open and (2) it is dense. A subset is 
open if a small smooth perturbation of a mapping in the subset is also in the 
subset. So the defining properties of elements of the subset are not sensitive 
to small perturbations, or the elements are "stable" under perturbations. A 
subset is dense if any element in the set can be approximated by an element of 
the subset. The set of area-preserving mappings satisfying the properties listed 
in the propositions can be shown to be generic [Meyer (1970)]. 

1. Elementary Fixed Points 

Let P: 0 x 0 ~ 0: (J1., x) ~ P(J1., x) be a smooth function where 0 = (- J1.o, J1.o), 
J1.o > 0, is an interval in IR, and 0 is an open neighborhood of the origin 
in 1R2. For fixed J1. E 0, let P", = P(J1., .): 0 ~ 0 be area preserving; so, 
det(op(J1., x)/ox) = 1. Let the origin be a fixed point of P when J1. = 0, i.e., 
P(O,O) = O. The eigenvalues of A = oP(O, O)/ox are the multipliers of the fixed 
point. In two dimensions, the eigenvalues of the symplectic matrix, A, are 
(1) real reciprocals, or (2) on the unit circle, or (3) both equal to -1, or (4) 
both equal to + 1. If the multipliers are different from + 1, the fixed point is 
elementary. 

Proposition 1. An elementary fixed point can be continued. That is, if x = 0 is 
an elementary fixed point for P when J1. = 0, then there exists a J1.1 > 0 and 
a smooth map ~: (- J1.1' J1.1) ~ 0 with P(~(J1.), J1.) = ~(J1.). Moreover, the multi­
pliers of the fixed point ~(J1.) vary continuously with J1.; so, if x = 0 is elliptic 
(respectively hyperbolic) when J1. = 0, then so is ~(J1.) for small J1.. 

PROOF. The implicit function theorem applies to G(J1., x) = P(J1., x) - x = 0 
because G(O, 0) = 0, and oG(O, O)/ox = A - I is nonsingular; so, there is a ~(J1.) 
such that G(J1., ~(J1.)) = P(J1., ~(J1.)) - ~(J1.) = O. The multipliers of ~(J1.) are the 
eigenvalues of OP(J1., ~(J1.))/ox, and the eigenvalues of a matrix vary continu­
ously (not always smoothly) with a parameter. -
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! • ; / 

Figure A.I. Rendering of elliptic points. 

In particular, an elliptic (respectively hyperbolic) fixed point can be con­
tinued to an elliptic (respectively hyperbolic) fixed point. 

There will be several figures in this chapter. These figures will show the 
approximate placement of the fixed points and their type, elliptic or hyper­
bolic, as parameters are varied. That is all they are meant to convey. They will 
be drawn as if the diffeomorphism where the time one map of a differential 
equaton. Thus, for example, the drawing of an elliptic point will show concen­
tric circles about the fixed point. Do not assume that the circles are invariant 
curves for the map. These curves suggest that the mapping approximately 
rotates the points. Figure A.I shows two depictions of an elliptic fixed point. 
The one on the left shows that the points near the elliptic point move a 
discrete distance and is a more accurate depiction, whereas the figure on the 
right indicates invariant curves. The figure on the right is slightly misleading, 
but is less cluttered and therefore will be used in this chapter. 

2. Extremal Fixed Points 

Consider the case when the multipliers are equal to + 1. In this case, the 
simple implicit function theorem argument fails and for a good reason. Many 
different things can happen depending on the nonlinear function; so, the 
simple conclusions of Proposition 1 may not hold in this case. As an extreme, 
consider the case when A = I and P(Ii, x) = x + liP(X), where p(x) is an arbi­
trary function. The fixed points of P(Ii, x) for Ii # 0 are the zeros of p(x); since 
p(x) is arbitrary, the fixed point set can be quite complicated-in fact, it can 
be any closed set in 1R2. In light of this potential complexity, only the typical 
or generic situation for a one-parameter family will be considered. 

Definition. The origin is an extremal fixed point for P when Ii = 0, if there are 
symplectic coordinates (u, v) so that P: (Ii, u, v) -. (u', v'), where 
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(1) 

and rx = ± 1, P#-O and b #- O. First, note that it is assumed that when J.l = 0 
the linear mapping is already in Jordan normal and the matrix is not simple 
(rx = ± 1). Second, since b #- 0, the perturbation does not leave the origin as a 
fixed point. Last, note that one nonlinear term is nonzero. It is not necessary 
to put the full map into normal. However, if (1) is in the normal form as 
discussed in Section VII.E.5, then the assumption that P#-O is the assump­
tion that the first nonlinear term in the normal form appears with a nonzero 
coefficient. 

Proposition 2. Let 0 E I(]) £ 1R2 be an extremal fixed point for P when J.l = 0. 
Then there is a smooth curve u: (-r2' r2) -+ U x I(]): r -+ (v(r), e(r» of fixed 
points of P, P((v(r), e(r» = e(r), with r = 0 giving the extremal fixed point, 
r(O) = (0, 0). The extremal point divides the curve of fixed points into two arcs. 
On one are, the fixed points are all elliptic, and on the other, the fixed points are 
all hyperbolic. Moreover, the parameter J.l achieves a nondegenerate maximum 
or minimum when at the extremal fixed point; so, there are two fixed points 
when J.l has one sign and no fixed points when J.l has the other. The proof 
contains precise information on the relationship between the signs and the nature 
of the fixed points. 

PROOF. The equations to be solved are 

° = u' - u = rxv + J.ly + ... , 
o = Vi - V = J.lb + pu2 + ... , 

(2) 

Since rx #- ° and b #- 0, these equations can be solved for v and J.l as a function 
of u. (Note the difference between this proof and the proof of Proposition 
I-one of the variables solved for in this proof is the parameter.) The solution 
is of the form v(u) = O(u2) and Ji(u) = (- P/b)u2 + O(u3 ); so, the map is u: r -+ 

(Ji(r), r, v(r». The extreme point is obtained when r = 0. Note that if Pb > 0, 
the Ji obtains a nondegenerate maximum when r = 0, and if Pb < 0, then Ji 
obtains a nondegenerate minimum when r = 0. 

The Jacobian of the map along this solution is (21. n + ... , and so the 
multipliers are 1 ± (2rxpr)1/2 + .... Hence, when rxp > 0, the fixed point is 
elliptic for r < ° and hyperbolic for r > ° and vice versa when rxp < 0. • 

Figure A.2 shows the curve u in U x I(]). U is the horizontal axis and I(]) is 
depicted as a one-dimensional space, the vertical axis. In the case shown the J.l 
achieves a nondegenerate maximum on the curve at the origin. Consider the 
case depicted in Figure A.2. For J.l negative there are two fixed points in 
I(]), one elliptic and one hyperblic; see Figure A.3(a). As J.l approaches zero 
through negative values, these fixed points come together until they collide 
and become a degenerate fixed point when J.l = 0; see Figure A.3(b). For posi­
tive J.l there are no fixed points in I(]). 
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u , v 

Figure A.2. The curve (1. 

(a) (b) (c) 

Figure A.3. Extremal fixed point. (a) Jl < 0; (b) Jl = 0; (c) Jl > o. 

3. Period Doubling 

The solutions given by the implicit function theorem are locally unique; so, 
there is a neighborhood of an elementary or an extremal fixed point which 
contains no other fixed points. But, there may be periodic points of higher 
period near one of these fixed points. There are no periodic points near a 
hyperbolic or extremal fixed point (see the Problems Sections), but there 
may be one near an elliptic fixed point. Let x = 0 be an elementary fixed 
point for P when J.l = 0; so, by Proposition 1, there is a smooth ~(J.l) of fixed 
points. This fixed point can be shifted to the origin by considering P'(u, J.l) = 
P(n + ~(J.l), J.l) - ~(J.l). Assume that this shift has been done, and revert to the 
original notation, i.e., assume that P(O, J.l) == O. 

Let Pix) = P(x, J.l) = Ax + ... , then p!(x) = Pp. 0 Pp. 0 • •• 0 Pix) = 
Akx + ... . A k-periodic point satisfies the equation P!(x) = AkX + ... = x 
which has a unique solution, x = 0, unless Ak - I is singular, or one of the 
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eigenvalues of A is a kth root of unity. Thus, k-periodic points may exist near 
a fixed point with a multiplier which is a kth root of unity. In fact, generically 
they do bifurcate from fixed points whose multipliers are kth roots of unity. 
In this subsection, the case when k = 2 is considered, i.e., when the multipliers 
are -1. 

The map C(! : Jl ~ oP(O, Jl)/ox is a curve in Sp(2, IR), the set of all 2 x 2 real 
matrices with determinant equal to + 1. Sp(2, IR) is a three-dimensional space 
because there is one algebraic identity among the four entries of the matrix. 
Let .A be a subspace of Sp(2, IR). If .A is a discrete set of points or a curve, 
then a small perturbation ofC(! would miss.A, and ifc(! already misses.A, then 
a small perturbation of C(! would still miss .A. Thus, one open and dense 
condition (a generic condition) is for C(! to miss a discrete set or a curve in 
Sp(2, IR). If .A is a surface in the three-dimensional space Sp(2, IR), then the 
curve C(! would in general hit .A in a discrete set of points and cross the surface 
with nonzero velocity. This is generic when .A is a surface; see Figure A.4. 

The set of matrices, .$12 = {A E Sp(2, IR): trace A = -2}, is the set of ma­
trices in Sp(2, IR) with eigenvalue equal to -1. It is a surface because the 
matrices satisfy the additional algebraic identity, trace A = - 2. The set 
{ - I} E .$12 is a discrete point; thus, generically, the curve C(! intersects 
.$12 \ { - I} in a discrete set of points, and at these points, d(trace C(!(Jl) )/dJl # O. 
Thus, along a curve of elementary fixed points, there are isolated points where 
the multipliers are -1, and the Jacobian is not simple. At these points, the 
map can be put into the normal form described in Section VII.E.s. It is also 
generic for the first term in the normal form to appear with a nonzero 
coefficient. This informal discussion leads to the following definition. 

Definition. The origin is a transitional periodic point for P at Jl = 0 if there are 
symplectic coordinates (u, v) so that P: (u, v) ~ (u', v'), where 

Figure A.4. Intersections in Sp(2, IR). 
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and (X = ± 1, c =F 0, P =F O. 
There are three conditions in this definition. First, when /1 = 0, the multi­

pliers are -I, and the Jacobian matrix is not diagonalizable, (X =F O. Second, 
since 

det{(~1 ~1)+/1(: :)+ . .. }=I-/1(a+d+(XC)+ .. . =+I, 

c = -(a + b)j(X, and so the condition c =F 0 implies that the derivative of the 
trace of the Jacobian is nonzero. Third, p =F 0 is the condition that the first 
term in the normal form when /1 = 0 is nonzero. It is not necessary that the 
map be put into normal form completely; simply eliminate all the quadratic 
terms, and then assume that p =F O. 

Proposition 3. Let the origin be a transitional fixed point for P when /1 = 0 and 
/1 small. If (Xc < 0, then the origin is a hyperbolic fixed point when /1 > 0 and the 
origin is an elliptic fixed point when /1 < 0 (vise versa when (Xc < 0). If pc> 0 
(respectively pc < 0), then there exists a periodic orbit of period 2 for PI' when 
/1 < 0 (respectively /1 > 0), and there does not exist a periodic orbit for /1 ~ 0 
(respectively /1 :s; 0). As /1 tends to zero from the appropriate side, the period 2 
orbit tends to the transition fixed point. For fixed /1, the stability type of the 
fixed point and the period 2 orbit are opposite. That is, if fixed /1 the origin is 
elliptic, then the periodic point is hyperbolic and vice versa. See Figure A.5. 

Remark. The fixed point is called a transition point because the stability type 
of the fixed point changes from hyperbolic to elliptic, or vice versa. At the 
transition point, a new period 2 point appears on one side of /1 = 0; this is 
called period doubling in the literature. One says that the period 2 point bifur­
cates from the transition point. 

PROOF. The first part of the proposition follows by the remark preceding the 
statement. This remark shows that the trace of the Jacobian at the origin 
is - 2 - /1(XC + .... Compute that the second iterate of the map is (u, v) -+ 

(u", v"), where 

u" = u - 2(Xv + .. . , 

v" = v - 2/1cU - 2/1dv - 2pu3 + ... . 
(4) 

Since (X =F 0, the equation u" - u = -2(Xv + ... = 0 can be solved for v as a 
function of /1 and u. Call this solution v(u, /1). The lowest-order terms in v are 
of the form k/1U2 and k'u3, where k and k' are constants. Substitute this 
solution into the equation v" - v to get 

v" - v = -2/1cU - 2pu3 + .... (5) 
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Since the origin is always a fixed point, U is a common factor, and so, the 
equation to solve is 

(v" - v)ju = - 2J.lC - pu2 + .. . . (6) 

Since c i= 0, Equation (6) can be solved for f.l as a function of u; call this 
solution Ji(u) = -(P/2c)u2 + .... If pc > 0, then there are two real solutions, 

u±(/l) = ±J -2c/l/P + ... for /l < 0, and none for /l ~ 0, and vice versa when 
pc < O. Thus, (u±(f.l), v(u±(f.l), f.l)) are two points of P;, but since they are not 
the origin, they are not fixed points of PI" Therefore, they are periodic points 
of period 2. The Jacobian is 

o(u", v") = (1 2) ( 
o(u, v) 0 -1!X + -2Cf.l· ~6PU2 ... ) + .... 

... (7) 

Since u2 = - 2c/l/ P + .. , along these solutions, the multipliers are 1 + 
J - 20!Xc/l + ... and so are hyperbolic if !XCf.l < 0 and elliptic when !XCf.l > O . 

• 
There are two basic cases. Case A: the periodic point is elliptic; Case B: the 

periodic point is hyperbolic. These are depicted in Figure A.S. In the figure it 
is assumed that !Xc > 0 and Case A is when pc > 0 and Case B is when pc < O. 

Case A 

(a) (b) (c) 

CaseB 

(a) (b) (c) 

Figure A.S. Transitional point. Case A: (a) /1 < 0, (b) /1 = 0, (c) /1 > O. Case B: (a) /1 < 0, 
(b)/1 = 0, (c) /1 > O. 
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4. k-Bifurcation Points 

From the discussion of the last section, periodic points are likely near a fixed 
point that has multipliers which are kth roots of unity. In the last subsection 
the generic case of a fixed point with multiplier -1, a square root of unity, 
was discussed, and in this section, the remaining cases will be discussed. Re­
call the normal forms given in Section VII.E.4. 

Definition. The origin is a k-bifurcation point, k ~ 3, for P when Jl = 0, if there 
are symplectic action-angle coordinates (I, ifJ) so that P(I, ifJ) -+ (J', ifJf), where 

J' = I - 2yIk/2 sin(kifJ) + ... , 
ifJf = ifJ + (2nh/k) + (XJl + {3I + ... + yI(k-2)/2 cos(kifJ) + ... , 

(8) 

and (X =F 0, y =F ° when k = 3; (X =F 0, y =F 0, {3 ± y =F ° when k = 4; (X =F 0, 
{3 =F 0, y =F ° when k ~ 5. 

The linearized map is J' = I, ifJf = ifJ + (2nh/k) + (XJl. So when Jl = 0, the 
multipliers are exp( ± 2nhi/k), a kth root of unity. The assumption (X =F ° is the 
assumption that the multipliers pass through the kth root of unity with non­
zero velocity. When k ~ 5, the terms with ifJ dependence are higher order, and 
the map when Jl = ° is of the form J' = I + ... , ifJf = ifJ + (2nh/k) + {3I + ... . 
The assumption that {3 =F ° is the twist assumption, and a map satisfying this 
assumption is called a twist map. Twist maps will be discussed in the next 
section, and in Chapters IX and X. The assumption that y =F ° is the assump­
tion that the first angle-dependent term in the normal form appears with a 
nonzero coefficient. This term is referred to as the resonance term, and it is 
very important to the bifurcation analysis given below. The resonance term is 
of lower order than the twist term when k = 3 and vice versa when k ~ 5. 
When k = 4, they are both of the same order. Therefore, the case k = 3 and 
k = 4 is special and must be treated separately. 

Proposition 4. Let the origin be a 3-bifurcation point for P when Jl = ° and Jl is 
small. Then there is a hyperbolic periodic orbit of period 3 which exists for both 
positive and negative values of Jl and the periodic point tends to the 3-bifurcation 
as Jl-+ ° from either side. (See Figure A.6.) 

PROOF. Compute the third iterate of the map PI' as pi: (I, ifJ) -+ (1\ ifJ3), where 

13 = I - 2yI3/2 sin(3ifJ) + " ., 
(9) 

ifJ3 = ifJ + 2nh + 3(XJl + 3yIl/2 cos(3ifJ) + ... . 

The origin is always a fixed point; so, I is a common factor in the formula for 
13. Since y =F 0, the equation (13 - I)/(2yI3/2) = sin(3ifJ) + ... can be solved 
for six functions ifJP, Jl) = jn/3 + ... , j = 0, 1, ... , 5. For even j, cos 3ifJj = 
+ 1 + ... , and for oddj, cos 3ifJj = -1 + ... . Substituting these solutions into 
the ifJ equation gives (ifJ3 - ifJj - 2hn)/3 = (XJl ± yI 1/2 + .. . . The equations 
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(a) (b) (c) 

Figure A.6. 3-Bifurcation point. (a) J-l < 0, (b) J-l = 0, (c) J-l > o. 

Figure A.7. A 6-bifurcation point. 

with a plus sign have a positive solution for I when rxYIl is negative, and the 
equations with the minus sign have a positive solution for I when rxYIl 
is positive. The solutions are of the form I}l2 = =+= rxll/Y + .... Compute the 
Jacobian along these solutions to be 

8(13, (P) (1 0) ( 0 
8(1, </J) = 0 1 + (± 3y/2)If/2 

J + ... =+= 6YI~/2) 
o ' (10) 

and so the multipliers are 1 ± 3Ijlvl, and the periodic points are all 
hyperbolic. _ 

Proposition 5. Let the origin be a k-bifurcation point, k z 5, for P when 11 = o. 
Then when rxp < 0 (respectively rxp > 0) there exist an elliptic and also a hyper­
bolic periodic orbit of period k for 11 > 0 (respectively 11 < 0) and no periodic 
orbit of period k when 11 < 0 (respectively 11 > 0). As 11 ~ 0 from the appropriate 
side, both the elliptic and hyperbolic orbits tend to the k-bifurcation point. (See 
Figure A. 7.) 
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Remark. These periodic orbits are said to bifurcate from the fixed point when 
/1 = O. Each orbit consists of k points, and there are exactly two periodic 
orbits. 

PROOF. Compute the kth iterate of the map Pp. as p!: (I, tfo) -t (1\ tfok), where 

Ik = I - 2yIk/2 sin(ktfo) + ... , 

tfok = tfo + 2hn + ak/1 + PkI + . .. . 
(11) 

Since the origin is a fixed point for /1, the first equation is divisible by Ik/2. By 
the implicit function theorem, there are 2k solutions of W - 1)/( - 2yIk/2) = 
sin(ktfo) + ... = 0; call them tfoP, /1) = jn/k + .... Substitute these solutions in-
to the equation (tfok - tfo - 2hn)/k = a/1 + PI + .. . = O. For each of the tfoj, this 
second equation has a solution Ij = "':"'a/1/ p + ... which gives a positive I 
provided ap/1 < O. 

The Jacobian at these solutions is 

oW, tfok) = (1 0) ( 0 
0(1, tfo) 0 1 + kP 

- 2ky If/~ cos( ktfo)) + ... , (12) 

and so the mUltipliers are 1 ± J2kYPIjk/2 + ... , where the plus sign is taken 
for evenj because cos(ktfoj) = + 1 + ... for evenj, and the minus sign is taken 
~~dj • 

The case when k = 4 is sometimes like the case when k = 3 and sometimes 
like the case when k ~ 5 depending on the relative size of the twist term and 
the resonance term. 

Proposition 6. Let the origin be a 4-bifurcation point for P when /1 = O. Then : 
Case A. If P ± y have different signs, then there is a hyperbolic periodic orbit 

of period 4 which exists for both positive and negative /1 and tends to the 3-
bifurcation as /1 -t 0 from either side. 

Case B. If P ± y have the same sign, then when a(p ± y) < 0 [respectively 
a(p ± y) > 0], there exists an elliptic and a hyperbolic periodic orbit of period 4 
for /1 > 0 (respectively /1 < 0) and no periodic orbit of period 4 when /1 < 0 
(respectively /1 > 0). As /1-t 0 from the appropriate side, both the elliptic and 
hyperbolic orbits tend to the 4-bifurcation point. 

PROOF. Compute the 4th iterate of the map Pp. as P:: (I, tfo) -t (1\ tfo4), where 

14 = I - 2yI2 sin(4tfo) + .. . , 

tfo4 = tfo + 2hn + 4a/1 + 4{P + y cos(4tfo)}I + .. . . 
(13) 

Since the origin is a fixed point for all /1, the first equation is divisible by 12. By 
the implicit function theorem there are eight solutions of (14 - 1)/( - 2yI2) = 
sin(4tfo) + ... = 0; call them tfoP, /1) = jn/4 + .... Substitute these solutions 
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into the equation 

(p4 - ¢> - 2hn)/4 = al! + {P + Y cos(4¢»} I + ... 

= al! + {P ± y} I + ... = O. 
(14) 

For each of the ¢>j' this equation has a solution I j = -al!/{p ± y} + ... which 
gives a positive I provided a{p ± Y}I! < O. So if P ± Y have different signs, 
then one group of four solutions exists for positive I! and the order group for 
negative I!; this is Case A and is similar to Proposition 4. If P ± yare of the 
same sign, all eight solutions exist for I! on one side on 0; this is Case B and is 
similar to Proposition 5. The calculation of the multipliers is similar to the 
calculations given above. _ 

B. Duffing Revisited 

This section develops some new ideas in order to analyze two types ofbifurca­
tions which occur in Duffing's equation. The first is an extremal, and the 
second is a k-bifurcation. 

1. Duffing at 1-1 Resonance 

Here the classical Duffing equation is considered, even though it has been 
discussed in many texts. Most of the classical treatments miss the fact that 
there is an extremal periodic solution as defined in Section A.2, and therefore 
their treatment is incomplete. Consider the classical Duffing equation 

(1) 

or 

(2) 

where 

H = (Wn/2)(y2 + X2) + (y/wn)x4/4 - (A/wn)x cos wet. (3) 

When the nonlinearity is absent, y = 0, and there is no external forcing, A = 
O. This is simply the harmonic oscillator with a frequency Wn' the natural 
frequency. The general solution is ¢>g = a cos wnt + P sin wnt. 

If the nonlinearity is absent, y = 0, the external force is present, A i= 0, and 
the two frequencies are unequal, We i= Wn' then the equation has a particular 
solution ¢>p = B cos wet, B = A/(w; - w;). In this case, the particular solution 



B. Duffing Revisited 213 

is the unique solution which is periodic with the same frequency as the exter­
nal frequency, We' and period T = 2n/we. The variational equation for this 
solution is obtained by setting A = I' = 0 in (2), and the period map is com­
puted to be (x, y) -+ (x', y'), where 

(X') = ( co~ Wn T sin Wn T) (x). 
y' - sm wn T cos wn T Y 

(4) 

Thus, the multipliers of this solution are exp( ± 2niwn/we), which are not equal 
to + 1 provided wn/we "# 0, ± 1, ± 2, ± 3, .... In this case, the particular 
solution is elliptic, hence elementary, and so it can be continued into the 
nonlinear problem for small I' "# o. In summary, if wn/we "# 0, ± 1, ± 2, ± 3, 
... , then for small forcing and small nonlinearity, there is a small periodic 
solution of (1) with the same period as the external forcing. In the classical 
literature this solution is sometimes referred to as the harmonic. 

The question of interest, then, is what happens when wn/we = 0, ± 1, ± 2, 
± 3, .... To this end consider the case when wn/we is near + 1 by setting 
w; = 1 - ec5, we = 1, where e is a small parameter. The interesting thing 
happens not just when the ratio of the frequencies is 1, but also when the ratio 
is near 1; so, the parameter c5 is introduced. It is called the detuning. Assume 
that the nonlinearity and forcing are small by using the following replace­
ments: I' -+ - e"}" A -+ eA. That is, consider the equation 

or 

where 

x + x = e{c5x + "}'x 3 + A cos t}, 

. oH 
x = y = oy' 

oR 
y = -x + e{c5x + "}'x 3 + A cos t} = - ox' 

(5) 

(6) 

R = (1 /2)(x2 + y2) - e{c5x2/2 + "}'x4/4 + Ax cos t}. (7) 

Change to action-angle variables by setting x = fii cos ¢J, y = fii sin ¢J, 
so that the Hamiltonian becomes 

H = J - e{M cos2 ¢J + "}'J2 cos4 ¢J + Afii cos ¢J cos t}. (8) 

By Theorem VII.E.2, the normal form for (8) depends on J and (¢J + t). To 
find the first term in the normal form, substitute the identities cos2 ¢J = 
(1 + cos 2¢J)/2, cos4 ¢J = (3 + 4 cos 2¢J + cos 4¢J)/8, cos ¢J cos t = (cos(¢J + t) 
+ cos(¢J - t))/2 into (8), and keep only the terms in J and (¢J + t) obtain the 
normal form: 

H = J - e{((j/2)J + (3"}'/8)J2 + Arl/2Jl/2 cos(¢J + t)} + .. . , (9) 

Integrate the normalized equations from 0 to 2n to get the period map to be 
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(I, ifJ) --+ (If, ifJ'), where 

l' = 1 + e{ n2 l /2 A/l/2 sin ifJ} + "', 

ifJ' = ifJ - 2n + en{J + gl + arl /2 cos ifJ} + "', 
(10) 

where g = 3"1/2 and a = (2Afl/2. Solving the equation (1' - I)/e = 0 using 
the implicit function theorem gives two solutions, ifJ+(e, ifJ) = 0 + O(e) and 
ifJ-(e, ifJ) = n + O(e), with sin ifJ± = 0 + O(e) and cos ifJ± = ± 1 + O(e). Sub­
stituting these solutions into the equation (¢/ - ifJ)/2ne = 0 gives 15 + gl ± 
arl /2 + 0(8) = O. Solve this equation for 15 by the implicit function theorem 
to get 

15 = - gl =+= arl /2 + ... ; (11) 

see Figure B.1, where g and a are taken to be positive. Thus, if e is small, 
for each (I, 15) satisfying (11) there are two 2n periodic solutions of (9). The 
graph of(l1) when e = 0 has a maximum when ag > 0 and a minimum when 
ag < 0 at ia/gi2/3• In either case, the second derivative is nonzero at extrema, 
and so (11) has a maximum/minimum at a point l' = ia/gi 2/3 + O(e), 15' = 
(3/2)(2a2g)1/3 + ... even when e is nonzero and small. Thus, the qualitative 
features of the graph of(11) are the same as when e = 0; see Figure B.l. 

Consider the case when a and g are positive as pictured in Figure B.l. The 
free parameter is the de tuning, J. When 15 < 15' there are three values of 1 that 
satisfy Equation (11) and hence six periodic solutions. As 15 approaches 15' 
from below, two of these 1 values approach each other, and when 15 = 15' they 
collide. For 15 > 15', there is only one 1 solution. This reminds one of an ex­
tremal bifurcation where an elliptic and a hyperbolic point come together. 

In order to calculate the multipliers, calculate the Jacobian by 

0(1', ifJ') ( 1 
a(I, ifJ) = -endJ/dl 

± e(2/)-1/2 A) + ... 
1 . (12) 

Note the term in the lowerleft, 8ifJ'/81 = -endJ/dl, is exact. The characteristic 
equation of (12) is (A - 1 + ... )2 ± (e2 n(2Afl/2 + .. . ) dJ/dl. The two solu­
tions near the extrema have different signs for dJ/dl; so, one is elliptic and 
one is hyperbolic. Thus, the extrema (11) correspond to an extremal periodic 
point. 

2. k-Bifurcations in Duffing's Equation 

In applications it is difficult to verify the hypothesis "I "# 0 for a k-bifurcation 
point when k is large. This is difficult even with an algebraic processor be­
cause the map must be put into normal form to very high order. In applica­
tions the period map is typically known only approximately, and it is not in 
full normal form. In several examples it is easy to compute that r:J. "# 0 and 
f3 "# O. With this information alone and an ingenious idea of Birkhoff, the 
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existence of a bifurcation can be detected, but the uniquencess of the periodic 
orbits cannot. Use the notation of Section AA in this section. 

Definition. The origin is a weak k-bifurcation point, k ~ 5, for P when Jl = 0, if 
there are symplectic action-angle coordinates (I, ,p) so that P is as in Equation 
(A.8) with a =1= 0 and f3 =1= O. 

Proposition 1. Let the origin be a weak k-bifurcation point for P, k ~ 5, when 
Jl = O. Then when af3 < 0 (respectively af3 > 0) P, has t, 00 ~ t ~ 2, periodic 
orbits for each Jl, Jl > 0 (respectively Jl < 0). As Jl ...... 0 from the appropriate 
side, all the periodic orbits tend to the origin (the weak k-bifurcation point). 

Remark. This is simply an existence theorem for each fixed Jl. In particular, 
the number of periodic orbits t may depend on Jl, and the orbits may not vary 
continuously in Jl except at Jl = O. 

PROOF. As in the proof of Proposition A.5, compute p! to be as given in 
Equations (A.l1). Since a =1= 0 and f3 =1= 0, the equation (,pk -,p - 2hn)/k = 

aJl + f3I + .. . = 0 can be solved for I to give I*(,p, Jl) = -aJl/ f3 + " ', Let r" 
denote the closed curve {(I, ,p): I = I*(,p, Jl)}, the circle of zero rotation. Since 
p! is area preserving, the curve r" and its image p!(r,,) must intersect, i.e., 
r" (") P!(r,,) =1= 0. For small Jl, both r" and P!(r,,) are smooth curves that meet 
a ray from the origin in only one point. Let x E r" (") P!(r,,). Since x E r", its 
angular coordinate does not change under p!, and since x E r" (") p!(r,,) its 
radial coordinate does not change under p!; so, x is a fixed point of p!. Thus, 
there is at least one periodic orbit. Using the same argument as found in 
Birkhoff(1926) one can show that if there are a finite number of points in the 
intersection then one must have index + 1, and one must have index -1; so, 
there are at least two periodic orbits. _ 

By a similar argument Birkhoff proved the following. 

Proposition 2. Near a general elliptic point there are periodic points of arbitrary 
high period. 

In Birkhoff's theorem there is no parameter, so, he had to make careful 
estimates to show that the curve of zero rotation ro, existed for large k. See 
Birkhoff(1927) for the complete proof. 

Consider the forced Duffing's equation (1) again; only this time, assume 
that only the forcing term is small by substituting y ...... ey. Normalize the time 
by setting Wn = 1 and We = w. Thus, consider the Hamiltonian 

(13) 

By the argument at the beginning of the previous subsection Duffing's equa­
tion has a small, order e, 2n/w-periodic solution, the harmonic, provided 
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l /w # 0, ± 1, ± 2, ± 3, ... ; so, assume that W is away from these values. 
When e = ° the harmonic is the constant zero function, and its multipliers are 
exp( ± 2n/w). Fix k ;;:: 5. By the implicit function theorem, there is a smooth 
function wh/k(e) such that the multipliers of the harmonic are exp( ± 2nhi/k) 
and wh/k(e) = k/h + .. . for small e. Define a new parameter fl by fl = 
W - wh/k(e), the detuning parameter. When fl = 0, the harmonic has multi­
pliers which are kth roots of unity. When fl # ° but fl and e are small, the 
multipliers of the harmonic are exp( ± i(2nh/k + lX(e)fl + ... )) where IX(O) = 
- 2n(h/k)2 # 0. 

The period map about the harmonic can be put into normal form 
through the twist term, because the low resonance cases have been excluded. 
When e = ° and fl = 0, the computations in Section VIlB.1 show that in new 
action-angle variables, one has 

H = [ + (31'/8)[2 + O(e). (14) 

By integrating the equations from t = ° to t = 2Yfk/h, the period map is 

I' = [ + O(e), 

,p' = ,p - 2nh/k - (3nky/2h)[ + O(e). 
(15) 

So when e = ° and fl = 0, the twist coefficient is -(3nky/2h) # 0, and by 
continuity, it is nonzero for small e. Therefore, Proposition 1 applies. For each 
k ;;:: 5 and small e, Duffing's equation with Hamiltonian (13) has a small 2n­
periodic solution with multipliers exp( ± 2nh/k) when W = wh/k(e). At least two 
periodic solutions of period 2kn/w bifurcate from the harmonic as W varies 
from wh/k(e). These periodic solutions occur for w> wh/k(e) when I' > 0, and 
they occur for W < wh/k(e) when I' < o. 

These solutions are called sub harmonics in the classical literature. 

c. Schmidt's Bridges 

In Section VlC, the circular orbits of the Kepler problem were continued into 
the restricted problem to give two families of periodic solutions for small 
values of the mass ratio parameter fl. These families are known as the direct 
and retrograde orbits, depending on whether they rotate in the same or oppo­
site direction as the primaries in the fixed coordinate system. In Section VlG, 
some of the elliptic periodic solutions of the 2-body problem were continued 
into the restricted problem as symmetric periodic orbits. 

Schmidt (1972) showed that these elliptic periodic solutions lie on families 
of symmetric periodic solutions which connect the direct and retrograde 
orbits. That is, for small fl, there is a smooth family of symmetric periodic 
solutions of the restricted problem, ,pet, fl, IX), where IX is the parameter of the 
family such that for -1 < IX < + 1, ,pet, 0, IX) is an elliptic periodic solution, 
,p(t,O, -1) is a direct circular periodic solution, and ,pet, 0, + 1) is a retrograde 
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circular periodic solution of the Kepler problem in rotating coordinates. Of 
course, this family contains a collision orbit, but there is a natural way to 
continue a family through a collision. Such a family is called a bridge of 
periodic solutions (connecting the direct and retrograde orbits). 

The complete justification of Schmidt's bridges would take too much time, 
but one ofthe bifurcations will be given here. Consider the restricted problem 
for small J1. in Poincare coordinates (Section IV.E.2); so, the Hamiltonian is 

1 1 2 2 
H = - 2pt- PI + 2(Q2 + P2) + o (J1.) . (1) 

These coordinates are valid in a neighborhood of the direct circular orbits 
when J1. = O. Recall the Q2 is an angular coodinate, and when J1. = 0, the direct 
circular orbits are Q2 = P2 = O. In Section VI.C these periodic orbits were 
continued into the restricted problem for small J1., and these solutions have 
Q2' P2 coordinates which are O(J1.). This result will be reproved below. 

The condition for an orthogonal crossing of the line of syzygy in these 
coordinates is 

(2) 

where m is an integer. Let Ql (t, PI' P2' J1.), Q2(t, PI' P2' J1.), PI (t, PI' P2' J1.) , 
P2(t, PI' P2' J1.) be the solution which satisfies Ql = Q2 = 0, PI = PI' P2 = P2 
when t = O. Then the equations to solve for a symmetric T-periodic solution 
are 

QI(!T, PI' P2' J1.) = !(1/PI - I)T - mn + O(J1.) = 0, 

Q2(!T, PI' P2' J1.) = P2 sin(!T) + O(J1.) = O. 
(3) 

The direct circular orbits correspond to m = ± 1; take + 1 for definiteness. 
When J1. = 0 these equations have a solution P13 = j (arbitrary), P2 = 0, T = 
2n/U - 1). Since 

O(QI, Q2) (!U - 1) 0 ) 
o(t, P2) = 0 sin(nlU - 1» , 

(4) 

which is not zero whenj =f. (s + 1)/s, s = 1,2,3, . . . , the implicit function theo­
rem implies that these solutions can be continued into the restricted problem 
for small J1.. This is a second proof of the existence of the direct circular orbits. 

Assume that the Q2' P2 coordinates have been shifted so that the circular 
orbits are at Q2 = P2 = 0 for all small J1.. This only affects the O(J1.) terms in 
(1). Let k and n be relatively prime integers. The first equation in (3) has 
a solution T = 2nn, P1 3 = kin, m = k - n when J1. = 0, and since oQl /ot = 
(I /PI 3 - 1)/2 = (k - n)/2n =f. 0 it can be solved for T = T(Pl' P2' J1.) = 
2(k - n)n(l /pl 3 - 1)-1 + O(J1.). Substitute this solution into the second equa­
tion in (3) to get 

2 2(Pl, P2' J1.) = Q2 (~, PI' P2' J1.) = P2 sin {(i~p~ ~~)} + O(J1.) = 0 (5) 
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as the equation to solve. Since the circular orbit has been shifted to the Q2, P2 
origin, Equation (5) is satisfied when P2 = 0; so, P2 is a factor. Thus, to solve 
(5) it is enough to solve 

sin ti~p~ ~~)} + 0(/1) = O. (6) 

This equation has a solution, P1 = P1 (P2, /1) = (n/k)1/3 + 0(/1) again by the 
implicit function theorem. This gives rise to a periodic solution for all P2 that 
are small, including P2 = O. So this family is parameterized by P2, 0:::;; P2 :::;; (j 

(small), for /1 small. The period of the solutions in this family is approximately 
2nn for P2 #- O. Where P2 = 0, this periodic solution is the direct circular orbit 
established before. See Figure c.l. 

D. Bifurcation at ~4 

One of the most interesting bifurcations occurs in the restricted problem at 
the libration point 2'4 as the mass ratio parameter passes through the critical 
mass ratio of Routh, /11. Recall that the linearized equations at 2'4 have two 
pairs of pure imaginary eigenvalues, ±o>t i, ±W2ifor 0 < /1 < /11' eigenvalues 
± iJ2/2 of mUltiplicity two for /1 = /11' and eigenvalues ± (X ± Pi, (X #- 0, P #­
o for /11 < /1 :::;; t; see Section II.G. For /1 < /11 and /1 near /11' Lyapunov's 
Center Theorem VI.B.l, establishes the existence of two families of periodic 
solutions emanating from the libration point 2'4' and for /11 < /1 :::;; t, the 
Stable Manifold Theorem, V.F.l, asserts that there are no periodic solutions 
near 2'4. What happens to these periodic solutions as /1 passes through /11 ? 

In a lovely paper, Buchanan (1941) proved, up to a small computation, 
that there are still two families of periodic solutions emanating from the libra­
tion point 2'4 even when /1 = /11. This is particularly interesting because the 
linearized equations have only one family. The small computation of a coeffi­
cient of a higher-order term was completed by Deprit (1969), thus showing 
that Buchanan's theorem did indeed apply to the restricted problem. Palmore 
(1969) investigated the question numerically and was led to the conjecture 
that the two families detach as a unit from the libration point and recede as /1 
increases from /11. Finally, Meyer and Schmidt (1971) established a general 
theorem which established Palmore's conjecture using the calculation of 
Deprit (1969). Unfortunately, a spurious factor of fi occurred in the applica­
tion of Deprit's calculation. Subsequently, this theorem has been reproved 
by several authors by essentially the same method. It has become known as 
the Hamiltonian Hopf bifurcation. (There have been many people who have 
contributed to this problem, but Hopfwas not one of them.) 

By the discussion in Section II.C, the normal form for a quadratic Hamil­
tonian (linear Hamiltonian system) with eigenvalues ± wi, w #- 0, with multi­
plicity 2, which is nonsimple, is 
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(1) 

where (j = ± 1 which gives rise to the linear system of equations i = Aoz, 
where 

~l 0 W 0 0 

~2 -w 0 0 0 
Z= Ao = (2) 

'11 -(j 0 0 -w 

tT2 0 -(j W 0 

Consider a smooth quadratic perturbation of Qo, i.e., a quadratic Hamil­
tonian of the form Q(v) = Qo + VQl + "', where v is the perturbation param­
eter. By the discussion in Sections VLC and VI.D, there are three qualities 
that are important in the theory of normal forms for this problem, namely, 

rl = ~2tTl - ~ltT2' r2 = t(~i + ~n, r3 = t(tTi + tTn· (3) 

The higher-order terms in Q(v) are in normal form if they are functions of r l 

and r3 only. Assume that Q(v) is normalized through terms in v; so that 
Ql = arl + br3 or 

(4) 

Only a Luddite would fail to use complex coordinates at this point; so, intro­
duce new coordinates by 

Y2=~1-i~2 ' 

Y4 = tTl + itT2' 
(5) 

This change of coordinates is symplectic with multiplier 2. Note that the 
reality conditions (the Luddite's bugaboo) are Yl = Y2 and Y3 = Y4' We will 
keep the form of Q( v) and make the change in the r's; so, 

rl = i(Y2Y4 - Y1Y3), r2 = Y1Y2, r3 = Y3Y4 ' (6) 

The equations of motion are w = (Bo + VBl + .. . )w, where 

Yl wi 0 0 0 

Y2 0 wi 0 0 
W= Bo = 

Y3 0 -(j wi 0 

Y4 -(j 0 0 -wi 

ai 0 0 b 
(7) 

0 ai b 0 
Bl = 

0 0 ai 0 

0 0 0 -ai 
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The characteristic polynomial of Q(v) is 

{;'2 _ (w + va)2}2 + 2vM{;'2 + (w + va)2} + v2b2(P, (8) 

which has roots 

;. = ±(w + va)i ± J -Mv + .... (9) 

So the coefficient a controls the way the eigenvalues move in the imaginary 
direction, and the coefficient b controls the way the eigenvalues split ofT the 
imaginary axis. The assumption that b =F 0 means that the eigenvalues move 
ofT the imaginary axis when Mv < O. 

Now consider a nonlinear Hamiltonian system depending on the parame­
ter v which has Q(v) as its quadratic part and when v = 0 has been normalized 
in accordance with the discussion in Section VILe through the fourth-order 
terms, i.e., consider 

H(v) = wri + t5r2 + v(arl + br3) + t(crt + 2drl r3 + ern + "', (10) 

where the ellipsis stands for terms which are at least second order in v or 
fifth order in the y's Scale the variables by 

which is symplectic with multiplier e3 ; so, the Hamiltonian becomes 

H = wri + e(t5r2 + vbr3 + tern + 0(e2 ). 

(11) 

(12) 

The essential assumption is that all the terms shown actually appear, i.e., 
w =F 0, t5 = ± 1, b =F 0, e =F O. The equations of motion are 

}\ = -WiYI + e(vbY4 + e(Y3Y4)Y4), 

Y2 = wiY2 + e(vbY3 + e(Y3Y4)Y3)' 

Y3 = wiY3 - et5Y2' 

Y4 = -wiY4 - e<>YI' 

(13) 

Note that the 0(e2 ) terms have been dropped for the time being. Equations 
(13) are of the form 

u = Cu + ef(u, v) (14) 

where u is a 4-vector, f is analytic in all variables, f(O, v) = 0, C = 
diag( -wi, wi, wi, -wi), exp(CT) = I for T = 2TC/W, and most importantly 

(15) 

This last property, (15), is the characterization of the normal form in the case 
where the matrix of the linear part is simple; see Theorem VII.C.l. The scaling 
has achieved this property to first order in B. For the moment, continue to 
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ignore the 0(e2) terms. Let 't" be a parameter (period correction parameter); 
then u(t) = ell-eriC/v, v constant, is a solution of (15) if and only if 

D('t", v, v) = 't"Cv + f(v, v) = 0. (16) 

Thus, if v satisfies (16), then e(l-er)C/v is a periodic solution of (14) of 
period T/(1 - e't") = T(1 + e't" + "'). For Equations (13) with the 0(e2) terms 
omitted, one calculates 

D('t", v, v) = 

( - iW't"VI + VbV4 + e,2v4 ) 

(iW't"V2 + VbV3 + e,2v3 ) 

(iW't"V3 - bv2) 

(- iW't"V4 - bvd 

=0, (17) 

where,2 = V3V4. Solving for VI from the last equation, substituting it into the 
first equation, and canceling the V4 yields 

(18) 

A solution of (18) gives rise to a 3-parameter family of periodic solutions 
(2-parameter family of periodic orbits) of (13) in the following way. Choose 
V3 arbitrary, i.e., V3 = (Xl + i(X2, where (Xl and (X2 are parameters. Then V4 = 
(Xl - i(X2' ,2 = (Xi + (X~. Take 't" arbitrary, i.e., 't" = (X3' Then solve for VI and V2 
by the last two equations in (17). Fixing' determines a circle of periodic 
solutions which corresponds to one periodic orbit; thus, the 2-parameter 
family of periodic orbits is parameterized by , and 't". 

The analysis depends on the sign of the two quantities be and bb, especially 
be. There are two qualitatively different cases: Case A when be is positive, and 
Case B when be is negative. 

Case A: be > 0, see Figure D.l. 

r v=o 
v>o 

r 

Figure D.l. Graph of(17) when be is positive. 
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For definiteness, let Jb be positive because the contrary case is obtained by 
changing the sign ofv. Figure D.I is drawn under this convention. For fixed v, 
the graph of (18) is a hyperbola (two lines through the origin when v = O), but 
only the part where r ~ ° is of interest. The parameter r is the correction 
to the period. By the paragraph above, a fixed solution of (18), r =F 0, fixes 
the length of V3 and so fixes the special coordinates V l , V2 , V3 , V4 up to a 
circle. Thus, a point in the r-r plane, r =F 0, on the graph of (18) corresponds 
to a periodic orbit of (13) with period Tj(1 - er}. r = 0, corresponds to the 
libration point at the origin. 

By (9), when v > ° and small, the eigenvalues of the linear part, Bo + 
vBl + ... , are two distinct pairs of pure imaginary numbers; so, Lyapunov's 
Center Theorem implies that there are two families of periodic solutions 
emanating out of the origin. When v> 0, the graph of (18) is two curves 
emanating out of the line r = 0. This corresponds to two families of periodic 
solutions of (13) emanating out ofthe origin, and hence, it corresponds to the 
two Lyapunov families. 

When v = 0, the graph of (18) is two lines emanating out of the origin, 
which again corresponds to two families of periodic solutions emanating out 
of the origin. In this case, these two families correspond to the two families of 
Buchanan (1941). When v < 0, the graph of (18) is a single curve which does 
not pass through the origin and thus corresponds to a single family of period 
orbits of(13} which do not pass through the origin. 

Case A summary: The two Lyapunov families emanate from the origin 
when Jbv is positive. These families persist when v = ° as two distinct families 
of periodic orbits emanating from the origin. As Jbv becomes negative, the 
two families detach from the origin as a single family and move away from the 
origin. 

Case B: ()e < 0, see Figure D.2. 
For definiteness let Jb be positive as before. Figure D.2 is drawn under this 

convention. For fixed v > 0, the graph of(18) is an ellipse. 

T 

r 

Figure D.2. Graph of(17) when be is negative. 
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By (9) when v > 0 and small, the eigenvalues of the linear part, Bo + VBl + 
... , are two distinct pairs of pure imaginary numbers; so, Lyapunov's Center 
Theorem implies that there are two families of periodic solutions emanating 
out of the origin. These families correspond to the upper and lower halves of 
the ellipse. In this case, the two Lyapunov families are globally connected. As 
v tends to zero, this family shrinks to the origin and disappears. For v < 0 
there are no such periodic solutions. 

Case B summary: The two Lyapunov families emanate from the origin 
when bbv is positive and are globally connected. These families shrink to the 
origin as bbv tends to zero through positive values. When bbv is negative, 
there are no such periodic solutions. 

Now we will show that these conclusions remain valid when the 0(e2 ) 

terms in (13) are present. If the 0(e2 ) terms are included, (13) is of the form 
Ii = Cu + f(u, v) + 0(e2). Let ~(t, v, v, e) be the general solution of this equa­
tion with ~(O, v, v, e) = v. Let t/I(v, 't", v, e) be this solution after a time T(1 + e't"), 
i.e., 

t/I(v, 't", v, e) = ~(T(1 + e't"), v, v, e) = v + eD('t", v, v) + 0(e2) 

= v + e{'t"Cv + f(v, v)} + 0(e2). 
(19) 

A periodic solution corresponds to a solution of t/I(v, 't", v, e) = v, and so the 
equation to be solved is 

£&(v, 't", v, e) = (t/I(v, 't", v, e) - v)/e = D('t", v, v) + O(e) = O. (20) 

Equations (20) are dependent since Equations (13) admit H as an in­
tegral. Since H(v + e£&) = H(v), it follows by the mean value theorem 
that grad H(v*)£& = 0, where v* is a point between v and v + e~. Since 
grad H(v*) = (- iWY3, ... ) + "', if £&2 = £&3 = £&4 = 0, then £&1 = 0, except 
maybe when Y3 = O. Thus, only the last three equations in (20) need to be 
solved because the solutions sought have Y3 =1= O. 

From the last two equations in (20), one solves, by the implicit function 
theorem for V1 and V2' to get V1 = - iw't"bv4 + . ", V2 = iw't"bv3 + .... Substi­
tute these solutions into the second equation to get 

d(V3' v4, 't", v, e) = (W 2't"2 - ebr2 - Mv)( -bv3) + eg(v3' v4, 't", e) = O. (21) 

Since the origin is always an equilibrium point, d and 9 vanish when V3 and 
V4 are zero. Let V3 = re i9, V4 = re- i9, and divide (21) by (-br) to get 

d'(r, e, 't", v, e) = (W2't"2 - ebr2 - Mv)e i9 + eg'(r, e, 't", e) = O. (22) 

Since eb =1= 0, this equation can be solved for r2 to get r2 = R(e, 't", v, e) = 
(W2't"2 - Mv)/eb + ... for all e, all 't", l't"l < 't"o, and all e, lei < eo. So r = JR 
yields a real solution when R > O. The analysis of the sign of R leads to the 
same qualitative conclusions as before. 

To get back to the unsealed equations, fix e = eo/2 for all times. The scaling 
is global and so it is invertible globally. Trace back from the solution r2 = 
R(e, 't", v, eo/2) to get ~1' ~2' 1'/1' 1'/2 as functions ofe, 't", v. 
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Theorem 1. Consider a Hamiltonian of the form (10) with w "# 0, b = ± 1, b "# 
O,e"# O. 

Case A: be > O. The two Lyapunov families emanate from the origin when 
bbv is small and positive. These families persist when v = 0 as two distinct 
families of periodic orbits emanating from the origin. As bbv becomes negative, 
the two families detach from the origin as a single family and recede from the 
origin. 

Case B: be < O. The two Lyapunov families emanate from the origin when 
bbv is small and positive, and the families are globally connected. This global 
family shrinks to the origin as bbv tends to zero through positive values. When 
bbv is small and negative, there are no periodic solutions close to the origin. 

One can compute the multipliers approximately to show that in Case A the 
periodic solutions are elliptic. In Case B, the periodic solutions are initially 
elliptic as they emanate from the origin but go through extremal bifurcations 
to become hyperbolic. See the Problems Section. 

Case A occurs in the restricted problem at 2'4 as the mass ratio parameter 
II passes through the critical mass ratio Ill ' This theorem verifies the numeric 
experiments of Palmore. 

E. Further Reading 

Most of the major general works on Hamiltonian systems have very little on 
the topic of bifurcations of periodic solutions. Most of the general works on 
bifurcations have very little on Hamiltonian systems. Therefore, the works 
suggested here will be rather special in nature. 

One of the most interesting books on periodic solutions of Hamiltonian 
systems is Poincare (1899). It is old but not out of date. The survey paper, 
Deprit and Henrard (1968), gives a good introduction to the basic theory of 
periodic solutions of a Hamiltonian with lots of good numerical results from 
the restricted problem. 

Hale and Chow (1982) and Guckenheimer and Holmes (1983) treat many 
types of bifurcation problems including bifurcations in Hamiltonian systems. 
These books cover a much wider area. 

The results on bifurcations of periodic solutions given in this chapter are 
found in one form or another in Cherry (1928), Bruno (1970a,b), and Meyer 
(1970). 

Problems 

1. Let Q = Q(q, p), P = P(q, p) define a smooth area-preserving diffeomorphism of a 
neighborhood ofthe origin q = p = o. 
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a. Show that 0 = (P - p)d(Q + q) - (Q - q)d(P + p) is a closed form in q, p (i.e., 
dO = 0), and so by Poincare's lemma, there is a function G = G(q, p) defined in a 
neighborhood ofthe origin such that dG = O. 

b. Let the origin be a fixed point whose multipliers are not -1; so, ~ = Q + q, t/ = 
P + P defines new coordinates, and iJG/iJ~ = P - p, iJG/iJt/ = Q - q. Thus, a fixed 
point corresponds to critical points of G. Show that if G = {lXe + 2f3~t/ + yt/2} /2 
with 4~ = IXY - f32 oF -1, then 

iJ(Q, P) 1 ((1- f32 )-IXY -2Y ) 
iJ(q, p) = 1 + 4~ 21X (t + f32) - IXY . 

Thus, a maximum or minimum of G corresponds to an elliptic fixed point, and a 
saddle point corresponds to a hyperbolic fixed point. 

c. Draw the level surfaces of G = q2/2 + ep + p3/3 as the parameter varies. 
d. Show that the fixed point is an extremal fixed point if and only if G = iJG/iJq = 

iJG/iJp = iJ2G/iJp2 = iJ2G/iJqiJp = 0 and iJ2G/iJq2 oF 0, iJ2G/iJpiJe oF 0, iJ3G/iJp3 oF o. 
See Meyer (1970). 

2. Consider the forced Dulling equation at 1/3 resonance. That is, consider 

H* = ] + e{y]2 cos4 tfi + A]1/2 cos tfi cos 3t} + (e2/2)M cos2 tfi, 

which is the forced Dulling equation written in action-angle variables. Note that 
the Hamiltonian is 2n/3-periodic in t. The normalized Hamiltonian is 

H* = ] + e(3y/S)]2 

+ (e2/64){ _2Ay]3/2 cos 3(t + tfi) + 17y2]3 + 16M - A2} + .... 

a. Write the Hamiltonian, the normalized Hamiltonian, and the equations of mo­
tion in rectangular coordinates. 

b. Analyze the normalized systems. Remember to bring the harmonic to the origin. 

3. The bifurcation for the forced Dulling equation at 1/2 resonance is not, as predicted 
in the section, a generic bifurcation, and this is due to the fact that this equation has 
additional symmetries because the Hamiltonian is even. Consider a Hamiltonian 
like the forced Dulling equation which has a cubic term in the Hamiltonian (a 
quadratic in the equations). That is, consider 

H* = ] + e{x]3/2 cos3 tfi + A]1/2 cos tfi cos pt} + (e2/2)M cos2 tfi. 

Note that the Hamiltonian is n-periodic in t. The normalized Hamiltonian is 

H* =] + (e2/4S){12Ax] cos 2(t + tfi) + 45x2]2 + 24M - 4A2} + .... 

a. Write the Hamiltonian, the normalized Hamiltonian, and the equations of mo­
tion in rectangular coordinates. 

b. Analyze the normalized systems. Remember to bring the harmonic to the origin. 

4. Using MACSYMA, REDUCE, MAPLE, or an algebraic processor of your choice, 
write a normalization routine which normalizes Dulling's equation at q - p reso­
nance, i.e., write a program which normalizes 

H* = qI + e{M cos2 tfi + yI2 cos4 tfi + A]1/2 cos tfi cos pt}. 

Analyze the cases p/q = 1/3,2/3,3/4, etc. 



226 VIII. Bifurcations of Periodic Orbits 

a. Show that the Jacobian of D in Equation (D.17) is 

iw-r: 0 ev2 vb + 2er2 

aD 0 iw-r: vb + 2er2 ev~ 

av 0 -ti iw-r: 0 

-ti 0 0 -iw-r: 

h. Show that because of the dependency of the equations, the Jacobian is singular. 
Also show that the determinant of the minor obtained by deleting the first row 
and third column is ev~, which is nonzero if V3 =I- o. 

c. Show that the multipliers ofthe solutions found in Section Dare of the form 1, 1, 
1 + e/11 + ... , 1 + e/12 + ... , where /11 and /12 are the nonzero eigenvalues of 
aD/avo 

d. Show that in Case A of Section D, i.e., tie > 0, that the periodic solutions found 
are elliptic. 

5. Use the notation of Section D. 
a. Show that the value of the Hamiltonian (12) along a solution of (18) is H = 

-2w2-r:tir2 + (2w2/e){tibv-r: - W 3r 3}. 

h. Show that in Case A the periodic solutions can be parameterized by the 
Hamiltonian. 

6. Consider a Hamiltonian of the form 

H = kwl1 + wI2 + !(Alr + 2Bl112 + Cm + ... , 
where Ii = (xf + yf)/2, w > 0, k is a nonzero integer, and the ellipsis represents 
terms of degree at least 5 in the x's and y's. 
a. Show that Lyapunov's Center Theorem implies the existence of a family of 

periodic solutions (the short period family) of approximate period 2n/kw which 
emanate from the origin when Ikl > 1. 

h. Use the ideas of Section D to show that there is a family of periodic solutions (the 
long period family) of approximate period 2n/w which emanates from the origin 
when B - kC =I- O. 

c. Using the normal form calculations for the restricted problem at 2 4 , show that 
the long period family exists even when /1 = /1i, for i = 4,5,6, .... 
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Stability and KAM Theory 

Questions of stability of orbits have been of interest since Newton first set 
down the laws that govern the motion of the celestial bodies. "Is the universe 
stable?" is almost a theological question. Even though the question is old 
and important, very little is known about the problem, and much of what is 
known is difficult to come by. 

This chapter contains an introductions to the question of the stability of 
orbits of Hamiltonian systems and the celebrated KAM theory. This subject 
could be the subject of a complete book; so, the reader will find only selected 
topics presented here. 

A. Elementary Stability Results 

Consider the differential equation 

x =f(x), (1) 

where f is a smooth function from 0 c IRm into IRm. Let the equation have an 
equilibrium point at eo E 0; so,f(eo) = O. Let iP(t, e) be the general solution of 
(1). The equilibrium point eo is said to be positively (respectively negatively) 
stable if for every e > 0 there is a c5 > 0 such that lIiP(t, e) - eo II < e for all 
t ~ 0 (respectively t ~ 0) whenever lie - eo II < b. The equilibrium point eo is 
said to be stable if it is both positively and negatively stable. In many books 
stable means positively stable, but the above convention is the common one in 
the theory of Hamiltonian differential equations. The equilibrium eo is un­
stable if it is not stable. The adjectives "positively" and "negatively" can be used 
with "unstable" too. The equilibrium eo is asymptotically stable if it is stable, 
and there is an '1 > 0 such that iP(t, e) ~ eo as t ~ +00 for all lie - eo II < '1. 

227 
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Recall the one result already given on stability in Theorem I.A.2, which 
states that a local minimum or maximum of a Hamiltonian is a stable 
equilibrium point. So for a general Newtonian system of the form H = 
pTMp/2 + V(q), a minimum of the potential V is a stable equilibrium point 
because the matrix M is positive definite. It has been stated in Malkin (1952), 
LaSalle and Lefschetz (1961), and Courant and Hilbert (1953) that an equilib­
rium point of V which is not a minimum is unstable. Laloy (1976) showed that 
for V(ql' q2) = exp( -1/qi) cos(l/qd - exp( -1/q~){cos(l/q2) + qD, the ori­
gin is a stable equilibrium point, and yet the origin is not a local minimum for 
V. See Taliaferro (1980) for some positive results along these lines. 

Henceforth, let the equilibrium point be at the origin. A standard approach 
is to linearize the equations, i.e., write (1) in the form 

x = Ax + g(x), (2) 

where A = of(O)/ox and g(x) = f(x) - Ax; so, g(O) = og(O)/ox = O. The eigen­
values of A are called the exponents (of the equilibrium point). If all the ex­
ponents have negative real parts, then a classical theorem of Lyapunov states 
that the origin is asymptotically stable; see LaSalle and Lefschetz (1961), 
Coddington and Levinson (1955), or Hale (1972). By Theorem II.C.1, the 
eigenvalues of a Hamiltonian matrix are symmetric with respect to the imagi­
nary axis; so, this theorem never applies to Hamiltonian systems. In fact, since 
the flow defined by a Hamiltonian system is volume preserving, an equilib­
rium point can never be asymptotically stable. 

Lyapunov also proved that if one exponent has a positive real part, then 
the origin is unstable. See LaSalle and Lefschetz (1961), Coddington and 
Levinson (1955), or Hale (1972). Thus, for the restricted 3-body problem the 
Euler collinear libration points, !l'l' !l'2, !l'3' are always unstable, and the 
Lagrange triangular libration points, !l'4 and !l's, are unstable for J.11 < J.1 < 
1 - J.11 by the results of Section II.G. 

Thus, a necessary condition for stability of the origin is that all the eigen­
values be pure imaginary. It is easy to see that this condition is not sufficient 
in the non-Hamiltonian case. For example, the exponents of 

x = X 2 + xl(xi + xD, 
(3) 

X2 = -Xl + x2(xi + xD 

are ± i = ± j=1, and yet the origin is unstable. (In polar coordinates, r = 
r3 > 0.) However, Equation (3) is not Hamiltonian. 

In the second edition (1917) of Whittaker's book on dynamics, the equa­
tions of motion about the Lagrange point !l'4 are linearized, and the assertion 
is made that the libration point is stable for 0 < J.1 < J.11 on the basis of this 
linear analysis. In the third edition of Whittaker (1927) this assertion was 
dropped, and an example due to Cherry (1926) was included. A careful look 
at Cherry's example shows that it is a Hamiltonian system of two degrees 
of freedom, and the linearized equations are two harmonic oscillators with 
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frequencies in a ratio of 2 : 1. The Hamiltonian is in the normal form given the 
Theorem VI.C.1, i.e., in action-angle variables. Cherry's example is 

H = 11 - 212 + I1Jil2 COS(2tP1 + tP2)' (4) 

To see that the origin is unstable, consider the Lyapunov function W = 
- 11 Jil2 sin(2tP1 + tP2)' Let Wet) = W(tP(t, p)), and so the derivative of W 
among the solutions of the equations defined by (4) is W = 21112 + mIt. Let 
n be the region where W > O. In n, 11 i= 0; so, W > 0 in n. n has points 
arbitrarily close to the origin, so for any (j > 0 there is a point pEn with 
II pil < (j and W(p) > O. Assume that the solution tP(t, p) remains bounded 
for t > 0; so, IltP(t, p) II < M. W(tP(t, p» > 0; so, Wet) is increasing, and 
W(tP(t, p» ;:::.: W(p). Since the set K = {x : W(x);:::.: W(p) and Ilxll ::s; M} is com­
pact, there is a constant x, so that W;:::': x > 0 on K and tP(t, p) E K for t ;:::.: O. 
Thus, Wet) ;:::.: W(p) + xt for all t ;:::.: 0, but this is impossible because tP(t, p) was 
assumed bounded. Therefore, tP(t, p) leaves any neighborhood of the origin, 
and hence, the origin is unstable. This argument is essentially the proof of 
Chetaev's theorem; see LaSalle and Lefschetz (1961). 

This argument can be extended to show that the origin is still unstable 
when higher-order terms are added to (4), and this extension can be used to 
prove that the Lagrange triangular point 24 is unstable when 11 = 112' A 
similar argument shows that 24 is unstable when 11 = 113' These results were 
established by Markeev (1966) and Alfriend (1970,1971) by other methods. 

B. The Invariant Curve Theorem 

We shall return to questions about the stability of equilibrium points later, 
but now consider the corresponding question for maps. Let 

F(x) = Ax + f(x) (1) 

be a diffeomorphism of a neighborhood of a fixed point ~ E IRm; so, f(~) = 0 
and af(~)/ax = O. The eigenvalues of A are the multipliers ofthe fixed point. 

The fixed point is said to be positively (respectively negatively) stable if for 
every B > 0 there is a (j > 0 such that IIFk(x) - ~II < B for allllx - ~II < (j and 
k > 0 (respectively k < 0). The fixed point is stable if it is both positively and 
negatively stable. The fixed point is unstable if it is not stable. The adjectives 
"positively" and "negatively" can be used with "unstable" too. The fixed point 
is called asymptotically stable if it is positively stable, and there is an 1/ > 0 
such that Fk(X) --+ 0 as k --+ +00 for alllix - ~ II < 1/. 

Analogs of Lyapunov's theorems exist for difTeomorphisms and are devel­
oped in the Problems Sections. If all the multipliers have modulus less than 1 
then the fixed point is asymptotically stable. By Theorem II.C.l, a symplectic 
matrix cannot have all of its eigenvalues less than 1 in modulus, so the above 
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theorem does not apply to symplectomorphisms. Also, if one eigenvalue of A 
has modulus greater than 1, then the fixed point is unstable. Thus, a necessary 
condition for stability of a fixed point is that all its multipliers be of unit 
modulus. But as in the case of equilibrium points, this is not sufficient; see the 
Problems Section. 

Let us specialize by letting the fixed point be the origin in [R2 and by letting 
(1) be area preserving (symplectic). Assume that the origin is an elliptic fixed 
point; so, A has eigenvalues A and A-I = ;:, IAI = 1. If A = 1, Vi = -1, Vi = 
e±21ti/3, or Vi = i, then typically the origin is unstable; see the Problems Sec­
tion or Meyer (1971). 

Therefore, let us consider the case when A is not an mth root of unity for 
m = 1, 2, 3, 4. In this case, the map can be put into normal form up through 
terms of order three by Theorem VI.E.3, i.e., there are symplectic action-angle 
coordinates, I,,p, such that in these coordinates, F: (I, ,p) --+ (J', ,p'), where 

J' = I + c(l, ,p), 

,p' = ,p + OJ + rxI + d(l, ,p), 
(2) 

A = exp(OJi), and c, d and 0(13/2). 
For the moment assume c and d are zero; so, the map (2) takes circles 

1= 10 into themselves, and if rx # 0, each circle is rotated by a different 
amount. The circle 1= 10 is rotated by an amount OJ + rxlo . When OJ + rxlo = 
2np/q, where p and q are relatively prime integers, then each point on the 
circle I = 10 is a periodic point of period q. Since they are not isolated, they 
are not elementary in the sense of Section YE. By the discussion in Section A, 
some of these periodic points persist even when c and d are not zero, but in 
general they are elliptic or hyperbolic, and so they are isolated and finite in 
number; see Chapter X or Meyer (1970). Thus, the circles with rational rota­
tion are destroyed by the small terms c and d. 

If OJ + rxlo = 2nJ, where J is irrational, then the orbits of a point on the 
circle I = 10 are dense by the discussion in Section LB.6 (c = d = ° still). One 
of the most celebrated theorems in Hamiltonian mechanics states that many 
of these circles persist as invariant curves. In fact, there are enough invariant 
curves encircling the fixed point that they assure the stability of the fixed 
point. This is the so-call "invariant curve theorem" stated below. 

In Section V.B, the billiards table problem and the linear crystal model 
were introduced and shown to define an area-preserving mapping of the 
annulus. In Chapter X a discussion of area-preserving maps of the annulus is 
given. The invariant curve theorem applies to examples of this type also, 
and it will be stated for maps a little more general than those defined by a 
symplectomorphism at an elliptic fixed point. 

The invariant curve theorem depends on some interesting number theo­
retic facts. In Section LB, it was shown that for any irrational number J and 
any number e > 0, there are relatively prime integers p and q such that 
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(3) 

Formula (3) says more than an irrational can be approximated by a ratio­
nal; it gives some information on how well an irrational can be approximated 
by rationals. One can construct irrational numbers which are really well ap­
proximated by rationals, say, for which 1<5 - p/ql < e/q2 or <e/q223, by tak­
ing a decimal expansion with extremely long sequences of zeros. However, 
there are irrationals which are badly approximated by rational in the sense of 
the following theorem. 

Theorem 1. Let / be any closed interval, and let K > 0 be a fixed constant. The 
set /(K) of irrational numbers, <5, in a closed interval/for which 

1<5 -!!.I > K q q3 (4) 

for all integers p and q =1= 0 is dense in / and has positive measure. The measure 
of /(K) tends to the measure of / as K ~ O. Moreover, all algebraic irrationals, 
like fl, etc., belong to /(K) for some K. 

PROOF. See Arnold (1963a, 1978). • 
Such irrationals are said to be badly approximated by rationals. The in­

variant curve theorem states that the circles whose rotation number are badly 
approximated by rationals persist under small perturbations. 

Theorem 2 (The Invariant Curve Theorem). Consider the mapping F: (/, ¢J) ~ 
(/', ¢J') given by 

I' = / + er+sc(/, ¢J, e), 

¢J' = ¢J + ill + eSh(/) + es+r d(/, ¢J, e), 
(5) 

where (i) c and d are smooth for 0 :::;; a :::;; / < b < 00,0 :::;; e :::;; eo, and all ¢J, (ii) c 
and dare 2n periodic in ¢J, (iii) rand s are integers s ~ 0, r ~ 1, (iv) h is smooth 
for 0 :::;; a :::;; / < b < 00, (v) dh(/)/d/ =1= 0 for 0 :::;; a :::;; / < b < 00, and (vi) if :2 is 
any continuous closed curve of the form :2 = {(/, ¢J) : / = 0(¢J), 0 : IR ~ [a, b] 
continuous and 2n periodic}, then:2 () F(:2) =1= 0. 

Then for suffiCiently small e, there is a continuous F-invariant curve r of 
the form r = {(/, ¢J): / = <I>(¢J), <1>: IR ~ [a, b] continuous and 2n periodic}. The 
rotation number (see Chapter X) of F on r is an irrational which is badly 
approximated by rationals in the sense of theorem 1. 

Remarks. (1) The original idea for a theorem of this type was in Kolmogorov 
(1954, 1957), but the map was assumed analytic, and the analog of the in­
variant curve was shown to be analytic. In the original paper by Moser (1962), 
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where this theorem was proved, the degree of smoothness required of j, g, and 
h was very large, C333 , and the invariant curve was shown to be continuous. 
This spread led to a great deal of work to find the least degree of differ­
entiabilty required of j, g, and h to get the most differentiabilty for the invari­
ant curve. However, in the interesting examples, j, g, and h are analytic, and 
the existence of a continuous invariant curve yields the necessary stability. 

(2) Assumption (v) is the twist assumption discussed above, and the map is 
a perturbation of a twist map for small 8. 

(3) Assumption (vi) rules out the obvious example where F maps every 
point radially out or radially in. If F preserves the inner boundary I = a and is 
area preserving, then assumption (vi) is satisfied. 

(4) Since the theorem can be applied to any subinterval of [a, b], the theo­
rem implies the existence of an infinite number of invariant curves. In fact, the 
proof shows that the measure of the invariant curves is positive and tends to 
the measure of the full annulus a :.:::; I :.:::; b as 8 --t o. If s = 0 and K are fixed in 
advance, then there is an 80 > 0 such that for all irrationals fJ, h(a) < fJ < h(b), 
satisfying (4) there is an invariant curve for F with rotation number fJ. 

PROOF. The proof of this theorem is quite technical. See Siegel and Moser 
(1971) and Herman (1983,1986) for a complete discussion of this theorem and 
related results. -

C. A Simple Example-Duffing's Equation Again 

As a simple example, consider the elliptic fixed point discussed at the begin­
ning of the last section which is in normal form (B.2). Scale by I --t 8 2 J ; so, 
Equation (B.2) becomes 

J' = J + 8 3a(J, </J), 
(1) 

</J' = </J + w + a82 J + 83b(J, </J), 

and Theorem B.2 applies. Hence, there is an invariant curve in the punctured 
disk 0 < J :.:::; 1 for all 8 sufficiently small. Therefore, in the original unsealed 
variables, there is an invariant curve in 0 < I :.:::; 82, and so there are invariant 
curves arbitrarily close to the origin, and so the origin is a stable fixed point. 

Now consider the forced Duffing's equation with Hamiltonian 

(2) 

where w is a constants and y # 0 is considered as a small parameter. This 
Hamiltonian is periodic with period 2n/w. As shown in Section A, if w # 1, 
2, 3, 4, the system has a small (order y2) 2n/w periodic solution, called the 
harmonic. Using the calculations in Section VI.B, the period map was shown 
to be 
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I' = J + O(y2), 

¢l' = rP - 2n/w - (3ny/2w)J + O(y2), 
(3) 

where the fixed point corresponding to the harmonic has been moved to the 
origin. As in the above, the harmonic is stable. 

D. Applications to the Restricted Problem 

In Chapter VI, a small parameter was introduced into the restricted problem 
in three ways. First, the small parameter was the mass ratio parameter p,; 
second, the small parameter section was a distance to a primary; and third, 
the small parameter was the reciprocal of the distance to the primaries. 

In all three cases an application of the invariant curve theorem can be 
made. Only the first and third will be given here because the computations are 
easy in these cases. 

1. Invariant Curves for Small Mass 

The Hamiltonian of the restricted problem (I.C.9) for small p, is 

H = IIyll2 _ xTKy __ 1_ + O(p,) 
2 Ilxll· 

(1) 

For p, = 0 this is the Hamiltonian of the Kepler problem in rotating coordi­
nate. Be careful the O(p,) term has a singularity at the primaries. When p. = 0 
and Delaunay coordinates are used the Hamiltonian (1) becomes 

-1 
H= - -G 

2L3 

and the equations of motion become 

t = 1/L\ 

9 = -1, 

(2) 

(3) 

The variable g, the argument of the perihelion, is an angular variable. 9 = - 1 
implies that 9 is steadily decreasing from 0 to - 2n and so 9 == 0 mod 2n 
defines a cross section. The first return time is 2n. Let t, L be coordinates in 
the intersection of the cross section 9 == 0 and the level set H = constant. The 
Poincare map in these coordinates is 

L' = L. (4) 

Thus, when p, = 0 the Poincare in the level set is a twist map. By the invariant 
curve theorem some of these invariant curves persist for small p.. 
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2. The Stability of Comet Orbits 

Consider the Hamiltonian of the restricted problem scaled as was done in 
Section VI.E in the discussion of comet orbits, i.e., the Hamiltonian VI.E.l. In 
Poincare variables it is 

1 z Z 3 1 5 
H = - PI + 2(Qz + Pz ) - e 2Pf + O(e ), (5) 

where QI is an angle defined modulo 2n, PI is a radial variable, and QI' PI are 
rectangular variables. For typographical reasons drop, but don't forget, the 
0(e5 ). The equations of motion are 

QI = -1 + e3/p'f, 
(6) 

Qz = Pz, Pz = -Qz· 

The circular solutions are Qz = Pz = 0 + 0(e5 ) in these coordinates. 
Translate the coordinates so that the circular orbits are exactly Qz = Pz = 0; 
this does not affect the displayed terms in the equations. The solutions of (6) 
are 

QI(t) = QIO + t(-1 + e3/Pi), 

Qz(t) = Qzo cos t + Pzo sin t, 

PI(t) = PIO ' 

Pz(t) = - Qzo sin t + Pzo cos t. 
(7) 

Work near PI = 1, Qz = Pz = 0 for e small. The time for QI to increase by 2n 
is 

Thus, 

Q' = Qz(T) = Q cos 2n(1 + e3 P13 ) + P sin 2n(1 + e3 P13 ) 

= Q + vpp13 + O(VZ), 

P' = Pz(T) = -Q sin 2n(1 + e3 p13 ) + P cos 2n(1 + e3 p13 ) 

= -vQP13 + P + O(VZ), 

where Q = Qzo, P = Pzo , and v = 2ne3• Let H = 1, and solve for PI to get 

and hence 

p13 = -1 - J(Qz + pZ) + O(v). 

Substitute this into (9) to get 

Q' = Q + vP( -1 - J(Qz + p 2» + O(VZ), 

P' = P - vQ( -1 - J(Q2 + pZ» + 0(V2). 

(8) 

(9) 

(10) 

(11) 

(12) 
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This is the section map in the energy surface H = 1. Change to action-angle 
variables, 1= (Q2 + P2)/2, if> = tan-1 (P/Q), to get 

l' = I + O(v2 ), 

if>' = if> + v(-l- 31) + O(V2). 
(13) 

This is a twist map. Thus, the continuation of the circular orbits into the 
restricted problem is stable. 

E. Arnold's Theorem 

The invariant curve theorem can be used to establish a stability result for 
equilibrium points as well. In particular, we have Arnold's stability theorem. 
Arnold's theorem was originally proved independent of the invariant curve 
theorem; see Arnold (1963a, b), and the proof given here is taken from Meyer 
and Schmidt (1986a). 

As discussed above, the only wayan equilibrium point can be stable is if 
the eigenvalues of the linearized equations, i.e., the exponents, are pure imagi­
nary. If the Hamiltonian is positive definite, then the equilibrium is stable by 
Theorem I.A.2. Also from Cherry's example it is not enough to consider the 
linear terms alone. Thus, the case to consider is the case when exponents are 
pure imaginary, and the Hamiltonian is not positive definite. 

Consider the two-degree-of-freedom case for simplicity, and assume the 
Hamiltonian has been normalized a bit. Specifically, consider a Hamiltonian 
H in the symplectic coordinates Xl' X 2 , Y1' Y2 of the form 

H = H2 + H4 + ... + H2N + Ht, (1) 

where 

(i) H is real analytic in a neighborhood of the origin in 1R4; 
(ii) H 2k , 1 ~ k ~ N, is a homogeneous polynomial of degree kinI1 ,I2 , where 

Ii = (xf + yf)/2, i = 1,2; 
(iii) Ht has a series expansion which starts with terms at least of degree 

2N + 1; 
(iv) H2 = WIll - W2I2, Wi nonzero constants; 
(v) H4 = t(AI; - 2BI1 12 + CIi), A, B, C constants. 

There are several implicit assumptions in stating that H is of the above 
form. Since H is at least quadratic, the origin is an equilibrium point. By (iv), 
H2 is the Hamiltonian of two harmonic oscillators with frequencies WI and 
W 2 ; so, the linearized equations of motion are two harmonic oscillators. The 
sign convention is to conform with the sign convention at 2"4' It is not neces­
sary to assume that WI and W2 are positive but this is the interesting case when 
the Hamiltonian is not positive definite. By (ii), H2k , 1 ~ k ~ N, depends only 
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on 11 and 12 ; so, H is assumed to be in BirkhofT normal form (Corollary 
VII.C.2) through terms of degree 2N. This usually requires the nonresonance 
condition kIWI + k2W2 #Oforallintegersk1,k2 with Ikll + Ik2 1:s; 2N, but it 
is enough to assume that H is in this normal form. 

Theorem 1 (Arnold's Stability Theorem). The origin is stable for the system 
whose Hamiltonian is (1), provided for some k, 0 :s; k :s; N, D2k = H2k(W2, WI) # 
o or, equivalently, provided H2 does not divide H2k . 

Moreover, arbitrarily close to the origin in 1H4 , there are invariant tori and 
the flow on these invariant tori is the linear flow with irrational slope as dis­
cussed in Section I.B.5. 

PROOF. Assume that D2 = ... = D2N- 2 = 0 but D2N # 0; so, there exist homo­
geneous polynomials F2k , k = 2, ... , N - 1, of degree 2k such that H2k = 
H2F2k- 2. The Hamiltonian (1) is then 

H = H2(1 + F2 + ... + F2N- 2) + H2N + Ht. (2) 

Introduce action-angle variables Ii = (x; + y;)/2, tPi = arctan(ydx;), and 
scale the variables by Ii = e2J, where e is a small-scale variable. This is a 
symplectic change of coordinates with multiplier e- 2 ; so, the Hamiltonian (2) 
becomes 

(3) 

where F = 1 + e2 F2 + ... + e2N- 4 F2N- 4 • 

Fix a bounded neighborhood of the origin, say IJ;I :s; 4, and call it 0 so that 
the remainder term is uniformly O(e2N+l) in O. Restrict your attention to this 
neighborhood henceforth. Let h be a new parameter which will lie in the 
bounded interval [ -1, 1]. Since F = 1 + ... , one has 

(4) 

where 

(5) 

Since F = 1 + ... , the function F is positive on 0 for sufficiently small e so the 
level set when H = e2N- 1h is the same as the level set when K = O. Let z = 
(Jl' J2, tPl' tP2), and let V be the gradient operator with respect to these vari­
ables. The equations of motion are 

i = JVH = (JVK)F + K(JVF). 

On the level set when K = 0, the equations become 

i = JVH = (JVK)F. 

(6) 

(7) 

For small e, F is positive; so, reparameterize Equations (8) by dr = F dt, 
and Equations (7) become 
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z' = JVK(z), (8) 

where the prime denotes dldr:. 
In summary, it has been shown that in 0 for small e, the flow defined by H 

on the level set H = e2N- 1h is a reparameterization of the flow defined by K 
on the level set K = O. Thus, it suffices to consider the flow defined by K. To 
that end, the equations of motion defined by K are 

J; = O(e2N - 1 ), 

"" = -w _ e2N- 2 aH2N + O(e2N- 1) 
'f'1 1 aJ1 ' 

"" = +w _ e2N- 2 aH2N + O(e2N- 1) 
'f'2 2 aJ2 • 

(9) 

From these equations, the Poincare map of the section ¢J2 == 0 mod 2n in the 
level set K = 0 will be computed, and then the invariant curve theorem can be 
applied. 

From the last equation in (9), the first return time T required for ¢J2 to 
increase by 2n is given by 

T = 2n (1 + e2N- 2 aH2N) + O(e2N- 1). (10) 
W2 W2 aJ2 

Integrate the ¢J1 equation in (9) from r: = 0 to r: = T, and let ¢J1 (0) = ¢Jo, 
¢J1 (T) = ¢J* to get 

¢J* = ¢Jo + ( - W1 - e2N- 2 a~N ) T + O(e2N- 1), 

In the above, the partial derivatives are evaluated at (J1' J2 ). From the rela­
tion K = 0, solve for J2 to get J2 = (WdW2)J1 + O(e2). Substitute this into 
(11) to eliminate J2 , and simplify the expression by using Euler's theorem on 
homogeneous polynomials to get 

fjJ* = ¢Jo + IX + e2N- 2pJf-1 + O(e2N- 1), (12) 

where IX = -2n(wdw2) and p = -2n(Nlw~+1)H2N(w2' w1). By assumption, 
D2N = H2N(W2, w1) # 0; so, P # O. Along with (12), the equation J1 -+ 

J1 + O(e2N - 1 ) defines an area-preserving map of an annular region, say 
! ::;; J1 ::;; 3 for small e. By the invariant curve theorem (Theorem B.2) for 
sufficiently small 13, 0 ::;; e ::;; eo, there is an invariant curve for this Poincare 
map of the form J2 = P(¢J1)' where p is continuous, 2n periodic, and 
! ::;; P(¢J1, e) ::;; 3 for all ¢J1 ' For all e, 0 ::;; e ::;; eo, the solutions of (9) which start 
on K = 0 with initial condition J1 < ! must have J1 remaining less than 3 for 



238 IX. Stability and KAM Theory 

all r. Since on K = 0 on has that J2 = (Wt/W2)J1 + ... , a bound on J1 implies 
a bound on J2 • Thus, there are constants c and k such that if J1 (r), J2(r) satisfy 
Equations (9), start on K = 0, and satisfy 1 Ji(O) 1 ::; c, then IJi(r)1 ::; k for all r 
and for all h E [ -1, IJ,O ::; e ::; eo. 

Going back to the original variables, (II' 12 , rPl' rP2), and the original 
Hamiltonian H, this means that for 0 ::; e ::; eo, all solutions of the equa­
tions defined by the Hamiltonian (1) which start on H = e2N - l h and satisfy 
1 1i(0) 1 ::; e2c must satisfy 11i(t)1 ::; e2 k for all t and all hE [ -1, 1],0::; e ::; eo. 
Thus, the origin is stable. The invariant curves in the section map sweep out 
an invariant torus under the flow. • 

F. Stability of 24 

The coefficients A, B, and C of Arnold's theorem for the Hamiltonian of the 
restricted 3-body problem were computed by Oeprit and Oeprit-Bartholome 
(1967) specifically to apply Arnold's theorem. These coefficients were given in 
Section VII.O. ForO < p- < P-l'P- #- P-2,P-3 they found 

36 - 541wtwi + 644wtw1 
D4 = - 8(1 - 4wtwi)(4 - 25wtwi)· (1) 

which is nonzero except for one value P-c ~ 0.010913 667 which seems to have 
no mathematical significance, is not a resonance value, and has no astronomi­
cal significance (it does not correspond to the earth-moon system, etc.). 

In Meyer and Schmidt (1986b), the normalization was carried to sixth 
order using an algebraic processor, and D6 = P/Q, where 

3105 1338449 48991830 2 7787081027 3 

P = - - 4- + 48 (1 - 1728 (1 + 6912 (1 

2052731645 4 1629138643 5 

- 1296 (1 - 324 (1 

1879982900 6 368284375 7 

81 (1 + 81 (1 , 

(2) 

(1 = wt wi. 

From this expression, D6 ~ 66.6 when P- = P-c. So by Arnold's theorem and 
these calculations, 2'4 is stable for 0 < P- < P-l' P- #- P-2' P-3· 2'4 is unstable by 
the results in Markeev (1966) and Alfriend (1970, 1971) when P- = P-2' P-3· 2'4 
is stable when P- = P-l by Sokol'skij (1978). This last result is interesting be­
cause the linearized system is not simple, and so the linearized equations are 
unstable. 
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G. Further Reading 

There are partial higher-dimensional generalizations of both the invariant 
curve theorem and Arnold's theorem. Consider for example a Hamiltonian 
system of n degrees of freedom of the form 

n n n 

H = L W;Ii + L L BijI;Ij + Ht(Il , ... ,In'~l'·"'~n)' (1) 
i=l i=l j=l 

where (Il' ... , In' ~1 " .. , ~n) are action-angle variables, and where H t is smooth 
and of higher order. Assume for the moment that Ht = 0, then the equations 
are 

ii = 0, 

and the solutions are 

n 

~i = Wi + L Bijlj' 
j=l 

(2) 

(3) 

where the a/s and b/s are constants. The I/s are integrals. The integral sur­
faces, the sets defined by Ii = ai' are n-dimensional tori, and the flow on these 
tori is linear. If det(Bij) #- 0, then the frequencies of the linear flows on the tori 
vary as you move from torus to torus. 

The generalization of Arnold's theorem states that if det(Bij) #- 0, then 
many of these invariant tori persist even when Ht is small. However, these tori 
are n-dimensional manifolds in the 2n - 1 energy surface H = constant. An 
n-torus does not separate in a 2n - 1 space unless n = 2. Thus, for higher 
degrees of freedom, the tori do not trap the solutions near the origin, and so, 
they do not ensure stability. 

The best general discussion of the KAM theory is in the two monographs 
Moser (1968, 1973). Both are excellent and well worth reading. A complete 
and clean proof of the invariant curve theorem can be found in Siegel and 
Moser (1971). For those interested in the fine details, see Herman (1983,1986). 

Problems 

1. Let F be a diffeomorphism defined in a neighborhood 0 of the origin in IRm, and let 
the origin be a fixed point for F. Let V be a smooth real-valued function defined on 
0, and define d V(x) = V(F(x)) - V(x). 
a. Prove that if the origin is a minimum for V and d V(x) ::;; 0 on 0, then the origin 

is a stable fixed point. 
b. Prove that if the origin is a minimum for V and ~V(x) < 0 on O\ {O}, then the 

origin is an asymptotically stable fixed point. 
c. Prove the analog ofChetaev's theorem. 
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2. Let F(x) = Ax and V(x) = xTSx, where A and S are n x n matrices, and S is 
symmetric. 
a. Show that dV(x) = xTRx, whereR = ATSA - S. 
b. Let [I' be the linear space on all m x m symmetric matrices and .!l' = .!l'A: [I' -+ [I' 

be the linear map .!l'(S) = ATSA - S. Show that .!l' is invertible if and only if 
A;Aj "# 1 for all i, j = 1, ... , m, where A1 , ... , Am are the eigenvalues of A. [Hint: 
First prove the result when A = diag(A1 , ... , Am). Then prove the result when 
A = D + eN, where D is simple (diagonalizable), and N is nilpotent, N m = 0, 
SN = NS, and e is small. Use the Jordan canonical form theorem to show that A 
can be assumed to be A = D + eN.] 

c. Let A have all eigenvalues with absolute value less than 1. Show that S = 
L~l (AT)iRAT converges for any fixed R. Show S is symmetric if R is symmetric. 
Show S is positive definite if R is positive definite. Show that .!l'(S) = R; so, 
.!l'1 has a specific formula when all the eigenvalues of A have absolute value less 
than 1. 

3. Let F(x) = Ax + f(x), where f(O) = of(O)/ox = o. 
a. Show that if all the eigenvalues of A have absolute value less than 1, then the 

origin is asymptotically stable. [Hint: Use Problems 1b and 2c.] 
b. Show that if A has one eigenvalue with absolute value greater than 1, then the 

origin is a positively unstable fixed point. 

4. Let r = 1, s = 0, and h(I) = fJI, fJ"# 0 in formulas (B.5) of the invariant curve 
theorem. 
a. Compute Fq, the qth iterate of F, to be of the form (I, I/J) -+ (1", I/J"), where 

r = I + O(e), I/J" = I/J + qw + qfJI + O(e). 
b. Let 2np/q be any number between w + fJa and w + fJb, so 2np/q = w + fJlo 

where a < 10 < b. Show that there is a smooth curve r. = {(I, I/J): I = cJ>(I/J, e) = 
10 + ... } such that P moves points on r only in the radial direction, i.e., cJ>(I/J) 
satisfies I/J" - I/J - 2np = O. [Hint: Use the implicit function theorem.] 

c. Show that since P is area preserving, r n P{r) is nonempty, and the points of 
this intersection are fixed points of P or q-periodic points of F. 

5. Using Poincare elements show that the continuation of the circular orbits estab­
lished in Section IV.C (Poincare orbits) is of twist type and hence stable. Consider 
the various types of fixed points discussed in Section VIII.A. 
a. Show that extremal points are unstable. 
b. Show that 3-bifurcation points are unstable. 
c. Show that k-bifurcation points are stable if k ~ 5. 
d. Transitional and 4-bifurcation points can be stable or unstable depending on the 

case. Figure out which case is unstable. (The stability conditions are a little 
harder.) 



CHAPTER X 

Twist Maps and Invariant Curves 

A. Introduction 

In this chapter we study the dynamics of area-preserving (i.e., symplectic) 
monotone twist maps of the annulus. While seemingly quite special, we have 
already seen examples of such maps as time one maps of time periodic Hamil­
tonian systems of one degree of freedom, as Poincare section maps for peri­
odic orbits of Hamiltonian systems of two degrees of freedom (see Chapter V, 
Sections B and E). These maps also appear as dynamical systems in their own 
right (e.g., billiards on a convex table and one-dimensional crystals; see V.B). 

The orbits of even algebraically simple monotone twist maps can be ex­
tremely complicated and a complete description of all the orbits for all but the 
simplest maps is too difficult a problem. Hence, we can choose one of two 
other, less difficult problems: either 

(i) put qualitative restrictions on the behavior of all (or many) orbits (e.g., no 
orbit which starts in region A ever reaches region B), or 

(ii) find examples of orbits which have various types of behavior (e.g., peri-
odic orbits of various periods). 

In this chapter we focus on problem (ii), particularly on finding periodic 
orbits, and then we show that the periodic orbits playa crucial role in the 
qualitative behavior of all orbits. 

The study of periodic points for monotone twist maps was begun by 
Poincare in his study of the restricted 3-body problem. A variety of tech­
niques have been used since then to show the existence of periodic points. In 
this chapter, we will use techniques which take full advantage of the topol­
ogy available (particularly the fact that we are working with maps of a two­
dimensional annulus). The condition that the maps are symplectic (area 
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preserving) will be used only when absolutely necessary and will frequently 
be replaced by topological conditions. Other successful attacks on periodic 
orbits have used variational and analytic techniques (see notes in Section G 
for references). With a few notable exceptions, results for maps of two dimen­
sions have not been extended to exact symplectic maps of higher-dimensional 
spaces. This is an active area of present research. 

The exposition which follows owes a great deal to the work of Jungries, 
Gole, and particularly Boyland. It was the subject of classes taught at the 
University of Minnesota and the University of Cincinnati and the author (GRH) 
would like to thank those who attended these courses for their hospitality, 
suggestions, patience, and remarkable endurance. 

In the next section we give the notation and definitions necessary for the 
chapter as well as some of the elementary propositions. Sections C and D 
are concerned with various fixed point theorems and the properties of peri­
odic orbits. In Section E we discuss the relationship between periodic orbits, 
invariant sets and curves, and the KAM theorem. 

B. Notation and Definitions 

Let lr = [RjZ be the circle with unit circumference, i.e., lr is the interval [0, 1] 
with 1 and ° identified. Let d = lr x [0, 1] be the annulus and CfJ = lr x [R be 
the cylinder. We will be studying diffeomorphisms of d to itself and of CfJ to 
itself; however, it will be easier to state the results if we have a global coordi­
nate system (i.e., polar coordinates). So Let A = [R x [0, 1] be the strip. Then 
A is the universal cover of d with natural projection 

n:A~d (1) 

which sends points (x, y) and (x + r, y) E A to the same point of d whenever 
r E Z. Similarly, [Rl is the universal cover ofCfJ with natural projection 

n: [Rl ~ CfJ. (2) 

We let X and Y denote the projections onto x and y coordinates respectively, 
i.e., 

(3) 

(the domain is either A or [R2). 

Then for any continuous map j: d ~ d (or j: CfJ ~ CfJ) there exists a 
unique continuous map f: A ~ A (or f: [Rl ~ [R2) such that 

(i) X(f(O, 0» E [0, 1), 
(ii) n 0 f = jon, 

i.e., f is a particular lift of j to the cover, or f in the polar coordinate re-
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presentation of j Conversely, if J: A ~ A (or J : 1R2 ~ 1R2) satisfies \i(x, y), 
J(x + 1, y) = J(x, y) + (1,0), then there exists j: .s;1 ~.s;1 (or 1: C(j ~ C(j) such 
that no J = jon. 

Henceforth, we will state all results for maps from A ~ A or 1R2 ~ 1R2, and 
we will assume the following restrictions: All maps J: A ~ A or 1R2 ~ 1R2 will 
be assumed to satisJy: 

(i) J is a C1 diffeomorphism, 
(ii) X(J(O, 0)) E [0, 1), 

(iii) \i(x, y), J(x + 1, y) = J(x, y) + (1,0), 
(iv) J is orientation preserving, 
(v) J is boundary component preserving. 

Remarks. Condition (iii) is that J is the lift of a map on .s;1 or C(j, and condition 
(v) is that Y(J(x, i)) = i for i = 0 or 1 when J: A ~ A or Y(J(x, y)) ~ + 00 or 
- 00 as y ~ + 00 or - 00, respectively, whenJ: 1R2 ~ 1R2. 

Examples. (1) Let go(x, y) = (x + y, y). This map makes sense on both A and 
1R2 and we will use this notation in both situations. 

(2) Let, for k E IR, gk: 1R2 ~ 1R2 where 

gk(X, y) = (x + y + 2kn sin(2nx), y + ;n Sin(2nX)). (4) 

This is called the standard Jamily of maps of the cylinder. It has been exten­
sively studied both analytically and especially numerically (see Section G). 
We can replace (kI2n) sin(2nx) with any smooth function </J(x) satisfying \ix, 
</J(x + 1) = </J(x). The corresponding one-parameter family of maps is given by 

(x, y) ~ (x + y + k</J(x), y + k</J(x)) (5) 

and is sometimes called a standard Jamily. 

We next define conditions which "keep orbits in the annulus." 

Definition. We say J: A ~ A (or 1R2 ~ 1R2) is an exact symplectic map if J is 
symplectic with respect to the usual symplectic structure (i.e., symplectic form 
w = dx /\ dy) and for any embedding y: IR ~ A (or IR ~ 1R2) satisfying \ix, 
y(x + 1) = y(x) + (1,0) we have 

11 d 11 d 
o Y(y(s)) ds X(y(s)) ds = 0 Y(J 0 y(s)) ds X(J 0 y(s)) ds. (6) 

Remarks. (1) Since we are in two dimensions, the condition that J be 
symplectic is the same as requiring that J be area preserving, i.e., IDJI == l. 

(2) The condition that J be exact symplectic adds to the area preservation a 
condition saying that the net area between a nontrivial loop on C(j and its 
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y=i-----.--------------------------,,-----

y=O----~~-------------------------L-----
x=O x=i 

Figure B.l. Areas between y(lR) and f(y(IR)) . 

image under f is zero (see Figure B.l). For an area-preserving map f : A --+ A, 
this condition will be satisfied automatically (see Problems). 

In particular, the condition that f be exact symplectic is not satisfied 
by f: ({j --+ ({j given by f(x, y) = (x, y + 1) even though f is area preserving 
(symplectic). 

Sometimes it will be possible to weaken the condition that f be exact 
symplectic, replacing it with a topological condition like the following: 

Definition. A map f: A --+ A is said to satisfy condition B if for every 8 > 0 
there exist z 1, Z 2 E A and n > 0 such that 

Y(zd < 8, (7) 

and 
(8) 

A map f: 1R2 --+ 1R2 is said to satisfy condition B if for every M > 0 there exist 
Zl' Z2 E A and n > 0 such that 

Y(zd < -M, (9) 

and 
(10) 

There is a wealth of possible dynamics for maps of two-dimensional spaces. 
Luckily, there is another condition satisfied by the maps that we wish to study 
that will give us a powerful tool for exploring the dynamics of these maps. 

Definition. A map f: A --+ A (or 1R2 --+ 1R2) is called a monotone twist map if 
there exists 8> 0 such that for all (x, y) E A [or (x, y) E 1R2] 

oX(f(x, y)) 
oy > 8. (11) 
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y=!----,--------.--------------.--.----

y=O----~~-----L-----------------L--__ 
x=O x=! 

Figure B.2. Monotone twist condition. 

Remarks. Geometrically, this condition states that the image of a segment 
x = constant under f forms a graph over the x axis (see Figure B.2). 

This condition can be expressed in a different way for exact symplectic maps, 
i.e., given f : A -+ A, let B = {(x, Xl) E 1R2 : {j(x, y): y E : [0, I]} n {(xl, y): y E 

[0, I]} ;6~}} then, 

Theorem 1. Given f : A -+ A is an exact symplectic map, f is a monotone twist 
map if and only iff has a generating function, S: B -+ IR such that 

I I · -oS I I oS I 
f(x , y) = (x ,y) if y = ----ax (x, x), y = ox l (x, X ) . (12) 

Remarks. (1) f has a "locally defined" generating function is automatic (see 
Section IV.B.4), but that this function is defined on all of A is a strong restric­
tion. There is a geometrical description of the generating function which we 
discuss in the Problems. 

(2) The family of monotone twist maps is open in the Cl topology, that is, 
any map sufficiently C l close to a monotone twist map is also a monotone 
twist map. 

(3) Monotone twist maps are not closed under composition, i.e., if f and g 
are monotone twist maps, then fog might not be monotone twist. To get a 
family of maps closed under composition we need to consider "positive tilt" 
maps; see Boyland (1988). 

Examples. (1) The standard family gk: 1R2 -+ 1R2 given above, and in fact any 
"standard family" of maps, are exact symplectic monotone twist maps as long 
as fA q>(x) dx = O. 

(2) Let Ho: A -+ IR be given by Ho(x, y) = ty2. Then the Hamiltonian sys­
tem associated with Ho is 

. oHo 
X= +-=y, 

oy 
. oHo 
y= - - =0 

ox 
(13) 
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and the time one map of this Hamiltonian system is (x, y) --+ (x + y, y), which 
is an exact symplectic monotone twist map. If we let Hi: A x IR --+ IR be a 
smooth function which satisfies 

(i) V(x, y, t) E A x IR, H1(x + 1, y, t) = H 1(x, y, t) = Hi (x, y, t + 1), 
(ii) Vx, t E IR, OHl (x, 0, t)/ox = ° = oH(x, 1, t)/ox, 

(iii) Hi has the form Hi (x, y, t) = ty2 + P(x, y, t) where P is sufficiently C2 
small, 

then the time one map of the flow given by the Hamiltonian system with Hi as 
Hamiltonian will also be an exact symplectic monotone twist map. That the 
map is exact symplectic follows because the system is Hamiltonian (see Sec­
tion IV. C). The monotone twist condition comes from the fact that this time 
one map will be C1 close to the time one map of the Ho system above. Know­
ing that 02 Hdoy2 > ° gives us an "infinitesimal"-twist condition, i.e., the map 
which follows the flow from time t to time t + At will be a monotone twist 
map. However, this condition 02Hl/0y2 > ° does not imply the monotone 
twist condition for the time one map of the flow for the same reason that 
iterates of monotone twist maps need not be monotone twist maps. 

The converse of the discussion above is also true, i.e., 

Theorem 2 (Moser 1986b). Given an exact symplectic monotone twist map 
f: A --+ A there exists a Hamiltonian H: A x IR --+ IR which satisfies 

(1) V(x, y, t), H(x + 1, y, t) = H(x, y, t) = H(x, y, t + 1) 
and 

(2) V(x, y, t), 02 H(x, y, t)/oy2 > 0, 
such that f is the time one map of the Hamiltonian system given by H . 

Remark. This is close to Theorem V.B.1, the new element being condition (2) 
on H, i.e., the infinitesimal twist condition or "Lagrange condition" which is 
useful in variational attacks on these systems. Also we note that an analogous 
discussion can be given for Hamiltonians on the cylinder and maps on [H2. 

Notation. Since we will be using the adjectives exact symplectic monotone 
twist a great deal, we will abbreviate them to ESMT. 

Next we discuss the orbits of the maps we wish to study, introducing the 
following notation: If f: A --+ A, then for n > 0, f" = f 0 •.. of (n times) and 
f- n = f- 1 0···0 f- 1 (n times). Iff: A --+ A and z E A, then the extended orbit 
of z under f is 

eo(z,f) = eo(z) = {P(z) + (j, 0): i,j E Z}. (14) 

Remark. Since we think of a map f: A --+ A as a lift of a map j: d --+ d, the 
extended orbit of z E A is the lift of the orbit of the projection of z, i.e., 

eo(z) = n-1 {p(n(z)): i E Z}. (15) 
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Since points translated by integers in the x direction are identified by 
n: A ..... d, to obtain the extended orbit of a point Z E A, we take all trans­
lates of the usual orbit by vectors (j, 0) such thatj E lL. 

Similarly, we must extended the usual definition of periodic point: 

Definition. For f: A ..... A, a point Z E A is called a p/q-periodic point if 

r(Z) = Z + (p, 0). (16) 

Remarks. (1) If j: d ..... d is the projection of f to d and z = n(z), then the 
statement that z is a p/q-periodic point of f implies that z is a period q periodic 
point of jbecause 

(17) 

The p in the definition of p/q-periodic point is therefore new information. 
It says that the q iterates of z under j "go around" the annulus p times. 
This notion of circulation can only be made well defined by going to the lift 
f: A ..... A. [See Peckham (1989).] 

(2) We note that p/q periodic point of f is also a 2p/2q periodic point 
because 

f 2q(z) = r 0 r(z) = r(z + (p, 0)) = r(z) + (p, 0) = z + (2p, 0). (18) 

but a 2p/2q-periodic point need not be a p/q-periodic point. Hence, we make 
the following assumption: 

Notation. When we write z is a p/q-periodic point we will assume, unless 
otherwise stated, that p and q are relatively prime. 

The notion of average "rotation per iteration" for periodic orbits can be 
generalized as follows: 

Definition. Iff: A ..... A and z E A, then the rotation number of z is 

( f) () 1· X(r(z)) ·f· . 
p z, = p z = 1m ,lIt eXIsts. 

n-+ oo n 
(19) 

If the limit does not exist, then we say p(z) does not exist. 

Examples. (1) For f: A ..... A and z E A, then the a p/q-periodic point of f, 
p(z) = p/q. 

(2) For go: A ..... A: (x, y) ..... (x + y, y) we have p«x, y)) = y for all 
(x, y) E A. 

(3) For f: A ..... A, the map f restricted to the boundary components of A 
will give maps of IR which are lifts of circle homeomorphisms, i.e., if we let ho, 
hI: IR ..... IR be defined by 

hi(x) = X(f(x, i)) for i = 0 or 1. (20) 
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Then i = 0, 1 Yx E IR, hi(x + 1) = hi(x) + 1 and hi is a homeomorphism. It is 
not too difficult to show [see Devaney (1986), Nitecki (1971), Coddington and 
Levinson (1955), or Lemma 4, where this proof is given in a different context] 
that limn ... oo hi(x)/n exists and is independent of x . 

Notation. For f: A ~ A we let Po = p«x, 0» and PI = p«x, 1». These limits 
exist and are independent of x by the above. 

The boundary circles of A are examples of invariant circles for maps 
f: A -.A. 

Definition. Suppose y: IR ~ A is a continuous, one-to-one embedding satis­
fying y(x + 1) = y(x) + (1,0) for all x E IR. Then we say that the set r = y(lR) is 
an invariant circle for f: A ~ A if f(r) = r. 

Remark. Hence, an invariant circle for f : A ~ A is a curve which is invariant 
under f and which projects to a homotopically nontrivial loop in the annulus 
A. (See Figure B.3.) Hence, an invariant circle separates A into two compo­
nents, one for each boundary component of A. The existence of invariant 
circles is one of the fundamental problems in the study of monotone twist 
maps and we will return to it at the end of the chapter. For now we note: 

Proposition 3. If f : A ~ A and r is an invariant circle for f, then for each Z E r, 
p(z) exists and is independent of r. 

PROOF. Again fir gives a circle homeomorphism and the techniques refer­
enced above can be applied. _ 

We will construct many examples of periodic orbits with different rotation 
numbers in the following sections. It is natural to hope that we could take 
limits of these periodic points to obtain points of arbitrary rotation number. 
However, rotation number is also a limit, so there is no reason that the limit of 
the rotation number of a sequence of points is the rotation number of the 

y=!--.--------------------.--

y=O~L--------------------k--
x=O x=! 

Figure B.3. Invariant curves. 
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limit, i.e., no reason we should be able to "switch limits." We will need to find 
special orbits which behave nicely with respect to limits, which motivates the 
following: 

Definition. Suppose f: A -+ A is a monotone twist map and z E A. Then z is 
called a monotone point or is said to have a monotone orbit ifVz 1, Z2 E eo(z), if 
X(Zl) < X(Z2), thenX(f(zd) < X(f(zo))· 

Remarks. (1) Hence, a monotone orbit is one on which f preserves the order­
ing on the extended orbit imposed by the natural ordering of the x coordinate. 
We will see later that another way to say this is that the orbit of a monotone 
point can be extended in a natural way to a homeomorphism of a circle. 

(2) Clearly the definition of monotone point makes sense for arbitary 
annulus maps but the notion is not very useful without the monotone twist 
condition because the following lemmas are not true without it. These lemmas 
state that the set of monotone orbits are in various ways isolated from other 
orbits, that is, the property that makes it possible to prove their existence and 
that makes them useful. 

Lemma 4. Suppose f : A -+ A is a monotone twist map and Zo E A is a monotone 
point for f Then p(zo) exists. 

PROOF. We give a direct proof of this fact that follows exactly the outline of the 
proof of existence of rotation numbers for circle homeomorphisms. We sup­
pose X(zo) E (0, 1). 

For any n > O,fix r E 71. so that 

X(zo) + r ~ X(fn(zo)) < r + 1 + X(zo). (21) 

Suppose we have that X(fn(m-l)(zo)) < (m - 1)(r + 1) + X(zo), then 

X(fnm(zo)) = X(fn(m-1)(fn(zo))). (22) 

Because Zo is a monotone point and fn(zo), Zo + (r + 1, 0) E eo(zo), we have 

(23) 

so 
(24) 

By induction we conclude that X(fnm(zo)) < m(r + 1) for all m > O. Similarly, 
we can show X(fnm(zo)) ~ m r for all m > O. Hence, 

n'!!.r ~ X(fnm(zo)) ~ ~(r + 1) forallm > O. 
m nm nm 

(25) 

Letting m tend to infinity we see that 

I . X(fnm(zo)) . . X(fn(m)(zo)) I 1 
11m sup - 11m mf < - . 

m-oo nm m-oo nm n 
(26) 
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Next we note that since f is periodic in the x coordinate, for each n > ° there 
exists a constant Cn > ° such that 

Vi = 1, ... ,n, VZEA, IXP(z) - X(z)1 < Cn' (27) 

but then Ixunm+i(zo)) - xunm(zo))l < Cn. Hence 

I· XUi(ZO)) I' xunm(zo)) 
1m sup . = 1m sup -----'--

i- a) 1 m- oo nm 
(28) 

and 

I· . fX(P(zo)) I' . fxunm(zo)) 
1m In . = 1m In ----"'-------=--- (29) 

i- oo I m- oo nm 

i.e., 

II' XP(zo) I' . fXP(zo) I 1 Imsup--.- - Imm --.- < - . 
i- oo I i- co 1 n 

(30) 

But n was arbitary. Hence limn .... oo r(zo)/n exists. • 
Lemma 5. Suppose fn: A -+ A is a sequence of monotone twist maps n = 0, 
1, . . . and Iimn .... oo fn = fo in the C 1 topology. Suppose for each n = 1,2, ... there 
is a point zn E A such that X(zn) E [0, 1] and Zn has a monotone point for fn. 
Suppose Zo = limn .... '" Zn' Then Zo is a monotone point for fo and p(zo,fo) = 

limn .... '" p(zn,fn)· 

PROOF. Suppose Zo is not monotone for fo. Then there exist i,j, k, and t such 
that 

XU~(zo)) + k < XUd(zo)) + t but XUrl(zo)) + k ~ xUd+1(zo)) + t. 
(31) 

For n sufficiently large, we must have XU;(zn)) + k < xUj(zn)) + t so 
XU;+l(zn)) + k < X(fj+l(zn)) + t . Hence, by taking the limit as n -+ 00 we 
see that (31) must give 

XU~+1(zo)) + k = xUd+1(zo)) + t. (32) 

From the monotone twist condition it follows (see Figure B.4) that 

Hence, again by the monotone twist condition 

XU~+2(ZO)) + k > XUJ+ 2(zo)) + t. 

Again this implies that for n sufficiently large 

XUni+2(zn)) + k > XUj+2(zn)) + t, 

(33) 

(34) 

(35) 

contradicting that Zn is monotone for fn. Hence, Zo must be a monotone point 
for fo. 
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y=l--------------------.------------------------

1 I~+ 1 (zo) + (k , 0) 

16 (Zo) + (k, 0) 
1 
~--.. ----..... 16+ 2 (zo) + (1,0) 

Ib (zo) + (1 , 0) 16+ 1 (zo) + (1,0) 

y=O--------------------~-----------------------

Figure B.4. Nonmonotone orbits. 
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From Lemma 5 we know that p(zn,fn) exists for each n = 0, 1, .... More­
over, as in the proof of Lemma 5 

(36) 

for i, r E 7L implies p(zn,fn) E [r/i, (r + 1)/i]. Hence, if we note that r::;; 
X(f~(zo)) ::;; r + 1 implies that for n sufficiently large 

r - 1 ::;; X(f,/(zn)) ::;; r + 2, 

then we see that limn-+oo p(zn,fn) = p(zo,fo). 

(37) 

• 
Lemma 6. Suppose In: A -+ A, n = 0, 1, ... , is a sequence of monotone twist 
maps with In -+ fo in the C 1 topology as n -+ 00. Fix p, q E 7L (p and q relatively 
prime) and suppose that for each n = 1, 2, ... there is point zn E A with Zn a 
p/q-periodic point for In. If Zo = limn-+oo Zn' then Zo will be a p/q-periodic point 
for fo. Moreover, either 

(1) for all n sufficiently large, Zn is monotone for In and hence Zo is monotone 
for fo, 
or 

(2) for all n sufficiently large, Zn is not monotone for fn and hence Zo is not 
monotone for fo. 

PROOF. First we note that since we have for all n ~ 1, Inq(zn) = Zi + (p, 0), 
taking limits of both sides we have foq(zo) = Zo + (p, 0), i.e., Zo is a p/q-periodic 
point for fo. (Since p and q are relatively prime, Zo cannot have a smaller 
period.) 

If there exists a subsequence zn, -+ Zo with each zn, monotone for fn" then Zo 
will be monotone for fo by Lemma 5. 

On the other hand, suppose znk -+ Zo is a subsequence such that znk is non­
monotone for Ink' Then for each nk there exist i,j, and t such that 

(38) 
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y=l----------------------------------------------

y=O----------------------------------------------.---
x 

Figure B.5. Nonmonotone orbits. 

but 

(39) 

Since each znk is a p/q-periodic point, we may assume that 0 ::;; i, j ::;; q, and 
o ::;; t ::;; p. Hence, we may choose another subsequence which we again call 
znk -+ Zo , such that i,j, and t are independent of znk' But then Zo must satisfy 

X(f~(Zo» ::;; x(fd(zo» + t, 
X(f~+l(ZO» ~ x(fd+1(zo» + t . 

(40) 

(41) 

If strict inequality holds in (40) then Zo is not monotone. If equality holds in 
(40) then we note that f~(zo) #- fd(zo) + (t, 0) since Zo is a p/q-periodic point 
and that in order to satisfy (41) we must have Y(f~(zo» > Y(fi(zo». But then 
we have X(f~-l(ZO» < X(fd- 1(zo» + t and again we see that Zo is non­
monotone (see Figure B.5). 

Hence we see that if Zn has a subsequence which is monotone, then Zo is 
monotone, whereas if it has a subsequence that is nonmonotone, then Zo is 
nonmonotone. So for all n sufficiently large, we must have Zn always mono­
tone or Zn always nonmonotone and the proof is complete. _ 

Remarks. (1) If we think of the p/q-periodic orbits of a given monotone twist 
map as a set with a natural topology, then Lemma 6 says that the whole set is 
closed, as well as the subsets forming monotone and nonmonotone orbits. 
This says that the p/q monotone periodic points are isolated from the others 
and, hence, one can hope to use topological techniques to find them. 

(2) Another, more concise, way of stating the closure properties above is to 
put the Hausdorff topology on the closed subsets of A. Then the set of the 
closures of monotone orbits for a given monotone twist map is a closed set in 
this Hausdorff topology [see Katok (1982)]. 

In the following sections we will prove the existence of many periodic 
points for exact symplectic monotone twist (ESMT) maps, particularly mono-
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tone periodic points which behave well under limits. Then we will discuss the 
relation between these periodic points and the general dynamics of the map. 

C. Existence of Periodic Orbits 

The result known as Poincare's Last Geometric Theorem implies that every 
exact symplectic monotone twist (ESMT) map f: A -+ A will have two dis­
tinct periodic orbits for each rational between the rotation numbers of f 
on the boundary components of A. This theorem was originally conjectured 
by Poincare in 1912 (with a weaker twist condition than monotone twist) 
and was proven by BirkhofT (1913, 1925) and Brown and von Newmann 
(1977). Present proofs using more machinery from plane topology have 
greatly weakened both the area-preservation and twist hypotheses necessary 
and the interested reader should consult the work of John Franks (1988). 

The theorem we will use is the following: 

Theorem 1. Suppose f: A -+ A is an exact symplectic monotone twist (ESMT) 
map with Po and Pi the rotation numbers of f on y = 0 and y = 1 boundaries 
respectively (see Proposition B.3). If p/q E ill is a rational (in lowest form) with 
Po s pig S Pl' then f has at least two distinct extended orbits which are p/q­
periodic. 

Remarks. (1) So the theorem implies that the projection of f to the annulus d 
has two distinct p/q-periodic orbits. 

(2) A similar statement holds for ESMT maps of the cylinder with no 
restrictions on the size ofthe rational. 

The remainder of this section will be devoted to a discussion of the proof of 
Theorem 1. The existence of p/q-periodic points is not so difficult. The proof 
we give will take advantage of the monotone twist condition and is due to 
LeCalvez (1988) and Casdagli (1987). (Again we note that weaker twist condi­
tions suffice and refer the reader to the references of the first paragraph of this 
section.) That there are actually more than one p/q-periodic extended orbit 
for f is considerably more subtle. We will discuss the plausibility of the 
existence oftwo periodic orbits in one case (when q is odd). 

PROOF OF EXISTENCE OF p/q-PERIODIC POINTS. Fix f and p/q E ill as in the 
theorem. We will need the following notation 

~ = {z E A: X(fq(z)) = X(z) + p}. 

Let Vl be the component of A '" ~ containing the y = 0 boundary of A and 
let V be the component of A ",closure (Vd containing the y = 1 boundary 
of A. Finally, let V = A ",closure (V). Then V is open, av s; ~, V is simply 
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connected U + (1, 0) = {z + (1,0): z E U} = U, and contains the y = 0 
boundary of A. Let r = au. 

Claim.f-1(r) n r # 0. 

PROOF OF CLAIM. Suppose not. Thenf-l(r) c;;; U or f-l(r) c;;; A ",(closure U), 
so either f- 1 (closure U) c;;; U or closure U C;;;f-l(U). But both of these cases 
violate the assumption that f is exact symplectic (i.e., area preserving). Hence, 
f-l(r) n r # 0 and the proof of the claim is complete. _ 

Claim. Every point z Ef-l(r) n r is a p/q-periodic point for f. 

PROOF OF CLAIM. Suppose z Ef-l(r) n r, then z E rand f(z) E r so 
X(r(z)) = X(z) + p and X(fQ+1(z)) = X(f(z)) + p. Because f is a mono­
tone twist we know that there is a unique point on the segment 
{(x, y): x = X(z) + p, 0 ~ y ~ I} such that f(x, y) E {(x, y): x = X(f(z)) + p}, 
but r(Z)E {(x,y): x = X(z) +p, 0~y~1} and f Q+1(z)E{(X,y) : x= 
(X(f(z)) + p, 0 ~ y ~ 1}, so r(z) is this unique point. However, because f is a 
lift of an annulus diffeomorphism, z + (p, 0) E {(x, y): x = X(z) + p, 0 ~ y ~ 1} 
has image f(z + (p, 0)) = f(z) + (p, 0) in {(x, y): x = X(f(z)) + p, 0 ~ y ~ 1} 
(see Figure C.l). Hence, z + (p, 0) andr(z) must be the same point, i.e., z is a 
p/q-periodic point and the proof of the claim is complete. _ 

Combining the claims, the proof of existence of p/q-periodic points for f is 
complete. _ 

PLAUSABILITY OF EXISTENCE OF Two p/q-PERIODIC ORBITS (q ODD). The idea 
is to show that the points of intersection of f-l(r) with r come in different 
types and that there must typically be an even number of such intersections. 

First, we may assume that the intersection points of f-l(r) with rare 
isolated because if they were not we would have infinitely many distinct p/q­
periodic extended orbits. 

y=l---.-------.---------r---------.-------.--~ 

z 

y=O--~~-----J--------X--·------X-=-X-(~Z)L+-p---X-=-X~~-(-Z)-)-+p 

Figure c.l. Images ofradial arcs through z andr(z). 
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y=I-------------------------------------------

below to above above to below tangent 

y=O---------------------------------------------.----
x 

Figure C.2. Applications of monotone twist condition. 

Unfortunately, there is no reason to assume that L will be a smooth curve 
in A, i.e., that 0 is a regular value of the function: A -+ R z -+ X(fq(z)) -
X(z) - p. However, if L is a smooth curve, then the proof can be easily com­
pleted as follows: Ifr 5; L is a smooth curve which separates A, thenf-1(r) n 
r has types of intersection points-those where f-1(r) goes from below 
(component of A '" r containing y = 0) to above r where f-1(r) is oriented 
from left (x = - 00) to right and where f-1(r) goes from above to below r, or 
the intersection could be a tangency (see Figure C.2). 

Now the intersections of f-1(r) with r which are tangent may be ignored 
because they are not structurally stable (a small perturbation of f removes 
them). Hence we assume that f- 1 (r) n r has both "below-to-above" and 
"above-to-below" intersections. Since f- 1 is area preserving, both types of 
intersections occur. Since f- 1 projects to a map of the annulus and r projects 
to a loop on the annulus, there must be an equal number of "below-to-above" 
and "above-to-below" intersections. Hence f has an even number of p/q­
periodic points. If q is odd this means f has at least two p/q-periodic orbits. 

To complete this proof we would have to make precise the notions of 
different types of intersections for level sets L which were not smooth arcs. 
This is a nontrivial exercise left to the enthusiastic reader. Complete proof of 
the full existence of at least two p/q-periodic extended orbits in both cases, q 
even and q odd, via the original ideas of Birkhoff can be found in Brown and 
von Newmann (1977). • 

D. Monotone Orbits 

If f: A -+ A is a monotone twist map, then recall that a point z E A is mono­
tone if f preserves the ordering induced on eo(z) by the x coordinate and, as 
we saw in Section B, the monotone orbits of a monotone twist map behave 
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very well under limits. The goal of this section is to prove the existence of 
monotone periodic orbits and to give some consequences. In particular, we 
prove the following theorem. 

Theorem 1 (Aubry-Mather). For f : A ~ A, an exact symplectic monotone 
twist (ESMT) map with Po and PI the rotation numbers of f restricted to the 
boundaries, for every W E [Po, PI]' f has a point z()) with p(z())) = wand z()) 
monotone. Moreover, if w = p/q, then we may choose z()) to be a monotone 
p/q-periodic point. 

Remarks. (1) This theorem states that for every "possible" rotation number 
there is a monotone orbit with that rotation number. The monotone orbits 
with irrational rotation number are called "quasi-periodic" orbits. 

(2) Precursors of this theorem were shown by Hedlund in the context of 
geodesics on a torus and by Birkhoff for orbits in the billiard problem (see 
Section V.B and X.E). The technique used by Aubry and Mather (indepen­
dently) were variational, i.e., they created an "energy" function on a space of 
candidates for orbits and showed that the minimum energy candidate is actu­
ally a monotone orbit (see section G). The techniques we use below are more 
topological in nature, depending less on the symplectic properties and more 
on the two dimensionality of the annulus. 

We will first show that a monotone twist map with a p/q-periodic point 
must have a p/q-monotone periodic point. Then, using the fixed point theo­
rem of the Section C, we see that exact symplectic monotone twist maps must 
have monotone periodic points of all possible rotation numbers. Limits of 
these periodic orbits will give the quasi-periodic orbits with irrational rota­
tion numbers. Finally, we will note that the same techniques can be used, 
under appropriate hypotheses, to produce many nonmonotone orbits. 

1. Existence of Monotone Periodic Orbits 

We will find periodic orbits by carefully following the iterates of a subset of A 
which behaves nicely under a monotone twist map. 

Notation. For Zl ' Z2 E A with X(zd < X(Z2) we let 

Also, we let 

B(ZI' Z2) = {z E A: X(ZI) < X(z) < X(Z2)}. 

r(zd = {z E A : X(z) = X(ZI) and Y(z) ~ Y(zd}, 

r(ZI) = {z E A : X(z) = X(ZI) and Y(z)::; Y(ZI)}. 

(1) 

(2) 

(3) 

Definitions. For each Zl' Z2 E A, X(ZI) < X(Z2) a set C S closure (B(ZI' Z2» is 
called a positive diagonal if it satisfies the following conditions: 
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y=O----------~~~~~~LU~UL~LL-------____ ---

X 

y =l-----.--------~n7~----ory7n--------.-------

y=O----~-p-O-s-itI-·v-e-di-ag-O-n-al~----~-n-eg-a-ti-ve--di-ag-o-n-a1li-----x--· 

Figure D.2. Diagonals. 

(i) C is the closure of its interior and the boundary of C = BC is piecewise 
smooth, 

(ii) C is simply connected, 
(iii) BCn(r(Zl)Ur(Z2)-{Zl,Z2})=0, 
(iv) BC contains a smooth arc connecting r(Zl) and r(Z2)U {(x, 1): x E IR} 

and BC contains a smooth arc connecting r(Z2) and r(zdu 
{(x, 0): x E IR}. 

We call C a negative diagonal if it satisfies (i) and (ii) above and 

(iii') BCn(r(Zl)Ur(Z2)-{Zl , Z2})=0, 
(iv') BC contains a smooth arc connecting r (z d and r (Z2) u {(x, 0): x E IR}. 

Notation. If C is a positive or negative diagonal in B(Zl' Z2), then there is 
an ordering to the components of BC n B(Zl' Z2), i.e., one is "above" the other. 
If C is a positive diagonal, we call the component of BC n B(z 1, Z2) that inter­
sects r (Z2) with the smallest y coordinate the lower boundary of C and the 
component of BC n B(z l' z 2) that intersects r (z 1) with the largest y coordi­
nate the upper boundary of C. For negative diagonals, replace r (Z2) with 
r (z 1) and r (z 1) with r (Z2). (See Figure D.2.) 
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The property which makes these sets useful is that they are preserved by 
monotone twist maps, i.e., 

Lemma 2. Suppose f: A ~ A is a monotone twist map and ZI' Z2 E A satisfy 
X(ZI) < X(Z2) and X(f(zd) < X(f(Z2»' If C is a positive diagonal of 
B(zl' Z2), then f(C) (] B(f(ZI),f(Z2» contains a component C1 which is a posi­
tive diagonal of B(f(z 1 ),f(Z2»' Moreover, if we collect the components of iJC (] 
B(zl' Z2) into two disjoint sets IX and P with IX containing the upper boundary of 
C and P containing the lower boundary of C, then we may choose C1 , so that its 
upper boundary is in f(IX) and its lower boundary is in f(P). 

PROOF. The image of the upper boundary of C must connect f(r(z2)u 
{(x, 1): x ~ X(f(ZI»} andf(r(zd) without intersectingf(r (Zl» uf(r (Z2»' 
Similarly the image of the lower boundary of C must connect f(r (z d) u 
{(x, 0) : x:::; X(f(Z2»} andf(r(z2» without intersectingf(r (Zl» u f(r (Z2»' 
Since f preserves orientation, this implies the lemma (see Figure 0.3). • 

Next we recall a technique from index theory which will be the main tool 
for producing periodic points. Suppose g: \R 2 ~ \R 2 is a continuous map and 
D is a disk in \R 2 with boundary iJD. Then for S\ the unit circle in \R 2, we can 
define g: iJD ~ SI by g(z) = (g(z) - z)/llg(z) - zll where 11'11 is the usual \R 2 

norm. Since iJD is homeomorphic to SI, we can think of 9 as a map between 
circles and define the index of g as the number of times g(z) goes around SI as z 
goes around iJD. The fundamental lemma we will use is: 

Lemma 3. If g: \R2 ~ \R 2 as above has nonzero index on a disk D :s; \R 2, then g 
has a fixed point in D. Moreover, if gl: \R2 ~ \R 2 is sufficiently close to g in the 
sup norm topology, then gl will also have nonzero index on D. 

PROOF. See Milnor (1965). 

y=l---.-------r~~----------~------~~~~~ 

y=O---L----------~-L--------J1--------~---___.---­

X 

Figure D.3. Image of a positive diagonal. 

• 
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Figure D.4. A map with index - 1. 

The applications we will make of this lemma will be close to the case 
pictured in Figure D.4, where D is a rectangle tilted to the left and g(D) is an 
intersecting rectangle tilted to the right with the boundaries mapping as indi­
cated. The map g has index -Ion D so g contains a fixed point. Moreover, 
every map sufficiently close to g will also have a fixed point in D. 

We will produce p/q-periodic points of a monotone twist map f: A -+ A by 
finding a subset D such that fq(D) - (p, 0) resembles Figure D.4. The set D 
will be a negative diagonal and fq(D) - (p, 0) will be a positive diagonal. The 
following lemma describes how these sets arise. 

Lemma 4. Suppose f: A -+ A is a monotone twist map and Zl' Z2' w1 , W2 E A 
satisfy: 

(i) Z 1, Z2 are p/q-periodic points for f; 
(ii) for i = 0, ... , q, 

X(P(Zl)) < X(P(Z2))' 

X(P(wd) < X(P(w2)), 

X(fi(Wl)) < X(P(Z2))' 

X(P(Zl)) < X(P(w2)); 

(iii) for j= 1,2, {X(Wj)-X(Zj)} and {X(fq(w))-X(fq(z))} are the same 
sign; 

(iv) for some i1, i2 between 0 and q, for j = 1,2 

X(fii(W)) - X(Pi(Z)) and X(w) - X(Zj) are opposite signs. 

Then there exists a negative diagonal D such that 

(i) V( E D for i = 0, ... , q, X(P(zd) < X(p(m < X(P(Z2))' 

X(P(wd) < X(P(m < X(P(W2)); 

(ii) the map r - (p, 0) has index -Ion D. 

Hence, f q - (p, 0) and every map sufficiently close to it has a fixed point in D. 
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y=l------------.--------------,--------------

y=O------------~------------~--------------. 

x 

Figure D.5. Arrangement ofz l , Z2, WI, W2. 

y=l----.--------.-----------,---------,----, 

y=O----~------~--~~---L~---------L----~. 

X 

Figure D.6.· The diagonal CI. 

Remark. We have not specified the set of which D is a negative diagonal 
because this will depend on the ordering of the iterates of z 1, Z2 and WI' W2 in 
A. 

PROOF. We will consider several cases depending on the order of the points ZI' 
Z2' WI' and W2 in A. 

Case 1. Suppose X(w1 ) < X(zd < X(Z2) < X(W2). (See Figure D.S.) We 
will follow the image of B(z 1, Z2) in a sequence of steps. 

Step 1. Note that f(B(ZI' z2))nB(f(zl),f(Z2)) is a positive diagonal in 
B(f(zd,f(z2))-call it C1 • Also, f- 1(Cd is a negative diagonal of B(ZI' Z2). 
(See Figure D.6.) 

Step 2. Hence using Lemma 2, we may choose a sequence Ci of positive 
diagonals of B(fi(ZI),fi(Z2)) such that f-i(C;) is a nested sequence of 
diagonals of B(ZI' Z2). 

Step 3. We refine the choice of the C;'s by following the orbits of the w's. In 
particular, fix il and i2 such that 0 < il < i2 < q; X(P(w1 )) < XP(zd) for 
i < i1 ; X(fi(Wl)) > X(fi(ZI)) for il ::; i < i2; and X(P2(w1 )) < X(P2(zd). 
Then if we follow the iterates of r (z d under J, we must have that fi 2(r (z 1)) 
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y=l-----,--------------------.---------------. 

y=O-----L-L ____________ ~L_ ________________ ___ 

Figure D.? Image of B(Zl' Z2)' 

y=l----,-----------,---------,----------,-----

Cq - (p, 0) 

y=O----~----------~--------~--------~--____ ---
x 

Figure D.S. Diagonal Cq and its preimage. 

contains an interval which connects r(p2(zd) to r(f2(Z2)) u {(x, 1): x> 
(X(P2(zd)} which does not contain Zl' Hence, we may choose Ci2 so that it 
does not contain ji2(Z 1)' Similarly, using the orbit of W2 we see that for some i, 
0< i:::; q we may choose Ci so that it does not contain ji(Z2)' (See Figure D.7.) 

Step 4. Since Z 1 and Z 2 are periodic, the set {' - (p, 0): , E Cq } = Cq - (p, 0) 
is a positive diagonal of B(Zl' Z2)' By construction, the set D = j-q(cq) is 
a negative diagonal of B(Zl' Z2)' Also Zl' Z2 1= D. Also the upper and lower 
boundaries of Cq are contained in r(I+(zd) and r(r(Z2))' respectively, 
with aCq n B(fq(Zl)' r(Z2)) ~r(I+(Zl)) ur(I-(Z2))' Hence, r - (p, 0) on 
D satisfies the conditions of Lemma 3 and has index -Ion D, so j, and 
every map sufficiently close to f, has a p/q-periodic point, E D satisfying for 
i = O, ... ,q, 

X(P(W1)) < X(P(O) < X(P(w2 )), 

X(P(zd) < X(P(O) < X(P(Z2))' 

which completes Case 1. (See Figure D.8.) 
For the other cases we need merely choose the initial box differently and 

proceed as above, i.e., 
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y = 1 w,." zl_ 

y=O 
Case 2 

y = 1 w,.w, zl_ 

y=O 
Case 3 

y = 1 ".w, wI_ 

y=O 
Case 4 

Figure D.9. The other cases. 

Case 2. X(zd < X(w1 ) < X(Z2) < X(W2)' 
Case3,X(zJ) < X(wI ) < X(W2) < X(Z2)' 
Case 4. X(wI ) < X(ZI) < X(w2) < X(Z2)' 

_ w
2 

-x 

_ Z 2 

-x 

- z2 

-x 

In each case we follow the shaded region of Figure D.9 and produce a p/q­
periodic point which stays to the right of ZI and WI and left of Z2 and W2' • 

So to produce p/q-monotone periodic points we must find pairs of points 
which do not change order as described above. In certain situations this turns 
out to be fairly straightforward. 

Suppose f: A -+ A has a p/q-monotone periodic point Zo and a p/q­
nonmonotone periodic point Woo First we fix WI E eo(wo). Next we let 
ZI E eo(zo) be the point of {z E eo(zo): for some i, X(P(z» - X(P(w1» and 
X(z) - X(wd have opposite signs} with the largest x coordinate. Such points 
Zl must exist because WI is nonmonotone. We let W2 E eo(wo) be the point of 
{w E eo(wo): X(P(w» > X(fi(ZI» and X(P(w» > X(P(wd) for all i}, with 
the smallest x coordinate. Finally we let Z2 E eo(zo) be the point in {z E eo(zo): 
for some i, X(P(z» - X(fi(W2» and X(z) - X(w2) have opposite signs} with 
smallest x coordinate. Since X(P(Z2» > X(P(w2» for some i, we must have 
X(P(Z2» > X(P(zd) for that i. But then X(P(Z2» > X(P(zd) for all i be­
cause Zo is a monotone point. 

By definition, ZI, Z2, WI' W2 now satisfy the conditions of Lemma 4 and 
hence there is a set D such that r - (p, 0) has index - 1 on D and for all ( ED. 
andfori = O, ... ,q. 
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X(P(Zl» < X(P(O) < X(fi(Zl»' 

X(P(w i » < X(P(O) < X(P(w2»· 
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Lemma 5. Suppose f: A --+ A is a monotone twist map and f has a p/q-monotone 
periodic point Zi and a p/q-nonmonotone periodic point woo Then there is a set 
D s;: A such that f q - (p, 0) has index - 1 on D and every p/q-periodic point in 
D is monotone. Hence, every map sufficiently close to f will have a p/q-monotone 
periodic point in D. 

PROOF. We will choose points Zi' Z2 E eo(zo) and Wi' w2 E eo(wo) which satisfy 
the hypotheses of Lemma 4. First note that the set {z E eo(zo): for some i, 
X(P(wo» - X(P(z» and X(wo) - X(z) have opposite signs} is nonempty. (If 
it were empty, then the orbit of Wo would be trapped between two neighboring 
points of eo(zo) and hence would be monotone.) Hence, we may choose z 1 to 
be the point of this set with the largest x coordinate and we let Wi = woo Now 
we consider two cases: 

Case 1. z 1 and Z2 are neighboring points of eo(zo): In this case, since there 
are no points of eo(zo) between Zi and Z2' any p/q-periodic point' of fin D 
are monotone because for all i, X(P(Zl» < X(P(O) < X(P(Z2»' and this 
completes the proof of the lemma. Note in this case the p/q-periodic points in 
D are new periodic points (i.e., not in eo(zo) or eo(wo». 

Case 2. z 1 and Z2 are not neighboring points of eo(zo): Some point Z3 E eo 
(zo) with X(Zl) < X(Z3) < X(Zl) is contained in a continuum of fixed points 
of r - (p, 0). In this situation, we may fix , E D a fixed point of r - (p, 0) in a 
continuum of fixed points with index -1. Now either for every z E eo(zo) the 
sign of X(P(z» - X(fi(O) is independent of i, or there is a Z3 E eo(zo) and i 
such that X(P(Z3» - X(fi(O) and X(Z3) - X(O have different signs. In the 
first case, , is monotone and the proof is complete. In the latter case we can 
repeat the above argument with Z3 replacing Z2 and, replacing W2 to produce 
another set Di of index -1 for r - (p, 0) between z 1 and z 3' Since there are 
only finitely many points of eo(zo) between Zi and Z2' the process will end 
with the required set D. • 

Remark. The lemma shows that either the original monotone orbit has index 
-1 or there is another monotone orbit with index - 1. Finally, we prove that 
monotone periodic orbits are present whenever periodic orbits are present. 

Lemma 6. Suppose f: A --+ A is a monotone twist map and f has a p/q-periodic 
point, then f has a p/q-monotone periodic point. 

PROOF. Let Wo E A be a p/q-periodic point for f Then ifwo is monotone, there 
is nothing to prove, so assume Wo is nonmonotone. The idea of the proof is to 
find a one-parameter family of maps fr, t E [0, 1] such that f and fr agree on 
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the orbit of wo, 11 = I, and 10 has a p/q-monotone periodic point. Now the set 
of t's such that fr has a p/q-monotone periodic point is closed by the limit 
arguments of Section B. But it is also open by Lemma 5! Hence, all the fr's, 
includingI1 = f, must have p/q-monotone periodic orbits. The first task is to 
construct the family fr o 

Fix Xo E IR so that {xo + ip/q: i E Z} (') {X(w): WE eo(wo)} = 0 and let 
B > ° be such that Vi E Z, Vw E eo(wo), I(xo + ip/q) - X(w)1 > 2B. We may as­
sume (by enlarging A if necessary) that Vx E IR, {J(x, y): y E [0, I]} (') {(x + 
p/q, y): y E [0, I]} =I 0. Next we let g: [ - B, B] X [0,1] x «0, 1) x [0,1])-+ 
[ -6, B] X [0, 1] be a two-parameter family of maps from [ -B, B] X [0, 1] 
onto itself satisfying 

(i) for all Yo E (0, 1), t E [0, 1], g( . , ., Yo, t) is a C OO diffeomorphism equal to 
the identity on a neighborhood of the boundary of [ - B, B] X [0, 1]; 

(ii) for all Yo E (0, 1), t E [0, 1], (x, y) E [ - B, B] x [0, 1] X(g(x, y, Yo, t)) = x; 
(iii) for all Yo, g(., ., Yo, 1) is the identity on [ -B, B] X [0, 1]; 
(iv) g(O, Yo, Yo, 0) = (0, t); 

i.e., each map g(., ., Yo, t) slides points up and down on lines of constant x 
coordinate. By composing the original map I with various copies of the map g 
we will be able to obtain a map such that (xo, t) is a monotone p/q-periodic 
point while the orbit of the nonmonotone point Wo is undisturbed. Let Yj be 
such that X(f(Xo + ip/q, Yj)) = Xo + (i + l)p/q, and let .vj be given by .vj = 
(f(xo + (i + l)p/q, Yi-l))' Define gj,r : A -+ A and OJ,r: A -+ A by defining 

gj)x, y) = g(x - (xo + ip/q), y, Yj , t), 

OJ)x, y) = g(x - (xo + ip/q), y, .vj, t), 

where the right-hand side is defined and then extending to all of A so that gj,r 
and OJ,r are the identity at (x, y) where Ix - (xo + ip/q) I has fractional part 
larger than Band gj,r(x + 1, y) = gj,r(x, y) + (1, 0) and OJ)x + 1, y) = OJ)x, y) 
+ (1,0). Then, for t E [0, 1] let 

fr(x, y) = Oo,r 0 • • • 0 Oq-1 ,r 0 I 0 g;;!j,r 0 •• . 0 gl,1r 0 go,1r. 

Thenfr has the following properties. 

(i) fr is a smooth one-parameter family of monotone twist maps; 
(ii) 11 = I and 10 has a p/q-monotone periodic point at (xo, t); 

(iii) for all t, fr has a p/q-nonmonotone periodic point Wo and the orbit of Wo is 
independent oft. (See Figure 0 .10.) 

Now we claim that I = 11 must have a p/q-monotone periodic point. Let 
e = {s E [0, l]:Is has a p/q-monotone periodic point}. Then e =I 0 since ° E e and e is closed by Lemma B.5. We claim that e is also open. Suppose 
SEe. Then Is has a p/q-monotone periodic point. But Is has a p/q­
nonmonotone point as well, the point W00 SO Is satisfies the hypotheses of 
Lemma 4. Hence, every map sufficiently close to Is will also have a p/q-
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Figure D.lO. Action of the deformation of Jby gil' 

monotone periodic point, i.e., s E interior 0. Hence, 0 is both open and closed 
so 0 = [0, 1] or fl = f has a p/q-monotone periodic point. This completes 
the proof of the lemma. _ 

We are now ready to give a proof of the Aubry-Mather theorem. 

PROOF OF THEOREM 1. Fix f: A ~ A an exact symplectic monotone twist map 
with Po, PI the rotation numbers of f restricted to the boundaries of A. Then 
for every rational p/q E [Po, PI], f has a p/q-monotone periodic point by 
Lemma 6. For any irrational WE [Po, PI] if we choose a sequence Pn/qn of 
rationals with limn-+ oo Pn/qn = wand a sequence Zn of Pn/qn-monotone peri­
odic points, X(zn) E [0, 1J, then some subsequence of the zn's will converge to 
Z()) E A and by Lemma B.5, Z()) will have a monotone orbit with p(z())) = w. 
Hence, every rotation number possible for f is represented by a monotone 
orbit and the proof is complete. _ 

The techniques used above can also be applied to show the existence of 
many other orbits, provided there are orbits which change y coordinate dra­
matically. Recall that we say a map f: A ~ A satisfies condition B if for every 
B > 0 the.re exist Zl' Z2 E 7!.. and n > 0 such that Y(ZI) < B, Y(Z2) > 1 - Band 
Y(fn(z d) > 1 - B, Y(fn(Z2)) < B. Given a monotone twist map which satisfies 
condition B there will exist orbits of almost every possible behavior. In fact, 
the condition B can be used in place of area preservation (exact symplectic) in 
the Aubry-Mather theorem yielding the following theorem of Boyland. 

Theorem 7. If f: A ~ A is a monotone twist map satisfying condition Band 
PI' P2 are the rotation numbers of f on the boundary of A, then for every 
W E [PI' P2] there is a Z()) E A such that Z()) is monotone and Z()) has rotation 
number w. Moreover, if W is rational, then we may assume z()) is periodic. 

PROOF. See Boyland (1988). -
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In the next section we will give conditions under which condition B will be 
satisfied by an ESMT map. 

Such maps will have many monotone orbits for two reasons since Theo­
rems 1 and 7 both apply. More importantly, maps satisfying condition B will 
have many periodic orbits which are nonmonotone. The idea is that the orbits 
given by condition B will tend to stretch positive diagonals for many different 
extended orbits. Informally, we can say that for a monotone twist map satis­
fying condition B, given any list (finite or infinite) of different periodic orbits 
with different rotation numbers, there is an orbit which "shadows" each of 
these periodic orbits in the order listed. In particular, there will be orbits for 
which the rotation number is not defined and many different nonmonotone 
periodic orbits. For a precise statement see Hall (1989). To illustrate we state a 
special case of these theorems. 

Theorem 8. Suppose f : A ---+ A is a monotone twist map satisfying condition B 
with rotation numbers Po < PIon the boundaries. Then for any pair of numbers 
WI' w2 with Po < WI < w2 < PI there exists points Z I and Z2 in A such that 

lim X(fn(ZI)) - X(ZI) = lim X(fn(Z2)) - X(Z2) = WI 

"- 00 n n-+-oo n 

and 

lim X(fn(zd) - X(zd = lim X(fn(Z2)) - X(Z2) = W2. 
n-+-oo n "-00 n 

For ESMT maps we will see that either all orbits are monotone or condi­
tion B is satisfied at least in a subannulus so there are many nonmonotone 
orbits. 

E. Invariant Circles 

In the previous sections we have shown that many different periodic and 
quasi-periodic orbits are present in every twist map. However, all of the orbits 
we have considered so far can (and sometimes do) form a measure zero set in 
the annulus. Happily, it turns out that the existence or nonexistence of certain 
types of periodic orbits can have implications for the qualitative behavior of 
large sets of orbits. In this section we will consider the relationship between 
the existence of large (open) invariant sets, the existence of invariant curves 
and the existence of nonmonotone periodic orbits. The reader is encouraged 
to compare this section with Chapter IX on the KAM theorem. 

The most important type of stability for ESMT maps can be illustrated by 
looking at the simplest map go: A ---+ A: (x, y) ---+ (x + y, y). Here the x coordi­
nate, or angular coordinate, changes via rigid translation. Hence in the 



E. Invariant Circles 267 

annulus, we expect the x coordinate to take on many different values. In fact, 
when y is irrational, the orbits are dense in the angular coordinate in the 
annulus. Since the irrationals are dense, there is no reasonable way to look for 
regions in A where the x variable is constrained to stay in a small set over an 
entire orbit. 

Conversely, go preserves the y coordinate. Hence, if a point has a small y 
coordinate, its entire orbit has a small y coordinate. Hence, it is reasonable for 
a given twist map to search for invariant sets which contain one boundary of 
A but not the other boundary. The existence of this type of invariant set 
corresponds to a type of "stability" for ESMT maps which arise in applica­
tions (see Chapter IX). The boundary of such an invariant set will also be an 
invariant set which separates A into components containing the two bound~ 
ary components of A. For ESMT maps, this boundary is a particularly nice 
set, which motivates the following definition. (See Figure E.1). 

Definition. Given f: A -+ A, an ESMT map, an invariant circle for f is a 
set r £ A such that r is the graph of a continuous function cp: IR -+ [0, 1] 
satisfying 

(1) cp is periodic, \:Ix, cp(x + 1) = cp(x), 
(2) r = {x, cp(x)): x E IR} is invariant,f(r) = r. 

Clearly, if f: A -+ A has an invariant circle r = {(x, cp(x)): x E IR} the 
graph of cp: IR -+ [0, 1], then the set U = {(x, y): y < cp(x)} is an open 
invariant set containing the lower boundary of A. Remarkably, for ESMT 
maps the converse holds. 

Theorem 1. Suppose f: A -+ A is an ESMT map with an invariant set U £ A 
such that 

(1) U is simply connected, 
(2) U + (1,0) = {(x, y) + (1, 0) : (x, y) E U} = U, 
(3) U is open and contains {(x, 0): x E IR} in its interior, 
(4) Un {(x, 1): x E IR} = 0. 

y=l--~-------------------'--

r 

y=Q __ L-______ ~ __________ ~ __ 

x=Q x=l 

Figure E.l. Invariant circles. 
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Then there exists <p: IR -+ {O, 1], continuous and periodic (<p(x + 1) = <p(x)), 
such that the boundary of U is the invariant circle given by the graph of <p, i.e., 

au = r = {(x, <p(x)): x E IR}. 

Moreover, there exists a constant K independent of U (depending only on!) 
such that <p is Lipschitz with constant K (i.e., Vx,lX2 E IR, l<p(x l ) - <P(X2)1/ 
IXl - x 2 1 < K). 

This remarkable theorem says that there is a one-to-one relationship be­
tween the invariant sets which separate the boundaries of A and Lipschitz 
invariant circles. It was first proven by Birkhoff and a proof in modern nota­
tion can be found in Herman (1983). However, the ideas involved in the proof 
are both simple and elegant so we outline them here. 

IDEA OF THE PROOF. The first step is to show that the boundary of the 
invariant set U is a graph. To do this we identify three types of points in U as 
follows: 

(1) a point z E U is called accessible from below if {(X(z), y): 0:::;; y(z)} £; U, 
(2) a point z E U is called accessible from the left if z is not accessible 

from below and there exists a continuous curve y: [0, 1] -+ U such that 
Y(y(O)) = 0, y(l) = z, there is an interval [0, a] such that X(y(t)) is strictly 
increasing for t E [0, a] and yet) is not accessible from below for any t > a, 

(3) a point Z E U is called accessible from the right if there exists a curve as in 
(2) with "X(y(t)) strictly increasing" replaced by "X(y(t)) strictly decreas­
ing." (See Figure E.2.) 

We note that the fact that U is simply connected implies that the sets UB' UL , 

and UR of points in U accessible from below, left, and right, respectively, are 
disjoint and U = UB U UR U UL and UR + (1,0) = UR , UL + (1,0) = UL . 

To complete the proof we just note that f(UL ) # (Ud, i.e., UL maps strictly 
inside itself. This is clear because the curve giving aUL is mapped under f to 
an arc inside UL (see Figure E.3) which violates the area preservation hypoth­
esis onf 

y=l------~~----------------------------------
accessible from 
the right 

accessible 
n;"77;:>77:~ __ ~ from the left 

accessible from below 

y=O--------------------------------------------.---
x 

Figure E.2. Accessible regions. 
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y=l------------------------------------------

y=O---------------------------------------___.---
x 

Figure E.3. A region accessible from the left and its image. 
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Figure EA. Application of a twist map to an almost vertical line. 
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Similarly I-1(UR ) #. UR , again violating area preservation. Hence, U = UB 

and the boundary of U can be used to define q;: IR -.. [0, 1] as follows: 

q;(x) = sup{y E [0, 1] : (x, y) E U}. 

Then <p is periodic with period one. To show that the boundary of U is 
actually the graph of <p, we need to show that <p is continuous. It turns out to 
be easier to show that <p is Lipschitz. 

Since I is monotone twist, there exists a K I > 0 such that if t is the line 
segment t: t ~ (-kt + b, t) for k ~ Kl and any bE IR, then d(X(f(t(t))))/dt > 
O. (See Figure EA.) 

Hence, if Xl' X 2 E IR with Xl < X 2 and <p(x I ) - <p(x2 ) > K I (X 2 - xd, then 
we must have X(f(x l , <p(x I ))) > X(f(x 2 , <p(x2 ))), which contradicts the fact 
that U has no points accessible from the left. (See Figure E.5.) Similarly, we 
can apply the above argument to I-I to see that there is a K2 > 0 such 
that 't/x l , X 2 E IR, Xl < X2, <P(X2) - q;(x l ) < K 2 (X 2 - XI). Taking K = 
max{K I , K 2 } we see that <p is Lipschitz with constant K and hence <p is 
continuous. 

Noting that the constant K above depends only on I, not on U, the idea 
of the proof is complete. -
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y=l--------r-~---------------------------------

3u f(3u) 

~ - Zf(X" ,,(x,ll 

f(x 2 ' .p(X 2 )) 

y=O------~--~---------------------------____ ----
XI X2 X 

Figure E.S. Effect of twist map on an almost vertical line. 

The above relationship between invariant sets and invariant circles can be 
restated in terms of "Condition B" ofthe previous sections. 

Theorem 2. Suppose f: A -+ A is an ESMT map which has no invariant circles 
in the interior of A. Then f satisfies condition B. 

Remark. This theorem is also due to Birkhoff and applies to any "annular 
region" between invariant circles. Since a map satisfying condition B clearly 
can have no interior invariant circles, we see that condition B is really equiva­
lent to having no interior invariant circles. 

PROOF. Suppose f: A -+ A is an ESMT map with no interior invariant circles. 
For each e > 0 we must show that there exist points Zl' Z2 E A and n > 0 such 
that Y(zd < e, Y(Z2) > 1 - e and Y(f"(zd) > 1 - e, Y(f"(Z2)) < e. This is 
easily seen to be equivalent to showing that there exists n1 , n2 > 0 such that 
Y(f"l(Zl)) > 1 - e and Y(f"2(Z2)) < e (see Problems) and we will prove only 
the existence of z l' the existence of z 2 being symmetric. 

Fix e > O. We may assume e < t because otherwise there is nothing to 
prove. Now we let U = {z E A: Y(f"(z)) > 1 - e for some n ~ OJ. This set is 
clearly open and f-l(U) S; U and U + (1, 0) = U. Since f is area preserving, 
we have f-l(U) = U, so f(U) = U. Since U contains the boundary y = 1 of 
A, either the boundary component of U which separates A 'is an interior 
invariant circle for f or the closure of U contains points in the y = 0 boundary 
of A. Since f has no interior invariant circles, U must intersect the set {z E A: 
Y(z) < e}, any such point of intersection of U with {z E A: Y(z) < e} will serve 

• 
The region in an annulus which contains no interior invariant circles is 

called a zone of instability. Since condition B is satisfied in such a zone, the 
techniques of Section C and D can be used to show that zones of instability of 
ESMT maps contain many different orbits. One of the basic problems is to 
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estimate the width of the zones of instability for a given ESMT map, and, in 
particular, determine if it has any interior invariant circles. The following 
theorem relates the width of the zones of instability to the existence of certain 
nonmonotone periodic orbits. 

Theorem 3 (Boyland and Hall). Let f: A --. A be an ESMT map. Then f has an 
invariant circle with rotation number w if and only if for every convergent 
p/q E Q in lowest form, every p/q-periodic orbit of f is monotone. 

Corollary 4. Iff: A --. A is an ESMT map and f has a p/q-periodic orbit which 
is not monotone (p/q in lowest form), then f has no invariant circles with rotation 
number w whenever Iw - p/ql < 1/(2q2). 

Remarks. (1) We recall that each w E [0, 1] may be represented as a continued 
fraction in the form 

w= -------
a1 +-----

1 
a2+ --­

a 3 +. 

where all the a;'s are positive integers. Moreover, w is rational if and only if the 
continued fraction representation is finite and the representation is unique for 
irrational w. It is unique for rational w if the last an is one. The ith convergent 
of 

is the rational 

w= -----~---

a 1 +------­
a2 +. 

Pi 1 

1 
+-­

ai + . 

1 
+ ­

ai 

The convergents of ware the closest rationals with small denominator to 
w, i.e., for every convergent pd qi we have Iw - pdqil < l /qf. Moreover, if 
Ip/q - wi < 1/(2q2), then p/q is a convergent of w. 

(2) Since all orbits on an invariant circle must be monotone, the fact that 
low period nonmonotone periodic orbits imply nonexistence of invariant cir­
cles is no surprise. What is interesting in this theorem and corollary is the 
estimate on the width of the interval of rotation numbers cleared by a given 
nonmonotone periodic orbit. 
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PROOF OF THE COROLLARY. Iff has a nonmonotone p/q-periodic orbit, then 
for every w with p/q a convergent of w the theorem implies f does not have 
an invariant circle with rotation number w. As noted above, if Iw - p/ql < 
1/(2qZ), then p/q is a convergent ofw and the corollary follows. _ 

IDEA OF THE PROOF OF THE THEOREM. Suppose f does not have an invariant 
circle with rotation number w. Then (see problems) there is an interval about 
w such that f has no invariant circles with rotation numbers in this interval. 
Hence, f has a zone of instability with boundary circles having rotation 
numbers straddling wand hence condition B is satisfied in this zone. By the 
techniques of the last section many nonmonotone periodic orbits can be con­
structed; in particular, nonmonotone p/q periodics can be constructed for p/q 
arbitrarily close to w. 

On the other hand, suppose f has a non monotone p/q periodic orbit, call it 
zo o Then the distance between successive iterates of Zo must sometimes be 
much larger than p/q and sometimes much smaller. Since f is a monotone 
twist map, this means that the orbit of Zo must sometimes have large y coordi­
nate and sometimes have small y coordinate and, most importantly, the 
points of eo(zo) are not arranged the same as rigid rotation by p/q. In particu­
lar, there will be points Zl' Zz, Z3 E eo(zo) such that X(zd < X(zz) < X(Z3) 
but X(f(Zl» < X(f(Z3» < X(f(Z2»' Any curve passing close to eo(zo) will be 
mapped into a curve which is not a graph (see Figure E.6). To make the 
qualitative comparison between p/q and the rotation numbers of the possible 
invariant circles, we form a circle endomorphism by considering the x coordi­
nate of f on eo(zo) and comparing this circle map to f on A '" eo(zo). _ 

We end this chapter by restating the important Kolmogorov-Arnold­
Moser (KAM) Theorem (see Chapter IX). We have seen above that there is a 
dichotomy in the behavior of orbits for ESMT maps. Invariant circles imply 
the existence of constraints on the rotation behavior of orbits, whereas the 
lack of invariant circles implies condition B and hence a multitude of different 
types of orbits and rotation behaviors. Indeed, the amount of regularity 

y=l-------------------------------------------

f 
,..---.... 

y=O-------------------------------------------

Figure E.6. An arc around eo(zo) and its image. 

-x 



E. Invariant Circles 273 

implied by the existence of invariant circles and the conditions that we al­
ready know imply their nonexistence makes it seem unlikely that they exist. 
Remarkably, invariant circles with certain rotation numbers turn out to be 
very robust under perturbation. We state one "KAM Theorem" due to 
Herman making this precise- there is a large family of such theorems and the 
interested reader is referred to Chapter IX and Section G. 

A KAM Theorem. Let F,: A -+ A denote a one-parameter family of ESMT 
maps with e E [0, 1], which is continuous in the C4 topology and fo(x , y) = 
(x + y, y)). Then if WE [0, 1] is an irrational of constant type (e.g., 3C > 0 such 
that Vp/g E Q , Iw - p/ql ~ C/q2), there exists ew > 0 such that if e E [0, ew ] 

then f. has an invariant circle with rotation number w. 

Remarks. (1) We note that both the number theoretic and smoothness condi­
tions are necessary for the theorem, i.e., for Liouville numbers w the theorem 
is false and for families of maps continuous only in the C2 family the theorem 
is false. Since both subtle number theoretic and smoothness conditions are 
required, it is not surprising that the proof is both subtle and difficult. 

(2) The theorem implies that when e is small, f. will have many invariant 
circles. Hence, orbits will be trapped in narrow annular regions (see Section G 
for additional details and references). This is particularly useful in applica­
tions (see Chapter IX). 

In light of the above theorems we can state a corollary of the KAM theo­
rem as follows: Recall that 

(J5 - 1) 

2 1+--
1 +. 

satisfies the condition ofthe above KAM theorem, hence 

Corollary 5. There exist an e > 0 such that if f: A -+ A is an ESMT map 
whose distance from fo : A -+ A: (x, y) -+ (x + y, y) in the C4 topology is less 
than e, then if 

Pn 1 

qn 1 + 1 
1 + . 

'+ 1 

is a convergent of (J5 - 1)/2, all Pn/qn periodic points of f are monotone. 

Hence, one can, very loosely, say that the KAM theorem for ESMT maps 
says that perturbations of the simple map fo: A -+ A : (x, y) -+ (x + y, y) can­
not have nonmonotone periodic orbits of certain periods. The problem of 
creation of periodic orbits via small perturbations is a well-known one in 
dynamics, with the fundamental statement being the C1-closing lemma of 
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Pugh and Robinson. This lemma states loosely that small C1 perturbations 
can be used to create periodic orbits. The situation for smoothing "closing 
lemmas" is unclear at this time. 

F. Applications 

We end this chapter with a few comments on some applications of the above 
theorems on twist maps. 

In the billiards problem of Section V.B, the section map constructed that 
corresponds with the billiard ball hitting the edge of the table turns out to be 
an exact symplectic (i.e., area preserving) monotone twist map. Poincare's 
Last Geometric Theorem implies that there are periodic orbits of every 
period. The Aubry-Mather Theorem implies that there are quasi-periodic 
orbits with irrational rotation number. (We recall that the rotation number is 
for orbits of the twist map and is not so easy to compute from just the orbits 
of the billiard ball on the table.) Finally the KAM theorem implies that for 
billiard tables that are sufficiently close to circular, there are billiard ball 
orbits whose points of collision with the boundary are dense on the boundary. 
Moreover, there is an associated "stability" statement that is orbits which 
start close to tangent with the boundary of the table will stay close to tangent. 
[See BirkhofT(1927) and Moser (1973).] 

For the linear crystal model of Section V.B, which gives an exact sym­
plectic monotone twist map on the cylinder, Poincare's Last Geometric Theo­
rem and the Aubry- Mather Theorem imply the existence of periodic and 
quasi-periodic crystals for any potential. For sufficiently flat potentials, the 
KAM theorem yields one-parameter families of crystals between which there 
is no "energy barrier," i.e., the deposited layer of atoms can slide freely along 
the underlying surface. [See Aubry (1983) and Le Daeron, and Bangert 
(1988).] 

Finally, Poincare's Last Geometric Theorem and the Aubry-Mather The­
orem imply the existence of periodic and quasi-periodic orbits in many dif­
ferent scenarios. As discussed in Chapter IX, the KAM theorem provides 
stability statements when the problem is nearly integrable, or near (most) 
linearly stable periodic orbits. The reader should consult Conley (1962), 
Moser (1973), Arnold and Avez (1968), and Chapter IX for more information. 

G. Further Reading 

The following comments are meant as a guide to the very incomplete list of 
references which follows. A "complete" list of references would be impossible 
to compile and the author hopes the readers will help fill in the obvious gaps 
in this list by consulting the references of these references and watching the 
current literature for more results. 
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Section A 

Because of the small number of variables (two dimensions) and the simple 
geometric nature of the twist condition, twist maps arise in many places in 
dynamics. See Birkhoff (1915) for a lurid account of the appearance of twist 
maps in the planar circular restricted 3-body problem found by Poincare 
(1890, 1899). See 1. Moser (1973), c.c. Conley (1962), Chenciner and Llibre 
(1988) for a few of the recent applications of twist maps to celestial mechanics. 
Charming problems of billiards and "exterior" billiards and their relationship 
to twist maps is discussed in Birkhoff (1927) and Moser (1973), respectively, 
and the appearance of twist maps in general Hamiltonian systems is discussed 
in Arnold and Avez (1968). There is a great wealth of stimulating computer 
pictures available in the literature, for example Chirkov (1979), and a surpris­
ing application of twist maps in solid state physics is lucidly described in the 
excellent survey article of Bangert (1988). 

The approach taken in this section is "topological." Many of the same 
results, and more, were first discovered by "variational" methods. These tech­
niques were used by Birkhoff(1927) in the billards problem and were general­
ized to twist maps by Aubry and Le Daeron (1983), and Mather (1982) [see 
also Katok (1982) and Bangert (1988)]. These variational techniques have led 
to many additional results [e.g., Mather (1986,1988)]. 

Surprisingly, the same variational techniques are useful in the study of 
geodesies on the 2-torus (even though there is strictly speaking no twist map 
present). These techniques were used by Hedlund (1932) and are clearly 
discussed by Bangert (1988). 

The topological approach to twist maps can be found in, among others, 
Hall (1984, 1989), Boyland and Hall (1987), Boyland (1988), Le Calvez (1988) 
and Casdagli (1987). See also the last chapter of a recent textbook by 
Arrowsmith and Place (1990). 

Several methods of generalization to higher dimensions have recently been 
given by Angenent (1990) and Moser (1986a). The generalizations to higher­
dimensional symplectic maps and Hamiltonian systems is an area of very 
active present research- a small sample of the interesting work in this area 
includes Conley and Zehnder (1984), Bernstein and Katok (1987), Floer and 
Zehnder (1985), Gole (1990), and Mather and Herman (1988). 

Section B 

The "standard family" of maps of the cylinder [e.g., Equation (B.4)] has 
been extensively studied both numerically and analytically. Recent work of 
Veerman and Tangerman (1990) for example shows that the special form of 
standard families allows one to prove remarkable results concerning the exact 
behavior of the dynamics of these maps. Herman (1983) has used the special 
form of standard families to construct some truly amazing examples of twist 
maps containing remarkable invariant sets. 
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These maps, particularly "the" standard map have also been extensively 
studied via computer. Since the questions one asks are frequently about long 
term behavior of orbits or long period periodic orbits, such studies must be 
done with great care (and hence great amounts of computer time); see, for 
example, MacKay and Percival (1985). Recent work of Jungries (1988) has 
used the special geometric properties of twist maps to circumvent the need for 
tremendous numerical accuracy when using the computer to address ques­
tions about the long-term behavior of orbits. This is an excellent piece of work 
on twist maps and on how numerical computations can be effectively used in 
ma thema tics. 

The study of diffeomorphisms of the circle makes an excellent model for 
the study of twist maps. Indeed, many of the difficulties encountered in study­
ing circle maps, e.g., "small divisors," appear again in annulus maps. This 
topic is covered in several texts, including Devaney (1986), Nitecki (1971) and 
Coddington and Levinson (1955) and the reader should consult Guckenheimer 
and Holmes (1983), Herman (1983), and Arnold (1961) as well. 

Section C 

Poincare's Last Geometric Theorem has a fascinating history. Poincare's 
paper of 1912 where he conjectures the theorem [and comes close to proving 
it, see Gole and Hall (1990)] gives great insights into how he thought about 
the problem. [See also a letter concerning this paper in the last volume of 
Poincare's Collected Works.] The proof given by Birkhoff(1913) the next year 
used modern "index theory" techniques, and subsequent proofs have used 
many different methods. Work continues in extending this theorem including 
recent, very general versions of fixed and periodic point theorems in two 
dimensions by Franks (1988) and Handel and others. Extensions to higher­
dimensional symplectic maps [the "Arnold conjecture" -see Arnold (1978)] 
have been obtained by Conley and Zehnder (1984) and have opened the gates 
for a great deal of work in this area (see comments for Section A). 

Poincare originally conjectured the existence of two periodic orbits. 
Birkhoff's 1913 paper shows the existence of two nondegenerate periodic 
orbits. In 1925, Birkhoff showed the existence of two periodic orbits, dropping 
the nondegeneracy assumption. This work has been reviewed and carefully 
verified by Brown and von Newmann (1977) . These multiplicity statements 
carry into higher dimensions as seen in the work of Conley and Zehnder. 

Section D 

The ideas of this section are closely related to the concept of unremovable 
periodic orbits of Asimov and Franks (1983) and the nature of mapping 
classes in two dimensions [e.g., Matsuoka (1983) and Fathi, Landerback, and 
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Ponenaru (1979)]. The monotone twist condition gives an extremely strong 
tool to use in conjunction with the above theories of maps of two-dimensional 
surfaces. Because the techniques are topological, they apply to cases where 
area preservation does not hold; for example, see Casdegli (1987), Le Calvez 
(1988), Boyland (1988), and Arrowsmith and Place (1990). 

Section E 

The term "zone of instability" was used by Birkhoff to describe a region in an 
ESMT map which contains no invariant circles. Such a map was constructed 
by Birkhoff (1932) by the now familiar technique of creating a transverse 
homoclinic orbit by perturbing an integrable map of the annulus. The 
dynamics, particularly the ergodic (measure theoretic) properties of orbits in 
the zones of instability is still an active area of research. Of particular interest 
is the "transmit time" or the number of iterates it takes for an orbit to pass 
from a neighborhood of one boundary to a neighborhood of the other; see 
MacKay, MeIss, and Percival (1984). 

The importance of delicate number theory in the study of twist maps, 
particularly the nature of irrational numbers and the extent that they can be 
approximated by rationals with a small denominator is one of the most inter­
esting and elegant parts of the KAM theory. [A review ofthe relevant number 
theory can be found in Hardy and Wright (1979) and Niven (1956).J These 
"small division" problems that arise from the number theory were known 
classically and were a major stumbling block to the study of twist maps. 
Again we note that the study of circle homeomorphisms have many of these 
same difficulties and the reader is referred to Arnold (1961) and Herman 
(1979). 

Since the KAM theory involves both delicate number theoretic and differ­
entiability hypothesis, it is not surprising that its proof is delicate and diffi­
cult. Work continues in the understanding of this theorem and the reader is 
referred to Moser (1973), Arnold and Avez (1968) for an overview and to 
Herman (1983) for recent work. That the KAM theory is related to the equally 
difficult C1-Closing Lemma of Pugh and Robinson (1983) perhaps does not 
help to "explain" either of them, but is hopefully surprising and interesting. 

Problems 

1. Show that the billiard map of Section V.B. satisfies the monotone twist condition. 

2. Show that the symplectic map arising in the one-dimensional crystal model of 
Section V.B. satisfies the monotone twist condition. 

3. Show that an area-preserving map on the closed annulus A automatically satisfies 
the "zero flux" condition of Equation (B.6). 
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4. Suppose f: .91 -+ .91 is an exact symplectic monotone twist map. Let B = 

{(x, x') E [R2:f( {(x, y): y E [0, I]}) (\ {(x', y): y E [0, I]} to O} and define h: B -+ [R 

by setting h(x, x') to be the area bounded by y = 0, {(x', y): y E [0, I]} and 
f( {(x, y): y E [0, I]}). Show that 

(i) h(x + I, x' + I) = h(y, x'), 
(ii) h is a generating function for f [see Katok (1982)]. 

5. For f : .91 -+ .91 an exact symplectic monotone twist map show that the set of 
invariant circles is closed (i.e., the set of points in .91 on an invariant circle for f is 
a closed set.) 

6. Can a point in .91 be on more than one invariant circle for an exact symplectic 
monotone twist map f: .91 -+ d? If so, how? 

7. Suppose f: .91 -+ .91 is an exact symplectic monotone twist map and f has a 2/5-
nonmonotone periodic point. What is the largest interval of rotation numbers for 
which f is guaranteed to have no invariant circles? 
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Equilibrium point (cont.) 
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